Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multikingdom and functional gut microbiota markers for autism spectrum disorder

Abstract

Associations between the gut microbiome and autism spectrum disorder (ASD) have been investigated although most studies have focused on the bacterial component of the microbiome. Whether gut archaea, fungi and viruses, or function of the gut microbiome, is altered in ASD is unclear. Here we performed metagenomic sequencing on faecal samples from 1,627 children (aged 1–13 years, 24.4% female) with or without ASD, with extensive phenotype data. Integrated analyses revealed that 14 archaea, 51 bacteria, 7 fungi, 18 viruses, 27 microbial genes and 12 metabolic pathways were altered in children with ASD. Machine learning using single-kingdom panels showed area under the curve (AUC) of 0.68 to 0.87 in differentiating children with ASD from those that are neurotypical. A panel of 31 multikingdom and functional markers showed a superior diagnostic accuracy with an AUC of 0.91, with comparable performance for males and females. Accuracy of the model was predominantly driven by the biosynthesis pathways of ubiquinol-7 or thiamine diphosphate, which were less abundant in children with ASD. Collectively, our findings highlight the potential application of multikingdom and functional gut microbiota markers as non-invasive diagnostic tools in ASD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Associations between ASD and faecal microbiome composition.
Fig. 2: Associations between ASD and faecal microbiome functions.
Fig. 3: Random forest models for the diagnosis of ASD.
Fig. 4: Validation of the random forest models.

Similar content being viewed by others

Data availability

The metagenomic sequencing data generated in this study have been deposited in the NCBI Sequence Read Archive database under accession code PRJNA943687. The publicly available raw sequencing data were downloaded through the retrieved accession numbers from cited papers, including GSE113540, PRJNA516054, PRJNA782533, CRA004105, PRJEB23052 and CRA001746. Mammalian genomes including hg38, felCat8, canFam3, mm10, rn6, susScr3, galGal4 and bosTau8 are available in UCSC Genome Browser at https://genome.ucsc.edu. Bacterial plasmids, complete plastomes, UniVec sequences and reference genomes database consisting of bacterial, archaeal and viral reference genomes are available in NCBI RefSeq database at https://www.ncbi.nlm.nih.gov/refseq. Fungal reference genomes are available in NCBI RefSeq database (https://www.ncbi.nlm.nih.gov/refseq), FungiDB (http://fungidb.org) and Ensemble (http://fungi.ensembl.org). Source data are provided with this paper.

Code availability

All software used are from publicly available sources. Codes used for the microbiome analyses or figures are available via GitHub at https://github.com/qsu123/ASD_multi-kingdom_diagnosis ref. 81.

References

  1. Lord, C., Elsabbagh, M., Baird, G. & Veenstra-Vanderweele, J. Autism spectrum disorder. Lancet 392, 508–520 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Masi, A., DeMayo, M. M., Glozier, N. & Guastella, A. J. An overview of autism spectrum disorder, heterogeneity and treatment options. Neurosci. Bull. 33, 183–193 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Matin, B. K. et al. Contributing factors to healthcare costs in individuals with autism spectrum disorder: a systematic review. BMC Health Serv. Res. 22, 604 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tordjman, S. et al. Gene × environment interactions in autism spectrum disorders: role of epigenetic mechanisms. Front. Psychiatry 5, 53 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Geschwind, D. H. Autism: many genes, common pathways? Cell 135, 391–395 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Satterstrom, F. K. et al. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell 180, 568–584.e23 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Taniya, M. A. et al. Role of gut microbiome in autism spectrum disorder and its therapeutic regulation. Front. Cell. Infect. Microbiol. 12, 915701 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang, W. & Fu, P. Gut microbiota analysis and in silico biomarker detection of children with autism spectrum disorder across cohorts. Microorganisms 11, 291 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wan, Y. et al. Underdevelopment of the gut microbiota and bacteria species as non-invasive markers of prediction in children with autism spectrum disorder. Gut 71, 910–918 (2022).

    Article  PubMed  Google Scholar 

  10. Lou, M. et al. Deviated and early unsustainable stunted development of gut microbiota in children with autism spectrum disorder. Gut 71, 1588–1599 (2022).

    CAS  PubMed  Google Scholar 

  11. Liu, Z. et al. Gene variations in autism spectrum disorder are associated with alteration of gut microbiota, metabolites and cytokines. Gut Microbes 13, 1–16 (2021).

    Article  PubMed  Google Scholar 

  12. Yap, C. X. et al. Autism-related dietary preferences mediate autism–gut microbiome associations. Cell 184, 5916–5931.e17 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Jacobson, A., Yang, D., Vella, M. & Chiu, I. M. The intestinal neuro-immune axis: crosstalk between neurons, immune cells, and microbes. Mucosal Immunol. 14, 555–565 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sharon, G. et al. Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice. Cell 177, 1600–1618.e17 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kang, D. W. et al. Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome 5, 10 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kang, D. W. et al. Long-term benefit of microbiota transfer therapy on autism symptoms and gut microbiota. Sci. Rep. 9, 5821 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Andreo-Martínez, P., Rubio-Aparicio, M., Sánchez-Meca, J., Veas, A. & Martínez-González, A. E. A meta-analysis of gut microbiota in children with autism. J. Autism Dev. Disord. 52, 1374–1387 (2022).

    Article  PubMed  Google Scholar 

  18. Ho, L. K. H. et al. Gut microbiota changes in children with autism spectrum disorder: a systematic review. Gut Pathog. 12, 6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bezawada, N., Phang, T. H., Hold, G. L. & Hansen, R. Autism spectrum disorder and the gut microbiota in children: a systematic review. Ann. Nutr. Metab. 76, 16–29 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Qu, A. et al. Children with autism show differences in the gut DNA virome compared to non-autistic children: a case control study. BMC Pediatr. 23, 174 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Weiner, A., Turjeman, S. & Koren, O. Gut microbes and host behavior: the forgotten members of the gut-microbiome. Neuropharmacology 227, 109453 (2023).

    Article  CAS  PubMed  Google Scholar 

  22. Wan, Y. et al. Alterations in fecal virome and bacteriome virome interplay in children with autism spectrum disorder. Cell Rep. Med. 5, 101409 (2024).

  23. Gacesa, R. et al. Environmental factors shaping the gut microbiome in a Dutch population. Nature 604, 732–739 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Vujkovic-Cvijin, I. et al. Host variables confound gut microbiota studies of human disease. Nature 587, 448–454 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gvozdjáková, A. et al. Ubiquinol improves symptoms in children with autism. Oxid. Med. Cell. Longev. 2014, 798957 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Crane, F. L., Löw, H., Sun, I., Navas, P. & Gvozdjáková, A. Plasma membrane coenzyme Q: evidence for a role in autism. Biologics 8, 199–205 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang, G. et al. Thiamine nutritional status and depressive symptoms are inversely associated among older Chinese adults. J. Nutr. 143, 53–58 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Vignisse, J. et al. Thiamine and benfotiamine prevent stress-induced suppression of hippocampal neurogenesis in mice exposed to predation without affecting brain thiamine diphosphate levels. Mol. Cell. Neurosci. 82, 126–136 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Wiley, K. D. & Gupta, M. Vitamin B1 (Thiamine) Deficiency. in StatPearls (ed. Gupta, M.) (StatPearls Publishing, 2023).

  30. Hasler, M., Fideli, Ü. S., Susi, A. & Hisle-Gorman, E. Examining the relationship between autism spectrum disorder and neural tube defects. Congenit. Anom. 63, 100–108 (2023).

    Article  Google Scholar 

  31. Tokatly Latzer, I. et al. Autism spectrum disorder and GABA levels in children with succinic semialdehyde dehydrogenase deficiency. Dev. Med. Child Neurol. 65, 1596–1606 (2023).

  32. Adak, P., Banerjee, N., Sinha, S. & Bandyopadhyay, A. K. Gamma-aminobutyric acid type A receptor variants are associated with autism spectrum disorders. J. Mol. Neurosci. 73, 237–249 (2023).

    Article  CAS  PubMed  Google Scholar 

  33. Hollestein, V. et al. Excitatory/inhibitory imbalance in autism: the role of glutamate and GABA gene-sets in symptoms and cortical brain structure. Transl. Psychiatry 13, 18 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Xu, Y. et al. Leveraging existing 16S rRNA microbial data to define a composite biomarker for autism spectrum disorder. Microbiol. Spectr. 10, e0033122 (2022).

    Article  PubMed  Google Scholar 

  35. Su, Q. et al. Gut microbiome signatures reflect different subtypes of irritable bowel syndrome. Gut Microbes 15, 2157697 (2023).

    Article  PubMed  Google Scholar 

  36. Dan, Z. et al. Altered gut microbial profile is associated with abnormal metabolism activity of Autism Spectrum Disorder. Gut Microbes 11, 1246–1267 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kovtun, A. S., Averina, O. V., Alekseeva, M. G. & Danilenko, V. N. Antibiotic resistance genes in the gut microbiota of children with autistic spectrum disorder as possible predictors of the disease. Microb. Drug Resist. 26, 1307–1320 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Nirmalkar, K. et al. Shotgun metagenomics study suggests alteration in sulfur metabolism and oxidative stress in children with autism and improvement after microbiota transfer therapy. Int. J. Mol. Sci. 23, 13481 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tong, Z. et al. Implications of oral streptococcal bacteriophages in autism spectrum disorder. npj Biofilms Microbiomes 8, 91 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wang, M. et al. Alterations in gut glutamate metabolism associated with changes in gut microbiota composition in children with autism spectrum disorder. mSystems 4, e00321 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang, M. et al. A quasi-paired cohort strategy reveals the impaired detoxifying function of microbes in the gut of autistic children. Sci. Adv. 6, eaba3760 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Su, Q. et al. Faecal microbiome-based machine learning for multi-class disease diagnosis. Nat. Commun. 13, 6818 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chan, C. W. H., Leung, T. F., Choi, K. C., Tsui, S. K. W. & Chan, J. Y. W. Effects of gut microbiome and environment on the development of eczema in Chinese infants. Medicine 99, e20327 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kang, Y., Cai, Y. & Pan, W. Change in gut microbiota for eczema: implications for novel therapeutic strategies. Allergol. Immunopathol. 46, 281–290 (2018).

    Article  CAS  Google Scholar 

  45. Taş, E. & Ülgen, K. O. Understanding the ADHD–gut axis by metabolic network analysis. Metabolites 13, 592 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wang, L., Xie, Z., Li, G., Li, G. & Liang, J. Two-sample Mendelian randomization analysis investigates causal associations between gut microbiota and attention deficit hyperactivity disorder. Front. Microbiol. 14, 1144851 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Anwar, A. et al. Quantitation of plasma thiamine, related metabolites and plasma protein oxidative damage markers in children with autism spectrum disorder and healthy controls. Free Radic. Res. 50, S85–s90 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Rashaid, A. H. B. et al. Profiling plasma levels of thiamine and histamine in Jordanian children with autism spectrum disorder (ASD): potential biomarkers for evaluation of ASD therapies and diet. Nutr. Neurosci. 26, 842–849 (2023).

  49. Obrenovich, M. E., Shola, D., Schroedel, K., Agrahari, A. & Lonsdale, D. The role of trace elements, thiamin (e) and transketolase in autism and autistic spectrum disorder. Front. Biosci. 7, 229–241 (2015).

    Google Scholar 

  50. Liu, J. et al. Alteration of gut microbiota: new strategy for treating autism spectrum disorder. Front. Cell Dev. Biol. 10, 792490 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Alharthi, A., Alhazmi, S., Alburae, N. & Bahieldin, A. The human gut microbiome as a potential factor in autism spectrum disorder. Int. J. Mol. Sci. 23, 1363 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Settanni, C. R. et al. Gastrointestinal involvement of autism spectrum disorder: focus on gut microbiota. Expert Rev. Gastroenterol. Hepatol. 15, 599–622 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Guidetti, C. et al. Randomized double-blind crossover study for evaluating a probiotic mixture on gastrointestinal and behavioral symptoms of autistic children. J. Clin. Med. 11, 5263 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  54. El-Mekkawy, R. M., Hamour, N. E., Hassanein, W. A. & Allam, A. A. Evaluation of the antibacterial activity of Weissella confusa K3 cell-free supernatant against extended-spectrum βeta lactamase (ESBL) producing uropathogenic Escherichia coli U60. Saudi J. Biol. Sci. 30, 103595 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ahmed, S. et al. The Weissella genus: clinically treatable bacteria with antimicrobial/probiotic effects on inflammation and cancer. Microorganisms 10, 2427 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kwak, S. H., Cho, Y. M., Noh, G. M. & Om, A. S. Cancer preventive potential of kimchi lactic acid bacteria (Weissella cibaria, Lactobacillus plantarum). J. Cancer Prev. 19, 253–258 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  57. West, K. A. et al. Multi-angle meta-analysis of the gut microbiome in autism spectrum disorder: a step toward understanding patient subgroups. Sci. Rep. 12, 17034 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cooper, J. R. & Pincus, J. H. The role of thiamine in nervous tissue. Neurochem. Res. 4, 223–239 (1979).

    Article  CAS  PubMed  Google Scholar 

  59. Liu, N. N. et al. Multi-kingdom microbiota analyses identify bacterial–fungal interactions and biomarkers of colorectal cancer across cohorts. Nat. Microbiol. 7, 238–250 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ananthakrishnan, A. N. et al. Gut microbiome function predicts response to anti-integrin biologic therapy in inflammatory bowel diseases. Cell Host Microbe 21, 603–610.e3 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Morton, J. T., Donovan, S. M. & Taroncher-Oldenburg, G. Decoupling diet from microbiome dynamics results in model mis-specification that implicitly annuls potential associations between the microbiome and disease phenotypes—ruling out any role of the microbiome in autism (Yap et al. 2021) likely a premature conclusion. Preprint at bioRxiv https://doi.org/10.1101/2022.02.25.482051 (2022).

  62. Rolland, T. et al. Phenotypic effects of genetic variants associated with autism. Nat. Med. 29, 1671–1680 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. First, M. B. Diagnostic and statistical manual of mental disorders, 5th edition, and clinical utility. J. Nerv. Ment. Dis. 201, 727–729 (2013).

    Article  PubMed  Google Scholar 

  64. Wong, P. P., Wai, V. C., Chan, R. W., Leung, C. N. & Leung, P. W. Autism-spectrum quotient-child and autism-spectrum quotient-adolescent in Chinese population: screening autism spectrum disorder against attention-deficit/hyperactivity disorder and typically developing peers. Autism 25, 1913–1923 (2021).

    Article  PubMed  Google Scholar 

  65. Pappas, D. ADHD Rating Scale-IV: checklists, norms, and clinical interpretation. J. Psychoeduc. Assess. 24, 172–178 (2006).

    Article  Google Scholar 

  66. Memória, C. M. et al. Applicability of the Test of Variables of Attention - T.O.V.A in Brazilian adults. Dement. Neuropsychol. 12, 394–401 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Hanifin, J. M. & Rajka, G. Diagnostic features of atopic dermatitis. Acta Derm. Venereol. 60, 44–47 (1980).

    Article  Google Scholar 

  68. Tito, R. Y. et al. Microbiome confounders and quantitative profiling challenge predicted microbial targets in colorectal cancer development. Nat. Med. 30, 1339–1348 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chumpitazi, B. P. et al. Bristol Stool Form Scale reliability and agreement decreases when determining Rome III stool form designations. Neurogastroenterol. Motil. 28, 443–448 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Chen, Z. et al. Impact of preservation method and 16S rRNA hypervariable region on gut microbiota profiling. mSystems 4, e00271-18 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lu, J. et al. Metagenome analysis using the Kraken software suite. Nat. Protoc. 17, 2815–2839 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Lu, J., Breitwieser, F. P., Thielen, P. & Salzberg, S. L. Bracken: estimating species abundance in metagenomics data. PeerJ Comput. Sci. 3, e104 (2017).

    Article  Google Scholar 

  77. van den Boogaart, K. G. & Tolosana-Delgado, R. “compositions”: a unified R package to analyze compositional data. Comput. Geosci. 34, 320–338 (2008).

    Article  Google Scholar 

  78. Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).

    Article  Google Scholar 

  79. Ma, S. et al. Population structure discovery in meta-analyzed microbial communities and inflammatory bowel disease using MMUPHin. Genome Biol. 23, 208 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Mallick, H. et al. Multivariable association discovery in population-scale meta-omics studies. PLoS Comput. Biol. 17, e1009442 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Su, Q. ASD_multi-kingdom_diagnosis. GitHub https://github.com/qsu123/ASD_multi-kingdom_diagnosis (2024).

Download references

Acknowledgements

We thank F. Mo, C. Shea and C. Ho for facilitating the clinical participants’ enrolment. This study was supported by InnoHK (F.K.L.C, S.C.N.), the Government of Hong Kong, Special Administrative Region of the People’s Republic of China, The D. H. Chen Foundation (F.K.L.C., S.C.N.), and the New Cornerstone Science Foundation through the New Cornerstone Investigator Program (S.C.N.).

Author information

Authors and Affiliations

Authors

Contributions

Q.S. and O.W.H.W. conceived the study, ran analyses and drafted the paper. W.L., Y.W., L.Z., W.X., M.K.T.L., C.L. and T.F.L. contributed to part of metagenomic sequencing. C.P.C., J.Y.L.C. and P.K.C. contributed to participant recruitment, sample collection and biobank management. S.C. and P.L. contributed to participant recruitment and clinical assessment. F.K.L.C. contributed to the study design and data interpretation. S.C.N. oversaw the entire study and contributed to the study design, data analysis and interpretation, and paper writing. All authors gave final approval for the version to be published.

Corresponding author

Correspondence to Siew C. Ng.

Ethics declarations

Competing interests

F.K.L.C. is a Board Member of CUHK Medical Centre. He is a co-founder, non-executive Board Chairman, honorary Chief Medical Officer and shareholder of GenieBiome Ltd. He receives patent royalties through his affiliated institutions. He has received fees as an advisor and honoraria as a speaker for Eisai Co. Ltd., AstraZeneca, Pfizer Inc., Takeda Pharmaceutical Co., and Takeda (China) Holdings Co. Ltd. S.C.N. has served as an advisory board member for Pfizer, Ferring, Janssen, and Abbvie and received honoraria as a speaker for Ferring, Tillotts, Menarini, Janssen, Abbvie, and Takeda. She has received research grants through her affiliated institutions from Olympus, Ferring, and Abbvie, and is a scientific co-founder and shareholder of GenieBiome Ltd. She also receives patent royalties through her affiliated institutions. Q.S., L.Z., Y.W., F.K.L.C. and S.C.N. are named inventors of patent applications (no. 63/533,871, US, 2023) held by the CUHK and MagIC that cover the therapeutic and diagnostic use of microbiome. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Ivan Vujkovic-Cvijin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Overview of microbial composition in four kingdoms across cohorts.

a, Composition of archaea, bacteria and fungi was shown at phylum level and composition of virus was shown at family level. Top 5 abundant phyla or families are shown in the pie chart and others are summed into others. b, Principal components analysis of gut microbiome composition across different cohorts. c, Differential taxa across different cohorts identified by MaAsLin2.

Extended Data Fig. 2 The influence of individual phenotypic factor on the multi-kingdom microbiome (archaea, bacteria, fungi and viruses) composition assessed by multivariate PERMANOVA analysis (two-sided test) in the discovery cohort (709 ASD and 374 NT).

Phenotypic factors with a significant (p < 0.05) influence on each kingdom were marked with *. ASD, autism spectrum disorder; NT, neurotypical.

Source data

Extended Data Fig. 3 The influence of individual phenotypic factor on the microbiome function (KO genes and MetaCyc pathways) assessed by multivariate PERMANOVA analysis (two-sided test) in the discovery cohort (709 ASD and 374 NT).

Phenotypic factors with a significant (p < 0.05) influence on each kingdom were marked with *. KO, Kyoto Encyclopedia of Genes and Genomes orthology. ASD, autism spectrum disorder; NT, neurotypical.

Source data

Extended Data Fig. 4 Matched confounders between ASD (n = 301) and NT (n = 301) in the balanced sub-cohort constructed by one-by-one pairing algorithm, including age (a), BMI (b), sex (c), sequencing batch (d), GI parameters (e) and dietary factors (f).

Continuous data were compared using two-sided Mann-Whitney U test (two-sided test) and shown via the median (centre line), 25th and 75th percentiles (box limits) and the 5th and 95th percentiles (whiskers). Categorical variables were presented as proportions and were compared using two-sided Chi-squire test or Fisher’s exact test (expected count<5). Dietary patterns were assessed by principal components analysis. BMI, body mass index; GI, gastrointestinal. ASD, autism spectrum disorder; NT, neurotypical.

Source data

Extended Data Fig. 5 Validation of trained models in children under 6 years of age (14 ASD and 17 NT) in the independent hospital cohort.

AUC were calculated after adjustment for technical factors and available covariates including age, sex, body mass index, Bristol stool form scale, functional constipation and defecation disorders. ASD, autism spectrum disorder; NT, neurotypical.

Source data

Extended Data Fig. 6 Associations between ASD and 31 markers in the independent community cohort (stratified by age) assessed by MaAsLin 2 (two-sided test).

The Coef value of each association was only marked when p value less than 0.05. ASD, autism spectrum disorder; NT, neurotypical.

Source data

Extended Data Fig. 7 Validation of model using 31 markers on the public dataset.

a, Construction of an external validation cohort of ASD from six published studies. b, Area under the Curve of model using 31 markers tested in the public dataset. AUC were calculated after adjustment for available covariates from public datasets including age, sex, and batch effects (defined by different studies). P values were calculated by Wilcoxon rank-sum test (two-sided test). ASD, autism spectrum disorder; NT, neurotypical.

Source data

Extended Data Fig. 8 Decreased abundance of ubiquinol-7 and thiamine diphosphate biosynthesis genes in ASD children across different cohorts.

Associations between ubiquinol-7 and thiamine diphosphate biosynthesis genes and ASD were assessed by MaAsLin 2 (two-sided test). The Coef value of each association was only marked when p value less than 0.05. ASD, autism spectrum disorder; NT, neurotypical.

Source data

Extended Data Table 1 Demographics of subjects recruited in this study
Extended Data Table 2 Validation of model using 31 markers on the independent community cohort

Supplementary information

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 7

Statistical source data.

Source Data Extended Data Fig. 8

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Q., Wong, O.W.H., Lu, W. et al. Multikingdom and functional gut microbiota markers for autism spectrum disorder. Nat Microbiol 9, 2344–2355 (2024). https://doi.org/10.1038/s41564-024-01739-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-024-01739-1

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology