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High-throughput characterization of 
bacterial responses to complex mixtures of 
chemical pollutants

Thomas P. Smith     , Tom Clegg    , Emma Ransome, Thomas Martin-Lilley, 
James Rosindell, Guy Woodward, Samraat Pawar     & Thomas Bell    

Our understanding of how microbes respond to micropollutants, such 
as pesticides, is almost wholly based on single-species responses to 
individual chemicals. However, in natural environments, microbes 
experience multiple pollutants simultaneously. Here we perform a 
matrix of multi-stressor experiments by assaying the growth of model 
and non-model strains of bacteria in all 255 combinations of 8 chemical 
stressors (antibiotics, herbicides, fungicides and pesticides). We found 
that bacterial strains responded in different ways to stressor mixtures, 
which could not be predicted simply from their phylogenetic relatedness. 
Increasingly complex chemical mixtures were both more likely to 
negatively impact bacterial growth in monoculture and more likely to 
reveal net interactive effects. A mixed co-culture of strains proved more 
resilient to increasingly complex mixtures and revealed fewer interactions 
in the growth response. These results show predictability in microbial 
population responses to chemical stressors and could increase the utility of 
next-generation eco-toxicological assays.

Natural environments are under increasing pressure from multiple 
anthropogenic stressors1,2, and freshwater systems are no exception. 
Freshwater environments are increasingly exposed to toxic chemical 
pollutants at local to global scales3,4, raising substantial concerns for 
ecosystem health5. Understanding the effects of chemical pollutants 
on natural systems is therefore key to understanding ecosystem health.  
A particularly important aspect is to understand how chemical pollut-
ants affect the microbes embedded within ecosystems. Microbes are 
globally ubiquitous drivers of key ecosystem processes and services in 
their roles as decomposers, mutualists, food sources, chemical engi-
neers and pathogens6,7. As such, stressor impacts on microbes can ripple 
through the wider ecosystem, with changes in these largely overlooked 
taxa potentially altering the functioning of entire food webs8,9.

The huge scope for interactions among complex chemical 
mixtures generates a large amount of uncertainty when extrapolat-
ing classical ecotoxicological studies to ecosystem processes10–12.  

In combination, stressors may produce effects on biological systems 
that are equal to, stronger than (synergistic) or weaker than (antago-
nistic) the sum of their parts10. Pollution mitigation strategies may 
therefore produce unexpected or even detrimental effects on eco-
system processes when synergies or antagonisms among chemical 
stressors are not well understood, so a more complete understand-
ing of stressor interactions is required12. Natural systems are typi-
cally subjected to complex cocktails of chemical stressors, but the 
importance of multi-way interactions among three or more stressors 
(‘higher-order interactions’) remains largely unknown13. Data are a 
key limitation because testing for higher-order interactions requires 
information on not only the effect of multiple stressors acting together 
but also the effects of every subset of those stressors13,14. If higher-order 
interactions are common, it would present a substantial challenge for 
understanding and predicting the effects of chemical stressors in the 
real world.
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considered naive to chemical stress. We quantified their growth in  
255 chemical stressor mixtures (every possible combination of  
8 stressors), as well as under control conditions (no stressors). These 
stressors are eight different chemical pollutants known to be prevalent 
in freshwater environments, targeting four components of freshwater 
ecosystems (bacteria, fungi, plants and invertebrates). We quanti-
fied growth as the area under the bacterial growth curve (AUC) and 
calculated the effect of a chemical mixture as the growth relative to 
growth under control conditions (G); see Supplementary Fig. 1 for 
the responses of bacteria to each chemical. The growth responses of 
all bacteria–chemical combinations are visualized in Fig. 1. Across all 
bacteria tested, the chemical mixtures produced increasingly nega-
tive effects on growth as the number of chemicals in the mixture 
increased (Fig. 1b; linear regression of frequency of negative responses 
against number of chemicals in mixture: intercept = 0.11, slope = 0.09, 
P < 0.001, r2 = 0.98). We used hierarchical clustering to group these 
responses of bacteria to each specific chemical mixture both by simi-
larity between bacterial strains and by similarity between chemical 
mixtures (Fig. 1a). The chemical mixture responses clustered into 
two groups—those mixtures with and those without oxytetracycline  
(Fig. 1a). We also observed strong clustering for amoxicillin in the 
absence of oxytetracycline and some clustering of responses to both 
fungicides (chlorothalonil and tebuconazole) in both the presence 
and absence of oxytetracycline. Responses to mixtures containing the 
same numbers of chemicals did not generally cluster together; that is, 
the similarity of responses across strains was driven by the presence 
of specific chemicals, rather than by the number of chemicals.

Another limitation of current ecotoxicology assays is the lack 
of evidence for their applicability beyond a narrow focus on a tiny 
number of ‘model’ organisms or lab strains (for example, Aliivibrio 
fischeri15 and Escherichia coli16), which may bear little resemblance to 
naturally occurring biota. To gain a more general understanding of the 
impacts of chemical stressors on bacteria, we must therefore expand 
ecotoxicological testing to include non-model species that are more 
representative of natural microbial communities.

In this article, we assayed population growth across a diverse set of 
bacterial taxa to quantify their responses to mixtures of chemical stress-
ors known to pollute natural environments. By testing the responses 
of both model and non-model strains of bacteria, we asked whether 
these responses were phylogenetically conserved and thus generaliz-
able through evolutionary relatedness. Our high-throughput assays 
allowed us to thoroughly investigate the importance of high-order 
interactions in complex chemical mixtures.

Results
Chemical stressor responses vary among bacterial strains
We assayed the growth of two model strains of bacteria (A. fischeri and 
E. coli), ten environmental strains (Aeromonas popoffii, Carnobacte-
rium gallinarum, Flavobacterium glaciei, Neobacillus soli, Rhizobium 
herbae, Sphingomonas faeni, two strains of Arthrobacter humicola and 
two strains of Pseudomonas baetica; see Supplementary Table 2 for 
details) and a mixed culture of all ten environmental strains (Methods). 
The environmental strains were isolated from pristine freshwater 
systems in Iceland with no history of chemical exposure and therefore 
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Fig. 1 | Chemical stressor responses vary between strains. a, Heat map of all 
chemical stressor responses. Left: the mean (n = 4 biologically independent 
replicates) relative growth (G) in the presence of chemical stressor(s) on a scale 
from positive responses (blue) to to negative responses (red). Colours are only 
shown where G is significantly different from 1 (that is, the chemical mixture has 
a significant impact on growth). Each column is the fingerprint of responses for a 
given strain; each row is a particular mixture of chemicals. Columns are clustered 
by similarity between strains; rows are clustered by similarity between responses. 

Each chemical stressor present in a given mixture is indicated by black lines  
in the right panel. The number of chemicals in a mixture (‘complexity’) is  
shown in orange. Model strains are identified in purple; the mixture of strains  
is highlighted in bold. Chemicals are grouped by their target organisms.  
b, Proportion of strain and chemical mixtures showing negative, positive or no 
growth response, grouped by the number of chemicals in the mixture. Most 
chemicals alone have no impact on most bacteria; however, increasingly complex 
mixtures of chemicals have increasingly negative effects on growth.
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To understand the biotic context of chemical impacts, we com-
pared the responses of the environmental strains in monoculture 
to their responses in a mixed co-culture (Fig. 2). In monoculture we 
observed a decrease in growth on average as the strains were exposed 
to mixtures of sequentially more chemicals (Fig. 2a). However, the dis-
tribution of responses was bimodal, with many chemical combinations 
producing either a very weak effect or a very strong effect, depending 
on the presence or absence of the antibiotic oxytetracycline (Fig. 2a; 
linear regression, intercept = 1.02, slope = −0.03, oxytetracycline pres-
ence = −0.42, P < 0.001, r2 = 0.33). These responses were also highly 
variable among strains, with some bacteria strongly impacted but 
others resilient to the chemicals used here (Fig. 1a and Supplementary  
Fig. 2). In the mixed culture of strains, we observed the same bimo-
dality of responses in the presence and absence of oxytetracycline, 
but by contrast, the addition of more chemicals had little impact on 
growth (Fig. 2b; linear regression, intercept = 0.99, slope = 0.005, 
oxytetracycline presence = −0.46, P < 0.001, r2 = 0.99). This bimodal-
ity in responses echoes the strong clustering of responses to oxytet-
racycline seen in Fig. 1. Comparing the mean response of strains in 
monoculture to the realized response of strains in mixed culture, we 
show that the mixed culture of bacteria is more resilient to the negative 
impacts of the chemical treatments than predicted by the monoculture  
responses (Fig. 2c).

Replicated species from different locations, Pseudomonas baetica 
1 and 2 and Arthrobacter humicola 1 and 2, showed similar responses 
to the chemical mixtures (Fig. 1a). We tested for phylogenetic sig-
nal in these chemical responses by computing the pair-wise distance 
matrix from the stressor responses and comparing this to the distance 
matrix from the phylogeny of the strains, constructed from their 16S 
sequences (Fig. 3a and Supplementary Fig. 3). Using a Mantel test 
based on Kendall’s rank correlation τ, we found no significant cor-
relation between the chemical responses and phylogeny; that is, the 
chemical responses are not generalizable by evolutionary relatedness 
(τ = 0.076, significance = 0.154). To ensure that these findings were 

not being driven by the strong impact of oxytetracycline, we repeated 
the analysis without oxytetracycline and obtained qualitatively the 
same result (τ = 0.049, significance = 0.322; Supplementary Fig. 4). To 
further test for evolutionary signal in the growth responses of bacte-
ria to these chemicals, we calculated Pagel’s λ and Blomberg’s K, two 
metrics of phylogenetic signal. The responses to amoxicillin show a 
strong signal of phylogenetic heritability (λ = 0.82, P = 0.04; K = 0.89, 
P = 0.03); however, the responses to all other chemicals show much 
weaker, non-significant signal for both metrics (Fig. 3b); that is, for 
the majority of these chemicals, shared evolutionary history does not 
drive the distribution of growth responses at the tips of the phylogeny.  
See Supplementary Table 1 for full results of these tests.

Testing interactions within chemical mixtures
We quantified two measures of the structure of interactive effects of 
multiple chemicals on both the single-population and mixed culture 
growth trajectories. ‘Net’ interactions quantified the overall interaction 
among the stressors in a mixture, without disentangling specific inter-
actions between stressors. ‘Emergent’ interactions quantified specific 
higher-order interactions among multiple stressors. We developed 
a methodology for quantifying these two measures of interactions 
by comparing the growth in mixtures with the expectations under a 
multiplicative null model (Fig. 4a,d) and then tested for significance via 
bootstrapping (see Methods for full details). We categorized significant 
interactions as antagonistic (chemicals dampen the effects of each 
other) or synergistic (chemicals amplify the effects of each other) if 
the response was weaker or stronger than predicted by the null model, 
respectively (Methods). If no significant interaction was found, the 
response is categorized here as multiplicative; that is, the chemical 
mixture produced a growth response significantly different from the 
control growth, but this response was equivalent to the multiplicative 
combination of growth responses to each individual chemical present 
in the mixture. We found that across all strains in monoculture, 16% of 
two-way chemical mixtures produced a significant interaction (there 
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Fig. 2 | Mixtures of increasing numbers of chemical stressors reduce bacterial 
growth in monoculture but not in community. a, Combined responses of  
all environmental bacterial strains to all chemical mixtures, given as growth 
(area under the growth curve) in chemical mixture relative to control growth 
for a given strain (G). Dashed line marks 1, below which there is reduced growth 
and above which there is increased growth. There is bimodality in the responses, 
with mixtures containing oxytetracycline (orange) showing lower growth on 
average than those without (black). As the number of chemicals in the mixture 
increases, growth is on average reduced across strains, both in the presence and 
absence of oxytetracycline (linear regression, intercept = 1.02, slope = −0.03, 
oxytetracycline presence = −0.42, P < 2.2 × 10−16, r2 = 0.33). b, Responses of the 
mixture of environmental strains to all chemical mixtures. There is similar 

bimodality to the monocultures, due to the presence of oxytetracycline; 
however, the addition of further chemicals has an almost negligibly small impact 
on growth (linear regression, intercept = 0.99, slope = 0.005, oxytetracycline 
presence = −0.46, P < 2.2 × 10−16, r2 = 0.99). c, The mean growth response for 
the Iceland isolates in monoculture (x axis) against the growth response of the 
mixed culture (y axis). Points are coloured by the number of chemicals present. 
Squares are mixtures containing oxytetracycline. Below or above the 1:1 line, the 
mixed culture shows lower or higher relative growth than the mean of isolates in 
monoculture, respectively. The mixed culture is more resilient to the negative 
growth effects of increasingly complex chemical mixtures than the mean of the 
isolates in monoculture. In all plots, points are a mean of four replicates.
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is no distinction between net and emergent interactions in mixtures of 
two chemicals). As the number of stressors increased, proportionally 
more treatments showed a net interaction (Fig. 4b). However, signifi-
cant emergent interactions were proportionally less common for the 
monocultures in more complex chemical mixtures (Fig. 4e). For half 
of the 12 strains, the eight-way mixture showed an overall net interac-
tion, but in no cases did we detect any significant seven- or eight-way 
emergent interactions. By comparison, we found very few interactions 
in the mixed culture of isolates (Fig. 4c,f), and while two net interac-
tions did persist into six-chemical mixtures (Fig. 4c), no new emergent 
interactions arose in mixtures of more than three chemicals (Fig. 4f). 
Essentially, we cannot rely on the responses of single species of bac-
teria to represent the responses of whole microbial communities to 
chemical mixtures.

Across all bacterial strains tested in monoculture, in most chemical 
mixtures we found no interactions: when testing for net interactions, 
either there was no response or the multiplicative null model was 
favoured in 68% of all mixtures, whereas when testing for emergent 
interactions either there was no response or the multiplicative null 
model was favoured in 91% of all mixtures. Where significant interac-
tions were found in monoculture, antagonisms were more common 
than synergisms (Fig. 4b,e). In the two-chemical mixtures, we found 
46 antagonisms and 8 synergies (85% antagonistic). In more com-
plex mixtures (3 or more chemicals), we found 601 net antagonisms 
and 284 net synergies overall (68% antagonistic). By comparison, in 
these more complex mixtures, we found 170 emergent antagonisms 
and 31 emergent synergies (85% antagonistic). Furthermore, these 
higher-order emergent interactions were increasingly likely to be 
antagonistic in more complex mixtures (significant 3-chemical emer-
gent interactions = 64% antagonistic; 4 = 94%; 5 = 98%; 6 = 100%). In 
the mixed culture of pristine strains, there were an equal number of 
antagonisms and synergies in the two-chemical mixtures. However, all 
interactions in higher-complexity mixtures (3 or more chemicals) were 
antagonistic (Fig. 4c,f). The mixed culture was therefore similar to the 
monocultures in that antagonisms were generally the more prevalent 
interaction observed.

The significant net interactions that we detected were not con-
sistent in their qualitative effect across bacterial strains, with certain 

strains showing synergistic and others experiencing antagonistic 
interaction effects for the same mixture (Fig. 5). Although fewer in 
number, emergent interactions were more consistent among strains 
than net interactions—where multiple strains showed an emergent 
interaction for a particular mixture, in almost all cases this interaction 
was of the same type (that is, synergistic or antagonistic). Specifically, 
in 86% of mixtures of three or more chemicals where multiple strains 
had an emergent interaction, the same interaction type manifested 
across all strains (Supplementary Fig. 5). Where lower-level interactions 
were evident, these often persisted in more complex mixtures contain-
ing the interaction-producing subset, leading to the same overall net 
interaction (Fig. 5). Interactions in mixtures containing oxytetracycline  
(antibiotic) and tebuconazole (fungicide) were particularly common 
(Fig. 5 and Supplementary Fig. 6). In higher-complexity mixtures con-
taining both oxytetracycline and tebuconazole, net interactions of the 
same type as the two-way interaction (antagonistic or synergistic) were 
also likely to be observed (Supplementary Fig. 6). Across all strains, 
the most prevalent higher-order emergent interactions occurred in 
mixtures containing both oxytetracycline and metaldehyde (Supple-
mentary Notes and Supplementary Fig. 7).

To test how many interaction terms were required to explain the 
net responses at different levels of chemical mixture complexities, we 
quantified interactions using null models incorporating sequentially 
higher levels of interaction terms. We found that the more complex mix-
tures required more interaction terms to explain their effects. However, 
incorporating only two- and three-way interactions into the models was 
sufficient to explain 50% of the net interactions at all levels of mixture 
complexity (Table 1). We can therefore conclude that the majority of 
interactive effects are captured at relatively low chemical diversity.

Discussion
By systematically assaying bacterial growth in every possible com-
bination of eight chemical stressors, we uncovered interactions in 
the responses of bacteria to these chemicals. Across all strains and 
stressor mixtures, we found an increased prevalence of net interac-
tions in more complex chemical mixtures. Most of those net interac-
tions were antagonistic (the responses of bacteria to combinations 
stressors were dampened compared to their responses to chemicals 
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individually); however, the relative prevalence of synergistic net inter-
actions increased in more complex chemical mixtures. Conversely, we 
found fewer emergent (higher-order) interactions in more complex 
mixtures, but these were increasingly more likely to be antagonistic 
in higher-chemical-complexity mixtures. These results are consistent 
with recent work that show emergent antagonisms in mixtures with 
higher numbers of stressors but also increased frequencies of net syner-
gies13,17–19. This work extends our understanding of stressor responses in 
both the biological context (non-model bacteria and a mixed culture) 
and abiotic context (complex mixtures of environmental pollutants), 
paving the way for future work to link the effects of microbial stressor 
responses with ecosystem processes.

Understanding the importance of interactions at different levels 
of mixture complexity is a key limitation for predicting the impacts 
of multiple stressors10–12. We found that most net interactions could 
be explained by two- and three-way interactions, rather than by 
higher-complexity interactions among stressors. That is, lower-order 
effects persist in more complex mixtures of chemicals, resulting in 
these net interactions. This is in general agreement with work on the 
responses of bacteria to multi-drug combinations which has estab-
lished that the effects of drug pairs are often sufficient to infer the 
effects of larger combinations20. That the net effects of combinations 
of many stressors can be predicted by incorporating relatively few of 
all the potential underlying interactions simplifies the challenge of 

predicting the responses of microbial populations and communities to 
multiple chemical stressors. Recent meta-analyses are consistent with 
our experimental results in showing that antagonisms are the prevalent 
stressor interaction type at organism, population and community 
levels in freshwater ecosystems21–23; however, these meta-analyses 
have generally ignored the microbiota and do not show causality. Our 
high-resolution microbial experiments overcome these key limitations.

The results have implications for the responses of natural bacterial 
communities, and their associated ecosystem processes, to chemical 
mixtures. We found that the growth of a mixed culture of strains both 
was less impacted by the addition of multiple chemicals and showed 
many fewer interactions than expected from the growth of the strains 
in monoculture. When chemicals inhibit part of the community, com-
pensation by resistant taxa may rescue important functions, such 
that growth is maintained. However, while the growth of microbial 
communities may be resilient to multiple stressors in a broad sense, 
interactions may still be impactful in natural communities. In particu-
lar, keystone taxa can have a disproportionate impact on community 
structure and function24,25. At a single strain level, we found highly 
variable responses to the chemical mixtures. If unique interactions 
lead to the loss of keystone species, this could have comparatively large 
effects on community functioning and stability. In communities, biotic 
interactions among species may also affect stressor responses26–28. In 
particular, differing levels of competition and facilitation can drive 
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variation in the responses of communities to stress27,28. Hence, there 
is a need for future work to build upon these results by focusing on 
whole microbial communities, as these are more representative of how 
chemical stress is encountered in the environment. Community-level 
data may require different frameworks and definitions of stressor inter-
actions than those used in population-level studies such as ours. For 
example, an interaction type not explicitly tested here is dominance, 
where the combined response of stressors may be explained by the 
effect of one stressor alone23,29,30. At a population level, dominance 

may be considered a special case of antagonism (that is, if one stressor 
blocks the action of another); however, at a community level domi-
nance may occur due to species interactions or compensation by 
tolerant species23.

We uncovered general patterns but found that neither the preva-
lence and type of interactions nor the overall responses of growth 
in chemical mixtures were consistent between different strains of 
bacteria. In part, this may be due to the dose-dependent nature of 
chemical responses—if a strain is resistant to a chemical mixture at a  

P. baetica 2

S. faeni

A C D G I M O T

R. herbae

A. popoiiA. fischeriE. coli

N. soli

Net interaction
Antagonism
Synergism

C. gallinarum A. humicola 2A. humicola 1

A C D G I M O T A C D G I M O T A C D G I M O T

A C D G I M O T A C D G I M O T

A C D G I M O T A C D G I M O T A C D G I M O T A C D G I M O T

Fig. 5 | Lower-level interactions persist in higher-complexity chemical 
mixtures. Net interactions visualized as networks for each strain. Each point 
represents a different chemical mixture with the bottom row representing 
each individual chemical (designated by the first character of their name below 
the point) and every subsequent row above being a more complex mixture of 
these chemicals, finishing with a single point for the eight-chemical mixture. 
Nodes without a significant interaction are left as unfilled circles; nodes with 

interactions are larger and coloured by antagonism (teal) or synergism (yellow). 
Edges are drawn between nodes with significant interactions one row apart 
where the mixture below is a subset of the mixture above. Strains P. baetica 1  
and F. glaciei are omitted from this figure due to a lack of interactions to visualize 
(P. baetica no interactions, F. glaciei a single net interaction). Networks are 
ordered here based on the phylogeny (Fig. 3a).

Table 1 | The number of interaction terms required to explain net interactions in mixtures with different numbers of 
chemicals (complexity)

Mixture complexity Interactions included in model

One-way (net effects) Two-way Three-way Four-way Five-way Six-way

3 169 49 (29%)

4 272 112 (41%) 58 (21%)

5 254 131 (52%) 79 (31%) 32 (13%)

6 143 77 (54%) 57 (40%) 26 (18%) 6 (4%)

7 41 20 (49%) 18 (44%) 11 (27%) 6 (15%) 0 (0%)

8 6 3 (50%) 3 (50%) 3 (50%) 2 (33%) 0 (0%)

Here we show the number of mixtures across all strains showing a net interaction effect, based on how many levels of interaction terms are incorporated into the null model. The percentage is the 
number of interactions remaining unexplained by the null model. Across all strains, there are 169 three-chemical mixtures showing a net interaction effect. When including two-way interactions, 
this is reduced to only 49 mixtures with significant effects (29%); that is, the remaining 49 mixtures require a further interaction term to explain their effect (three-way emergent interaction).

http://www.nature.com/naturemicrobiology


Nature Microbiology | Volume 9 | April 2024 | 938–948 944

Article https://doi.org/10.1038/s41564-024-01626-9

given dosage, then there will be no physiological response from which 
to infer interactions. Thus, increased concentrations of chemical stress-
ors may reveal more interactions in strains that appeared to be insensi-
tive using assays conducted at a single dosage. Bioavailability also plays 
a key role in this context, because measured concentrations may not 
reflect the capacity for entry into target organisms31. The varied bacte-
rial responses to these mixtures could not generally be predicted by 
evolutionary (phylogenetic) relatedness. There was also a lack of strong 
phylogenetic signal in the responses to most chemicals in isolation, 
with the exception of amoxicillin. This has important implications 
for ecotoxicology studies that focus on testing single strains of bac-
teria; it means that most toxicity tests cannot be generalized even to  
groups of bacteria phylogenetically similar to the strain tested.

Interactions between antimicrobial compounds are often deter-
mined by the cellular targets of those compounds (for example, cell 
wall, DNA replication machinery, ribosome synthesis and so on), 
with certain target classes leading to specific interaction types with 
others32. A relevant example is bactericidal antibiotics, which require 
cell growth, and so compounds that inhibit growth can interact 
antagonistically, supressing the effect of the antibiotic33. Our study 
includes the bactericidal amoxicillin (inhibits cell wall synthesis) and 
bacteriostatic oxytetracycline (inhibits protein synthesis), and four 
strains of bacteria in our study do show an antagonism for this pair-
ing. Moreover, the prevalence of other antagonisms observed here 
in mixtures with oxytetracycline may be due to bactericidal activity 
of pesticides, inhibiting growth and therefore reducing the efficacy 
of oxytetracycline. However, there can be a multitude of additional 
reasons for interactions to arise, including uptake effects, for example, 
if the cell permeability of one compound is affected by another32; if 
the solubility of one compound is affected by another (potentially 
relevant to our liquid-culture experiments); direct physical interac-
tions, for example, modes of action sharing the same binding site32; 
and other, more biochemically complex mechanisms. Further work 
to characterize the mode of action of pesticides on non-target organ-
isms is necessary. This may include investigating the expression of 
genes related to biochemical responses and in particular should 
focus on whether specific classes of pesticide compounds affect 
microbes in similar ways and are thus generalizable. Further work 
on the mechanistic basis for the interactions we observed would lay 
the foundation for future ecotoxicology frameworks that predict the 
impacts of multiple chemical compounds on the non-target microbial  
components of ecosystems more effectively.

In this study, we moved away from the traditional reliance on 
a few model bacteria to consider environmental bacteria naive to 
chemical stress. We tested the effects of an array of pollutants that 
enter freshwater environments and have been identified as key targets 
for microbial studies34. Our results are therefore relevant to natural 
systems beyond the laboratory and show that microbes exhibit a simi-
lar prevalence of antagonistic and synergistic responses compared to 
studies of macro-organisms. Understanding the pervasiveness and 
importance of such interactions is a key challenge faced in predicting 
multiple stressor impacts for ecosystem management10. It is therefore 
encouraging that patterns in the data are not being driven by highly 
complex interactions, which would make prediction challenging. It 
is also encouraging that the growth of a mixed culture of strains was 
both resilient to multiple chemical stressors and exhibited few com-
plex interactions, indicating that natural microbial communities may 
be more resilient to multiple stressors than predicted by single-strain 
experiments. However, the broader impacts on ecosystem function-
ing remain untested, and we cannot rule out important impacts on 
keystone species. The high level of variability in the responses of dif-
ferent bacterial strains shows the potential for harnessing bacteria as 
high-resolution ‘biosensors’ for chemicals of concern at their point 
of entry into ecosystems. These tools could be invaluable for the next 
generation of environmental monitoring and pollution control.

Methods
Bacterial isolation and culture
We tested 12 strains of bacteria in this experiment (Supplementary 
Table 2). Ten of these were environmental isolates from Iceland (previ-
ous papers give more detailed site descriptions35,36). These isolates were 
cultured from sediment samples obtained from pristine freshwater 
streams (Supplementary Fig. 8), that is, from a landscape free from 
agriculture or urbanization (and therefore likely to have no history of 
chemical exposure). Sediment samples from Icelandic streams were 
collected in 30% v/v glycerol (final concentration; Sigma-Aldrich) and 
stored at −80 °C until required. Bacterial isolates were picked from 
colonies grown on 1/10 R2A and R2A agar plates (Sigma-Aldrich) and 
stored at −80 °C in ProtectTube Cryobead Systems (Technical Consult-
ants). DNA was extracted using the ZR-96 Fungal/Bacterial DNA extrac-
tion kit (Zymo Research). The 16S ribosomal RNA gene was amplified 
for sequencing using the 27F (5′-AGAGTTTGATCCTGGCTCAG-3′) and 
1492R (5′-TACGGYTACCTTGTTACGACTT-3′) primer pair37, and tax-
onomy of isolates was determined via BLAST (v2.15.0).

We selected a range of strains from this isolate library spanning 
a broad phylogenetic diversity (Supplementary Table 2). Two of the 
species (P. baetica and A. humicola) were captured twice, at different 
locations, allowing us to investigate the consistency of stressor impacts 
(Supplementary Fig. 8).

We additionally tested two strains of lab bacteria: A. fischeri and 
E. coli K-12. A. fischeri is the active agent of the Microtox assay widely 
used in ecotoxicology15. E. coli has also been frequently used in chemi-
cal toxicity assays16. These were selected as a comparison to the Ice-
land bacteria, to understand whether the responses of lab bacteria 
widely used in toxicity testing can be generalized to bacteria from  
pristine systems.

All bacteria were revived from frozen stocks and grown to carrying 
capacity in Luria–Bertani (LB) media (Sigma-Aldrich) before chemical 
toxicity testing. A. fischeri is a marine bacterium and will only grow in 
high-salinity media; the LB media for this strain was therefore supple-
mented with sodium chloride to 20 g l−1 (ref. 38).

Chemical treatments
We built stressor mixtures from eight chemicals representing a range of 
classes of pollutants which are known for their prevalence in freshwater 
environments34 (Supplementary Table 3). These pollutants represent 
four major groups of stressors targeting different components of 
freshwater ecosystems and have been identified as key targets for 
microbial studies34. As the effects of pollutants on non-target groups 
are often overlooked in freshwater ecology, bacterial EC50 (half maxi-
mal effective concentration) data are generally not available for the 
non-antibiotic chemicals used here. Based on preliminary work, we 
chose a concentration of 0.1 mg l−1, a dose that elicits a response in at 
least one strain of bacteria for each chemical tested (Supplementary 
Fig. 1). For each chemical, this dose is also within an order of magni-
tude of the effective concentration for at least one non-bacterial taxa 
group, based on the US Environmental Protection Agency EcoTox 
database39, with the exception of diflufenican (EC50 0.001–0.008 mg l−1 
in algae), that is, a concentration of realistic concern to other parts of 
the ecosystem (Supplementary Table 4). To most realistically represent 
chemical pollutants entering the environment, where possible we used 
pesticide products containing these stressors as their active ingredi-
ents, rather than purified versions of the chemicals (Supplementary  
Table 3). This was not feasible for metaldehyde, which is generally sup-
plied as insoluble slug pellets, so here we used the purified chemical 
form (Supplementary Table 3).

Multiple chemical stressor experiments
For each bacterial strain, microcosms were set up in 96-well plates with 
each possible combination of chemical stressor (all at 0.1 mg l−1) diluted 
in LB (supplemented with sodium chloride to 20 g l−1 for A. fischeri). 
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Bacteria were added such that the final mixtures contained a 1 in 100 
dilution of bacterial culture from carrying capacity. We also created a 
mixed culture of the pristine strains from Iceland. Here we mixed equal 
volumes of the 10 strains of bacteria at carrying capacity and added this 
culture to the chemicals in LB such that the final mixtures contained 
a 1 in 100 dilution of the whole mixed culture. Therefore, in the mixed 
culture experiments each of the 10 strains will be at 1/10 its density in 
monoculture; however, the whole mixture will contain approximately 
the same overall quantity of bacteria as the monoculture experiments.

Growth was assayed by measuring the absorbance of the cultures 
at 600 nm (A600) once per hour, for 72 h. Plates were briefly shaken 
before reading to homogenize samples and disrupt biofilm formation. 
The full set of combinations of 8 chemicals produces 255 possible mix-
tures, to which we added 45 controls of bacteria in fresh media without 
chemical addition. These microcosms were set up in replicates of 4 to 
produce 1,200 total growth curves per bacterial isolate.

Quantifying multi-chemical stressor interactions
We used the AUC as a fitness metric40,41. Bacterial growth curves offer 
many other aspects to study, such as lag time (length of the lag phase 
before exponential growth begins), maximum growth rate and carrying 
capacity42. However, picking a single focal parameter was not appro-
priate, as a stressor may affect any or all of them, so by using AUC we 
combined all growth phases into a single parameter which is correlated 
positively with both the growth rate and the carrying capacity40. We 
fitted a spline function to each growth curve and integrated across it 
over a fixed time period (72 h) to calculate the AUC.

We tested the effects of stressors as the ratio of the AUC of growth 
in the presence of stressor(s) versus that in control conditions (no 
stressors), yielding a measure of relative growth:

Gi = AUCi/AUCcontrol

where i stands for a specific stressor or a combination of stressors. Simi-
lar to the approach taken by Tekin et al.43, we calculated two measures 
of the structure of interactive effects: net interactions among stressor 
in a mixture (not disentangling specific interactions between stress-
ors) and emergent interactions (specific higher-order interactions 
between stressors).

The net interaction measure simply considers the bacterial growth 
in mixture compared to a multiplicative null model containing terms for 
the responses to individual chemicals only. We considered multiplica-
tive, and not additive, null models because we measured relative fitness, 
which is equivalent to a percentage change in growth. Using an additive 
model for relative fitness could lead to biologically meaningless predic-
tions. For example, if two stressors each reduce bacterial growth by 
70%, then an additive model would predict their combination to reduce 
growth by 140%. This is not meaningful as a reduction in growth must be 
bounded at 100%, that is, zero measurable growth. Using a multiplica-
tive model, we would predict a 91% reduction in growth in this example 
(1 − (1 − 0.7)2 = 0.91). Therefore, the null model for the combined effects 
must be the product of the percentages, not the sum19.

For example, for a mixture of three chemicals X, Y and Z, we meas-
ured relative growth (G) in the presence of each stressor (GX, GY and 
GZ, respectively) and in the presence of all three combined (GXYZ), cal-
culated using the above measure. The null model for the net effect is 
simply the product of relative growth in the presence of each stressor:

GXGYGZ

The net interaction term (NA), where A refers to a particular com-
bination (set) of stressors, can be calculated in our example here as 
follows:

NXYZ =
GXYZ

GXGYGZ
(1)

If NA is significant (based on bootstrapping; see ‘Testing interaction 
significance’), this tells us that growth in this mixture deviates from the 
null model; that is, there is a net interaction between the stressors (Sup-
plementary Fig. 9a). This net interaction (NXYZ) may be due to a signifi-
cant higher-order ‘emergent’ (in this case just one possible three-way) 
interaction, in addition to the two-way (pair-wise) interactions among 
the three stressors. To test for the presence of a significant emergent 
interaction, we need to account for all such lower-order interactions 
within the mixture, which requires measurement of relative growth 
under each lower-order stressor combination as well43. Thus, for the 
three-way example, the growth in mixture accounting for all possible 
two-way interactions is given by the following:

GXYZ = GXGYGZIXYIXZIYZIXYZ,

where IXY, IXZ and IYZ are the two-way interactions and IXYZ is the three-way 
emergent interaction (Supplementary Fig. 9b). We can therefore cal-
culate the emergent interaction as follows:

IXYZ =
GXYZ

GXGYGZIXYIXZIYZ
, (2)

given data on all the two-way interactions.
For any given set of stressors, A, we can test for an emergent 

interaction, IA, provided that we have observations of growth GK  under 
all unique combinations of stressors from A. To frame this formally, 
we use P(A) to indicate the power set of A, that is, the set of all its pos-
sible subsets.

First, we define K⊂P(A) by K = {L∈P(A), 2 ≤ |L| < |A|}, that is, the set 
of all unique subsets of A meeting the condition of containing at least 
two elements (stressors) but not containing all the stressors from A. 
We then iterate through these subsets in the order of the number of 
stressors they contain to calculate the following:

IA =
GA

(ΠaϵAGa) (ΠkϵKIk)
(3)

where the first product term in the denominator represents growth 
under each stressor individually, and the second product term repre-
sents interaction terms with combinations of stressors excluding the 
case of all stressors in A combined. To calculate this in practice is an 
iterative process starting with calculation of interaction terms for pairs 
of stressors and then sets of three and so on. At each level of increasing 
stressor mixture complexity, we incorporate all the previously calcu-
lated interaction coefficients into our calculations.

Testing interaction significance
We used bootstrapping to test the significance of chemical responses 
and interaction effect sizes. First, we tested whether the chemical 
mixture had a significant impact on growth. For each chemical mix-
ture, we resampled the experimental data with replacement (that is, 
control growth and growth in the presence of the chemical mixture) 
and calculated Gi as above. We repeated this 10,000 times to gener-
ate a distribution of Gi and calculated the 95% confidence intervals. If 
the confidence interval included 1, we interpreted these as showing 
no response to the chemical mixture. For mixtures with confidence 
intervals excluding 1 (that is, those showing a significant response to 
the chemical mixture), we proceeded to test the significance of net 
and emergent interaction effects following the same bootstrapping 
procedure. For each interaction test, we resampled the relevant rep-
licated experimental data (that is, data points corresponding to each 
term within equations (1) or (3)) with replacements and calculated the 
interactions according to equations (1) and (3). We repeated this 10,000 
times to generate distributions of net and emergent interaction terms 
and calculated the 95% confidence intervals. If the 95% confidence 
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intervals excluded 1 (which would correspond to no interaction),  
we interpreted these as interaction effects that deviated significantly 
from the null (multiplicative) model expectations.

Once the significance of interactions was tested, we determined 
the type of interaction (synergism or antagonism). Detecting interac-
tions among ecological stressors can be problematic when stressors 
can elicit positive or negative responses depending on the context44. 
For example, bacterial taxa may metabolize and grow using chemicals 
that are toxic to others45, including the catabolism of antibiotics46. 
Defining interactions as antagonistic or synergistic is further com-
plicated when individual stressors operate in opposing directions, as 
seems to be commonplace11,30,44. Previous work to detect high-order 
interactions in microbial responses to stressors has generally not 
accounted for stressors operating in opposing directions, focusing 
on negative effects only13,19. Here we extend previous work to account 
for both positive and negative effects. To allow for both positive and 
negative effects of stressors on growth, we defined significant inter-
actions as antagonistic or synergistic as follows30,47. We first asked in 
what direction the null expectation was (reduction versus increase in 
growth) and used this as the basis for defining interactions. If the null 
expectation was a positive effect (increase in growth), then interaction 
terms >1 were synergistic (growth in the mixture is more positive than 
predicted), while interaction terms <1 were antagonistic (growth in 
mixture is less positive than predicted). Conversely, if the null was a 
reduction in growth, then interaction terms <1 were synergistic and 
interaction terms >1 were antagonistic (see Supplementary Fig. 9).

All analyses were performed in R version 4.2.1 (ref. 48).

Testing for phylogenetic constraints on bacterial responses
We used 16S sequences to construct a phylogeny of the bacterial 
strains used in this experiment. For the Iceland strains, we used the 
16S sequences directly collected from those strains; for E. coli and A. 
fischeri, we obtained reference sequences from National Center for 
Biotechnology Information GenBank (E. coli accession, MW349588.1; 
A. fischeri accession, FJ464360.1). Sequences were aligned in MAFFT 
(v7.205), and from this alignment a phylogeny was inferred in RAxML 
(v8.1.1) using a general time reversible substitution model with gamma 
distributed rates.

For each bacterial strain, we used the relative growth, GA, in every 
chemical stressor combination as an overall phenotype for stressor 
response. We calculated the pair-wise Euclidean distance of stressor 
responses between strains and then visualized the similarity between 
strains using hierarchical clustering.

We extracted the pair-wise distance matrices for both the pheno-
typic data (the clustered chemical responses) and the phylogeny and 
tested the association between them using a Mantel test. This test is 
appropriate when measuring phylogenetic signal from multiple con-
tinuous traits, that is, our clustering based on phenotypic responses to 
255 chemical mixtures49. Here we used Kendall’s rank correlation τ as the 
statistical method applied to the Mantel test due to the non-parametric 
distribution of the pair-wise phenotypic distances.

To further test evolutionary constraints on the responses of bac-
teria to each of the chemicals tested here, we quantified two measures 
of phylogenetic signal—Pagel’s λ (ref. 50) and Blomberg’s K (ref. 51). 
These metrics both quantify the degree to which the distribution of 
traits at the tips of a phylogeny (here given by our G metric) are driven 
by shared evolutionary history. For both metrics, values of 0 imply no 
phylogenetic signal, whereas values of 1 imply strong phylogenetic 
signal, where the trait has evolved gradually along the phylogenetic 
tree under an evolutionary model approximating Brownian motion. λ 
is bounded between 0 and 1, with intermediate values showing devia-
tion from a Brownian motion model due to factors such as variation in 
evolutionary rate over time. K is not bounded in such a way, and K > 1 
indicates more phylogenetic signal than expected under a Brownian 
motion model, implying a substantial degree of trait conservatism. 

Pagel’s λ requires that the trait be normally distributed; however, our 
G values tended to have left-skewed distributions. Therefore, we trans-
formed the values to produce a normal distribution before testing for λ.

The Mantel test and test for significance were performed using 
the Vegan R package, version 2.6-4 (ref. 52). The λ and K tests for phy-
logenetic signal were performed with the Phytools R package, version 
1.2-0 (ref. 53).

Statistics and reproducibility
No statistical method was used to predetermine the sample size. If there 
was evidence of contamination in any of the bacterial growth curves, 
these data were excluded from the analyses. Then, 383 of 15,120 curves 
were excluded due to potential contamination (2.5%). The experiments 
were not randomized. The Investigators were not blinded to allocation 
during experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The minimum dataset necessary to interpret, verify and extend 
the research is available to download at https://doi.org/10.6084/
m9.figshare.25054913.v1. All data are also available in our GitHub 
repository at https://github.com/smithtp/isolate-chem-mixtures/. 
The 16S sequences for the isolates used have been deposited in the 
NCBI GenBank under accession codes PP204206:PP204215. The US 
Environmental Protection Agency EcoTox database accessed for effec-
tive concentrations is available at https://cfpub.epa.gov/ecotox/.

Code availability
Documented code to replicate all analyses in this manuscript is avail-
able from our GitHub repository at https://github.com/smithtp/
isolate-chem-mixtures/
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