Abstract
Ebola virus and other orthoebolaviruses cause severe haemorrhagic fevers in humans, with very high case fatality rates. Their non-segmented single-stranded RNA genome encodes only seven structural proteins and a small number of non-structural proteins to facilitate the virus life cycle. The basics of this life cycle are well established, but recent advances have substantially increased our understanding of its molecular details, including the viral and host factors involved. Here we provide a comprehensive overview of our current knowledge of the molecular details of the orthoebolavirus life cycle, with a special focus on proviral host factors. We discuss the multistep entry process, viral RNA synthesis in specialized phase-separated intracellular compartments called inclusion bodies, the expression of viral proteins and ultimately the assembly of new virus particles and their release at the cell surface. In doing so, we integrate recent studies into the increasingly detailed model that has developed for these fundamental aspects of orthoebolavirus biology.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Biedenkopf, N. et al. Renaming of genera Ebolavirus and Marburgvirus to Orthoebolavirus and Orthomarburgvirus, respectively, and introduction of binomial species names within family Filoviridae. Arch. Virol. 168, 220 (2023).
Izudi, J. & Bajunirwe, F. Case fatality rate for Ebola disease, 1976–2022: a meta-analysis of global data. J. Infect. Public Health 17, 25–34 (2024).
Penas, J. A., Miranda, M. E., de Los Reyes, V. C., Sucaldito, M. N. L. & Magpantay, R. L. Risk assessment of Ebola Reston virus in humans in the Philippines. West. Pac. Surveill. Response J. 10, 1–8 (2019).
Bodmer, B. S. et al. In vivo characterization of the novel ebolavirus Bombali virus suggests a low pathogenic potential for humans. Emerg. Microbes Infect. 12, 2164216 (2023).
Olejnik, J. et al. Filovirus strategies to escape antiviral responses. Curr. Top. Microbiol. Immunol. 411, 293–322 (2017).
Bodmer, B. S. et al. Differences in viral RNA synthesis but not budding or entry contribute to the in vitro attenuation of Reston virus compared to Ebola virus. Microorganisms 8, 1215 (2020).
Barr, J. et al. Detection of filovirus-reactive antibodies in Australian bat species. J. Gen. Virol. https://doi.org/10.1099/jgv.0.001785 (2022).
Dovih, P. et al. Filovirus-reactive antibodies in humans and bats in Northeast India imply zoonotic spillover. PLoS Negl. Trop. Dis. 13, e0007733 (2019).
Yuan, J. et al. Serological evidence of ebolavirus infection in bats, China. Virol. J. 9, 236 (2012).
Wendt, L., Bostedt, L., Hoenen, T. & Groseth, A. High-throughput screening for negative-stranded hemorrhagic fever viruses using reverse genetics. Antivir. Res. 170, 104569 (2019).
Hoenen, T., Groseth, A. & Feldmann, H. Therapeutic strategies to target the Ebola virus life cycle. Nat. Rev. Microbiol. 17, 593–606 (2019).
McElroy, A. K., Muhlberger, E. & Munoz-Fontela, C. Immune barriers of Ebola virus infection. Curr. Opin. Virol. 28, 152–160 (2018).
Escudero-Perez, B. & Munoz-Fontela, C. Role of type I interferons on Filovirus pathogenesis. Vaccines 7, 22 (2019).
Beniac, D. R. et al. The organisation of Ebola virus reveals a capacity for extensive, modular polyploidy. PLoS ONE 7, e29608 (2012).
Bharat, T. A. et al. Structural dissection of Ebola virus and its assembly determinants using cryo-electron tomography. Proc. Natl Acad. Sci. USA 109, 4275–4280 (2012).
Sugita, Y., Matsunami, H., Kawaoka, Y., Noda, T. & Wolf, M. Cryo-EM structure of the Ebola virus nucleoprotein–RNA complex at 3.6 Å resolution. Nature 563, 137–140 (2018).
Wan, W. et al. Structure and assembly of the Ebola virus nucleocapsid. Nature 551, 394–397 (2017).
Fujita-Fujiharu, Y. et al. Structural insight into Marburg virus nucleoprotein–RNA complex formation. Nat. Commun. 13, 1191 (2022).
Hu, S. et al. Cryoelectron microscopic structure of the nucleoprotein-RNA complex of the European filovirus, Lloviu virus. PNAS Nexus 2, pgad120 (2023).
Takamatsu, Y. et al. Role of VP30 phosphorylation in Ebola virus nucleocapsid assembly and transport. J. Virol. 96, e0108322 (2022).
Wan, W. et al. Ebola and Marburg virus matrix layers are locally ordered assemblies of VP40 dimers. eLife 9, e59225 (2020).
Sanchez, A., Kiley, M. P., Holloway, B. P. & Auperin, D. D. Sequence analysis of the Ebola virus genome: organization, genetic elements and comparison with the genome of Marburg virus. Virus Res. 29, 215–240 (1993).
Brauburger, K., Boehmann, Y., Krähling, V. & Mühlberger, E. Transcriptional regulation in Ebola virus: effects of gene border structure and regulatory elements on gene expression and polymerase scanning behavior. J. Virol. 90, 1898–1909 (2016).
Shabman, R. S. et al. An upstream open reading frame modulates Ebola virus polymerase translation and virus replication. PLoS Pathog. 9, e1003147 (2013).
Hoenen, T., Jung, S., Herwig, A., Groseth, A. & Becker, S. Both matrix proteins of Ebola virus contribute to the regulation of viral genome replication and transcription. Virology 403, 56–66 (2010).
Weik, M., Enterlein, S., Schlenz, K. & Mühlberger, E. The Ebola virus genomic replication promoter is bipartite and follows the rule of six. J. Virol. 79, 10660–10671 (2005).
Martin, B., Hoenen, T., Canard, B. & Decroly, E. Filovirus proteins for antiviral drug discovery: a structure/function analysis of surface glycoproteins and virus entry. Antivir. Res 135, 1–14 (2016).
Lee, J. E. et al. Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor. Nature 454, 177–182 (2008).
Alvarez, C. P. et al. C-type lectins DC-SIGN and L-SIGN mediate cellular entry by Ebola virus in cis and in trans. J. Virol. 76, 6841–6844 (2002).
Lin, G. et al. Differential N-linked glycosylation of human immunodeficiency virus and Ebola virus envelope glycoproteins modulates interactions with DC-SIGN and DC-SIGNR. J. Virol. 77, 1337–1346 (2003).
Marzi, A. et al. Analysis of the interaction of Ebola virus glycoprotein with DC-SIGN (dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin) and its homologue DC-SIGNR. J. Infect. Dis. 196, S237–S246 (2007).
Matsuno, K. et al. C-type lectins do not act as functional receptors for filovirus entry into cells. Biochem. Biophys. Res. Commun. 403, 144–148 (2010).
Moller-Tank, S., Kondratowicz, A. S., Davey, R. A., Rennert, P. D. & Maury, W. Role of the phosphatidylserine receptor TIM-1 in enveloped-virus entry. J. Virol. 87, 8327–8341 (2013).
Rhein, B. A., Brouillette, R. B., Schaack, G. A., Chiorini, J. A. & Maury, W. Characterization of human and murine T-cell immunoglobulin mucin domain 4 (TIM-4) IgV domain residues critical for Ebola virus entry. J. Virol. 90, 6097–6111 (2016).
Hunt, C. L., Kolokoltsov, A. A., Davey, R. A. & Maury, W. The Tyro3 receptor kinase Axl enhances macropinocytosis of Zaire ebolavirus. J. Virol. 85, 334–347 (2011).
Dahlmann, F. et al. Analysis of Ebola virus entry into macrophages. J. Infect. Dis. 212, S247–S257 (2015).
Nanbo, A. et al. Ebola virus requires a host scramblase for externalization of phosphatidylserine on the surface of viral particles. PLoS Pathog. 14, e1006848 (2018).
Younan, P. et al. Role of transmembrane protein 16F in the incorporation of phosphatidylserine into budding Ebola virus virions. J. Infect. Dis. 218, S335–S345 (2018).
Amara, A. & Mercer, J. Viral apoptotic mimicry. Nat. Rev. Microbiol. 13, 461–469 (2015).
Takada, A., Feldmann, H., Ksiazek, T. G. & Kawaoka, Y. Antibody-dependent enhancement of Ebola virus infection. J. Virol. 77, 7539–7544 (2003).
Takada, A., Ebihara, H., Feldmann, H., Geisbert, T. W. & Kawaoka, Y. Epitopes required for antibody-dependent enhancement of Ebola virus infection. J. Infect. Dis. 196, S347–S356 (2007).
Furuyama, W. et al. Fcγ-receptor IIa-mediated Src signaling pathway is essential for the antibody-dependent enhancement of Ebola virus infection. PLoS Pathog. 12, e1006139 (2016).
Furuyama, W., Nanbo, A., Maruyama, J., Marzi, A. & Takada, A. A complement component C1q-mediated mechanism of antibody-dependent enhancement of Ebola virus infection. PLoS Negl. Trop. Dis. 14, e0008602 (2020).
Saeed, M. F., Kolokoltsov, A. A., Albrecht, T. & Davey, R. A. Cellular entry of Ebola virus involves uptake by a macropinocytosis-like mechanism and subsequent trafficking through early and late endosomes. PLoS Pathog. 6, e1001110 (2010).
Jin, C. et al. Single virus tracking of Ebola virus entry through lipid rafts in living host cells. Biosaf. Health 2, 25–31 (2020).
Qiu, S. et al. Ebola virus requires phosphatidylinositol (3,5) bisphosphate production for efficient viral entry. Virology 513, 17–28 (2018).
Bo, Y., Qiu, S., Mulloy, R. P. & Cote, M. Filoviruses use the HOPS complex and UVRAG to traffic to Niemann-Pick C1 compartments during viral entry. J. Virol. 94, e01002–e01020 (2020).
Spence, J. S., Krause, T. B., Mittler, E., Jangra, R. K. & Chandran, K. Direct visualization of Ebola virus fusion triggering in the endocytic pathway. mBio 7, e01857-15 (2016).
Kuroda, M., Halfmann, P. & Kawaoka, Y. HER2-mediated enhancement of Ebola virus entry. PLoS Pathog. 16, e1008900 (2020).
Stewart, C. M. et al. Ebola virus triggers receptor tyrosine kinase-dependent signaling to promote the delivery of viral particles to entry-conducive intracellular compartments. PLoS Pathog. 17, e1009275 (2021).
Carette, J. E. et al. Ebola virus entry requires the cholesterol transporter Niemann-Pick C1. Nature 477, 340–343 (2011).
Cote, M. et al. Small molecule inhibitors reveal Niemann-Pick C1 is essential for Ebola virus infection. Nature 477, 344–348 (2011).
Chandran, K., Sullivan, N. J., Felbor, U., Whelan, S. P. & Cunningham, J. M. Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection. Science 308, 1643–1645 (2005).
Schornberg, K. L. et al. α5β1-integrin controls ebolavirus entry by regulating endosomal cathepsins. Proc. Natl Acad. Sci. USA 106, 8003–8008 (2009).
Marzi, A., Reinheckel, T. & Feldmann, H. Cathepsin B & L are not required for Ebola virus replication. PLoS Negl. Trop. Dis. 6, e1923 (2012).
Wang, H. et al. Ebola viral glycoprotein bound to its endosomal receptor Niemann-Pick C1. Cell 164, 258–268 (2016).
Feneant, L., Szymanska-de Wijs, K. M., Nelson, E. A. & White, J. M. An exploration of conditions proposed to trigger the Ebola virus glycoprotein for fusion. PLoS ONE 14, e0219312 (2019).
Lee, J. et al. Structure of the Ebola virus envelope protein MPER/TM domain and its interaction with the fusion loop explains their fusion activity. Proc. Natl Acad. Sci. USA 114, E7987–E7996 (2017).
Das, D. K. et al. Conformational changes in the Ebola virus membrane fusion machine induced by pH, Ca2+ and receptor binding. PLoS Biol. 18, e3000626 (2020).
Winter, S. L. et al. The Ebola virus VP40 matrix layer undergoes endosomal disassembly essential for membrane fusion. EMBO J. 42, e113578 (2023).
Banadyga, L. et al. Ebola virus VP24 interacts with NP to facilitate nucleocapsid assembly and genome packaging. Sci. Rep. 7, 7698 (2017).
Watt, A. et al. A novel life cycle modeling system for Ebola virus shows a genome length-dependent role of VP24 in virus infectivity. J. Virol. 88, 10511–10524 (2014).
Trunschke, M. et al. The L-VP35 and L-L interaction domains reside in the amino terminus of the Ebola virus L protein and are potential targets for antivirals. Virology 441, 135–145 (2013).
Muhlberger, E., Weik, M., Volchkov, V. E., Klenk, H. D. & Becker, S. Comparison of the transcription and replication strategies of Marburg virus and Ebola virus by using artificial replication systems. J. Virol. 73, 2333–2342 (1999).
Martin, B. et al. The methyltransferase domain of the Sudan ebolavirus L protein specifically targets internal adenosines of RNA substrates, in addition to the cap structure. Nucleic Acids Res. 46, 7902–7912 (2018).
Schmidt, M. L. & Hoenen, T. Characterization of the catalytic center of the Ebola virus L polymerase. PLoS Negl. Trop. Dis. 11, e0005996 (2017).
Biedenkopf, N., Lier, C. & Becker, S. Dynamic phosphorylation of VP30 is essential for Ebola virus life cycle. J. Virol. 90, 4914–4925 (2016).
Hoenen, T., Groseth, A., Callison, J., Takada, A. & Feldmann, H. A novel Ebola virus expressing luciferase allows for rapid and quantitative testing of antivirals. Antivir. Res. 99, 207–213 (2013).
Hoenen, T. et al. Inclusion bodies are a site of ebolavirus replication. J. Virol. 86, 11779–11788 (2012).
Lier, C., Becker, S. & Biedenkopf, N. Dynamic phosphorylation of Ebola virus VP30 in NP-induced inclusion bodies. Virology 512, 39–47 (2017).
Nanbo, A., Watanabe, S., Halfmann, P. & Kawaoka, Y. The spatio-temporal distribution dynamics of Ebola virus proteins and RNA in infected cells. Sci. Rep. 3, 1206 (2013).
Fang, J. et al. Spatial and functional arrangement of Ebola virus polymerase inside phase-separated viral factories. Nat. Commun. 14, 4159 (2023).
Bodmer, B. S. et al. Ebola virus inclusion bodies are liquid organelles whose formation is facilitated by nucleoprotein oligomerization. Emerg. Microbes Infect. 12, 2223727 (2023).
Wu, C. et al. Disruption of Ebola NP0VP35 inclusion body-like structures reduce viral infection. J. Mol. Biol. 435, 168241 (2023).
Gomes, E. & Shorter, J. The molecular language of membraneless organelles. J. Biol. Chem. 294, 7115–7127 (2019).
Miyake, T. et al. Ebola virus inclusion body formation and RNA synthesis are controlled by a novel domain of nucleoprotein interacting with VP35. J. Virol. 94, e02100–e02119 (2020).
Modrof, J., Mühlberger, E., Klenk, H. D. & Becker, S. Phosphorylation of VP30 impairs Ebola virus transcription. J. Biol. Chem. 277, 33099–33104 (2002).
Ilinykh, P. A. et al. Role of protein phosphatase 1 in dephosphorylation of Ebola virus VP30 protein and its targeting for the inhibition of viral transcription. J. Biol. Chem. 289, 22723–22738 (2014).
Biedenkopf, N., Hartlieb, B., Hoenen, T. & Becker, S. Phosphorylation of Ebola virus VP30 influences the composition of the viral nucleocapsid complex: impact on viral transcription and replication. J. Biol. Chem. 288, 11165–11174 (2013).
Takamatsu, Y. et al. Serine-arginine protein kinase 1 regulates Ebola virus transcription. mBio 11, e02565-19 (2020).
Kruse, T. et al. The Ebola virus nucleoprotein recruits the host PP2A-B56 phosphatase to activate transcriptional support activity of VP30. Mol. Cell 69, 136–145 e136 (2018).
Lin, X. et al. Targeting the non-catalytic RVxF site of protein phosphatase-1 with small molecules for Ebola virus inhibition. Front. Microbiol. 10, 2145 (2019).
Kirchdoerfer, R. N., Abelson, D. M., Li, S., Wood, M. R. & Saphire, E. O. Assembly of the Ebola virus nucleoprotein from a chaperoned VP35 complex. Cell Rep. 12, 140–149 (2015).
Leung, D. W. et al. An intrinsically disordered peptide from Ebola virus VP35 controls viral RNA synthesis by modulating nucleoprotein-RNA interactions. Cell Rep. 11, 376–389 (2015).
Deflube, L. R. et al. Ebolavirus polymerase uses an unconventional genome replication mechanism. Proc. Natl Acad. Sci. USA 116, 8535–8543 (2019).
Brandt, J., Wendt, L., Bodmer, B. S., Mettenleiter, T. C. & Hoenen, T. The cellular protein CAD is recruited into Ebola virus inclusion bodies by the nucleoprotein NP to facilitate genome replication and transcription. Cells 9, 1126 (2020).
Fang, J. et al. Staufen1 interacts with multiple components of the Ebola virus ribonucleoprotein and enhances viral RNA synthesis. mBio 9, e01771-18 (2018).
Chen, J. et al. Host factor SMYD3 is recruited by Ebola virus nucleoprotein to facilitate viral mRNA transcription. Emerg. Microbes Infect. 8, 1347–1360 (2019).
Batra, J. et al. Protein interaction mapping identifies RBBP6 as a negative regulator of Ebola virus replication. Cell 175, 1917–1930 e1913 (2018).
Batra, J. et al. Non-canonical proline-tyrosine interactions with multiple host proteins regulate Ebola virus infection. EMBO J. 40, e105658 (2021).
Takahashi, K. et al. DNA topoisomerase 1 facilitates the transcription and replication of the Ebola virus genome. J. Virol. 87, 8862–8869 (2013).
Morwitzer, M. J. et al. Identification of RUVBL1 and RUVBL2 as novel cellular interactors of the Ebola virus nucleoprotein. Viruses 11, 372 (2019).
Smith, D. R. et al. Inhibition of heat-shock protein 90 reduces Ebola virus replication. Antivir. Res. 87, 187–194 (2010).
Garcia-Dorival, I. et al. Elucidation of the cellular interactome of Ebola virus nucleoprotein and identification of therapeutic targets. J. Proteome Res. 15, 4290–4303 (2016).
Reid, S. P. et al. HSPA5 is an essential host factor for Ebola virus infection. Antivir. Res. 109, 171–174 (2014).
van Tol, S. et al. Ubiquitination of Ebola virus VP35 at lysine 309 regulates viral transcription and assembly. PLoS Pathog. 18, e1010532 (2022).
Dolnik, O. & Becker, S. Assembly and transport of filovirus nucleocapsids. PLoS Pathog. 18, e1010616 (2022).
Wendt, L. et al. Evidence for viral mRNA export from Ebola virus inclusion bodies by the nuclear RNA export factor NXF1. J. Virol. 96, e0090022 (2022).
Olsen, M. E., Cressey, T. N., Mühlberger, E. & Connor, J. H. Differential mechanisms for the involvement of polyamines and hypusinated eIF5A in Ebola virus gene expression. J. Virol. 92, e01260-18 (2018).
Khadka, S., Williams, C. G., Sweeney-Gibbons, J. & Basler, C. F. Marburg and Ebola virus mRNA 3′ untranslated regions contain negative regulators of translation that are modulated by ADAR1 editing. J. Virol. 95, e0065221 (2021).
Schudt, G. et al. Transport of ebolavirus nucleocapsids is dependent on actin polymerization: live-cell imaging analysis of ebolavirus-infected cells. J. Infect. Dis. 212, S160–S166 (2015).
Takamatsu, Y., Kolesnikova, L. & Becker, S. Ebola virus proteins NP, VP35 and VP24 are essential and sufficient to mediate nucleocapsid transport. Proc. Natl Acad. Sci. USA 115, 1075–1080 (2018).
Yamayoshi, S. et al. Ebola virus matrix protein VP40 uses the COPII transport system for its intracellular transport. Cell Host Microbe 3, 168–177 (2008).
Adu-Gyamfi, E., Digman, M. A., Gratton, E. & Stahelin, R. V. Single-particle tracking demonstrates that actin coordinates the movement of the Ebola virus matrix protein. Biophys. J. 103, L41–L43 (2012).
Kolesnikova, L., Bamberg, S., Berghofer, B. & Becker, S. The matrix protein of Marburg virus is transported to the plasma membrane along cellular membranes: exploiting the retrograde late endosomal pathway. J. Virol. 78, 2382–2393 (2004).
Licata, J. M. et al. Overlapping motifs (PTAP and PPEY) within the Ebola virus VP40 protein function independently as late budding domains: involvement of host proteins TSG101 and VPS-4. J. Virol. 77, 1812–1819 (2003).
Shepley-McTaggart, A. et al. Ubiquitin ligase SMURF2 interacts with Filovirus VP40 and promotes egress of VP40 VLPs. Viruses 13, 288 (2021).
Han, Z. et al. Ubiquitin ligase WWP1 interacts with Ebola virus VP40 to regulate egress. J. Virol. 91, e00812–e00817 (2017).
Han, Z. et al. ITCH E3 ubiquitin ligase interacts with Ebola virus VP40 to regulate budding. J. Virol. 90, 9163–9171 (2016).
Okumura, A. et al. Suppressor of cytokine signaling 3 is an inducible host factor that regulates virus egress during Ebola virus infection. J. Virol. 89, 10399–10406 (2015).
Zhang, L. et al. P300-mediated NEDD4 acetylation drives ebolavirus VP40 egress by enhancing NEDD4 ligase activity. PLoS Pathog. 17, e1009616 (2021).
Liang, J., Djurkovic, M. A., Shtanko, O. & Harty, R. N. Chaperone-assisted selective autophagy targets filovirus VP40 as a client and restricts egress of virus particles. Proc. Natl Acad. Sci. USA 120, e2210690120 (2023).
Neumann, G. et al. Ebola virus VP40 late domains are not essential for viral replication in cell culture. J. Virol. 79, 10300–10307 (2005).
Han, Z. et al. ALIX rescues budding of a Double PTAP/PPEY L-domain deletion mutant of Ebola VP40: a role for ALIX in Ebola virus egress. J. Infect. Dis. 212, S138–S145 (2015).
Wendt, L., Kämper, L., Schmidt, M. L., Mettenleiter, T. C. & Hoenen, T. Analysis of a putative late domain using an Ebola virus transcription and replication-competent virus-like particle system. J. Infect. Dis. 218, S355–S359 (2018).
Adu-Gyamfi, E. et al. The Ebola virus matrix protein penetrates into the plasma membrane: a key step in viral protein 40 (VP40) oligomerization and viral egress. J. Biol. Chem. 288, 5779–5789 (2013).
Husby, M. L. et al. Phosphatidylserine clustering by the Ebola virus matrix protein is a critical step in viral budding. EMBO Rep. 23, e51709 (2022).
Acknowledgements
We thank A. Groseth (FLI) for helpful discussions and corrections to the paper. This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under grants 389002253 and 452208680.
Author information
Authors and Affiliations
Contributions
B.S.B. and L.W. were responsible for conceptualization, literature research, writing and editing the paper, and preparing figures. T.H. was responsible for conceptualization, supervision, writing and editing the paper, and preparing figures.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Microbiology thanks Gaya Amarasinghe, Asuka Nanbo, Angela Rasmussen, Grace Uwase and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Bodmer, B.S., Hoenen, T. & Wendt, L. Molecular insights into the Ebola virus life cycle. Nat Microbiol 9, 1417–1426 (2024). https://doi.org/10.1038/s41564-024-01703-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41564-024-01703-z
This article is cited by
-
Novel filoviruses: indication of a global threat or cause to reassess our risk perception?
npj Viruses (2024)
-
Hippo signaling pathway regulates Ebola virus transcription and egress
Nature Communications (2024)