Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Environmental stress mediates groundwater microbial community assembly

Abstract

Community assembly describes how different ecological processes shape microbial community composition and structure. How environmental factors impact community assembly remains elusive. Here we sampled microbial communities and >200 biogeochemical variables in groundwater at the Oak Ridge Field Research Center, a former nuclear waste disposal site, and developed a theoretical framework to conceptualize the relationships between community assembly processes and environmental stresses. We found that stochastic assembly processes were critical (>60% on average) in shaping community structure, but their relative importance decreased as stress increased. Dispersal limitation and ‘drift’ related to random birth and death had negative correlations with stresses, whereas the selection processes leading to dissimilar communities increased with stresses, primarily related to pH, cobalt and molybdenum. Assembly mechanisms also varied greatly among different phylogenetic groups. Our findings highlight the importance of microbial dispersal limitation and environmental heterogeneity in ecosystem restoration and management.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of the relationships between community assembly processes and stress.
Fig. 2: Maps of sampling positions, stress and relative importance of community assembly processes.
Fig. 3: Variation in community assembly processes at different stress levels.
Fig. 4: Variations in assembly mechanisms across different phylogenetic groups.
Fig. 5: Environmental variables significantly correlated with each assembly process.

Similar content being viewed by others

Data availability

Data are accessible from a KBase narrative (https://narrative.kbase.us/narrative/145709), the current static version of which is https://kbase.us/n/145709/13/. The 16S rRNA gene sequencing data are from our prior study42 and are available in MG-RAST with accession code mgp8190. The taxonomy classifier trained on Silva SSU 138 is from QIIME2 (v.2021.2), available at https://data.qiime2.org/2021.2/common/silva-138-99-515-806-nb-classifier.qza. Source data are provided with this paper.

Code availability

All custom scripts and the latest version of the R package iCAMP are available from GitHub (https://github.com/DaliangNing/iCAMP1).

References

  1. Zhou, J. & Ning, D. Stochastic community assembly: does it matter in microbial ecology? Microbiol. Mol. Biol. Rev. https://doi.org/10.1128/mmbr.00002-17 (2017).

  2. Nemergut, D. R. et al. Patterns and processes of microbial community assembly. Microbiol. Mol. Biol. Rev. 77, 342–356 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hanson, C. A., Fuhrman, J. A., Horner-Devine, M. C. & Martiny, J. B. H. Beyond biogeographic patterns: processes shaping the microbial landscape. Nat. Rev. Microbiol. 10, 497–506 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. HilleRisLambers, J., Adler, P. B., Harpole, W. S., Levine, J. M. & Mayfield, M. M. Rethinking community assembly through the lens of coexistence theory. Annu. Rev. Ecol. Evol. Syst. 43, 227–248 (2012).

    Article  Google Scholar 

  5. Fargione, J., Brown, C. S. & Tilman, D. Community assembly and invasion: an experimental test of neutral versus niche processes. Proc. Natl Acad. Sci. USA 100, 8916–8920 (2003).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  6. Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography Vol. 32 (Princeton Univ. Press, 2001).

  7. Vellend, M. Conceptual synthesis in community ecology. Q. Rev. Biol. 85, 183–206 (2010).

    Article  PubMed  Google Scholar 

  8. Tucker, C. M., Shoemaker, L. G., Davies, K. F., Nemergut, D. R. & Melbourne, B. A. Differentiating between niche and neutral assembly in metacommunities using null models of β-diversity. Oikos 125, 778–789 (2016).

    Article  ADS  Google Scholar 

  9. Zhou, J. et al. High-throughput metagenomic technologies for complex microbial community analysis: open and closed formats. mBio 6, e02288-14 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Burns, A. R. et al. Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J. 10, 655–664 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Sloan, W. T. et al. Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ. Microbiol. 8, 732–740 (2006).

    Article  PubMed  Google Scholar 

  12. Stegen, J. C. et al. Quantifying community assembly processes and identifying features that impose them. ISME J. 7, 2069–2079 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ning, D., Deng, Y., Tiedje, J. M. & Zhou, J. A general framework for quantitatively assessing ecological stochasticity. Proc. Natl Acad. Sci. USA 116, 16892–16898 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  14. Ning, D. et al. A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming. Nat. Commun. 11, 4717 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  15. Beaton, E. D. et al. Local and regional diversity reveals dispersal limitation and drift as drivers for groundwater bacterial communities from a fractured granite formation. Front. Microbiol. https://doi.org/10.3389/fmicb.2016.01933 (2016).

  16. Danczak, R. E., Johnston, M. D., Kenah, C., Slattery, M. & Wilkins, M. J. Microbial community cohesion mediates community turnover in unperturbed aquifers. mSystems https://doi.org/10.1128/mSystems.00066-18 (2018).

  17. Sheng, Y. Z. et al. Distinct assembly processes shape bacterial communities along unsaturated, groundwater fluctuated, and saturated zones. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.143303 (2021).

  18. Zhou, J. et al. Stochasticity, succession, and environmental perturbations in a fluidic ecosystem. Proc. Natl Acad. Sci. USA 111, E836–E845 (2014).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  19. Steinberg, C. E. W. Stress Ecology: Environmental Stress as Ecological Driving Force and Key Player in Evolution (Springer, 2012).

  20. Zhang, K. et al. Salinity is a key determinant for soil microbial communities in a desert ecosystem. mSystems 4, e00225-18 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Danczak, R. E. et al. Ecological assembly processes are coordinated between bacterial and viral communities in fractured-shale ecosystems. mSystems https://doi.org/10.1128/msystems.00098-20 (2020).

  22. Zhang, G. et al. Salinity controls soil microbial community structure and function in coastal estuarine wetlands. Environ. Microbiol. 23, 1020–1037 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Rocca, J. D. et al. The Microbiome Stress Project: toward a global meta-analysis of environmental stressors and their effects on microbial communities. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.03272 (2019).

  24. Chase, J. M. Drought mediates the importance of stochastic community assembly. Proc. Natl Acad. Sci. USA 104, 17430–17434 (2007).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  25. Sengupta, A. et al. Disturbance triggers nonlinear microbe–environment feedbacks. Biogeosciences 18, 4773–4789 (2021).

    Article  CAS  ADS  Google Scholar 

  26. Lee, S.-H., Sorensen, J. W., Grady, K. L., Tobin, T. C. & Shade, A. Divergent extremes but convergent recovery of bacterial and archaeal soil communities to an ongoing subterranean coal mine fire. ISME J. 11, 1447–1459 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Weiher, E. et al. Advances, challenges and a developing synthesis of ecological community assembly theory. Phil. Trans. R. Soc. Lond. B 366, 2403–2413 (2011).

    Article  Google Scholar 

  28. Chase, J. M. Stochastic community assembly causes higher biodiversity in more productive environments. Science 328, 1388–1391 (2010).

    Article  CAS  PubMed  ADS  Google Scholar 

  29. Harpole, W. S. & Suding, K. N. A test of the niche dimension hypothesis in an arid annual grassland. Oecologia 166, 197–205 (2011).

    Article  PubMed  ADS  Google Scholar 

  30. Goberna, M., Navarro-Cano, J. A., Valiente-Banuet, A., Garcia, C. & Verdu, M. Abiotic stress tolerance and competition-related traits underlie phylogenetic clustering in soil bacterial communities. Ecol. Lett. 17, 1191–1201 (2014).

    Article  PubMed  Google Scholar 

  31. Patel, V., Sharma, A., Lal, R., Al-Dhabi, N. A. & Madamwar, D. Response and resilience of soil microbial communities inhabiting in edible oil stress/contamination from industrial estates. BMC Microbiol. https://doi.org/10.1186/s12866-016-0669-8 (2016).

  32. Lima-Morales, D. et al. Linking microbial community and catabolic gene structures during the adaptation of three contaminated soils under continuous long-term pollutant stress. Appl. Environ. Microbiol. 82, 2227–2237 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  33. Tolkkinen, M. et al. Multi-stressor impacts on fungal diversity and ecosystem functions in streams: natural vs. anthropogenic stress. Ecology 96, 672–683 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Lee, K. W. K. et al. Biofilm development and enhanced stress resistance of a model, mixed-species community biofilm. ISME J. 8, 894–907 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. He, Q. et al. Temperature and microbial interactions drive the deterministic assembly processes in sediments of hot springs. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2021.145465 (2021).

  36. Gao, Q. et al. The microbial network property as a bio-indicator of antibiotic transmission in the environment. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.143712 (2021).

  37. Liu, H. et al. Deterministic process dominated belowground community assembly when suffering tomato bacterial wilt disease. Agronomy 12, 1024 (2022).

    Article  CAS  Google Scholar 

  38. Gao, C. et al. Fungal community assembly in drought-stressed sorghum shows stochasticity, selection, and universal ecological dynamics. Nat. Commun. https://doi.org/10.1038/s41467-019-13913-9 (2020).

  39. Verbruggen, E., van der Heijden, M. G. A., Weedon, J. T., Kowalchuk, G. A. & Roling, W. F. M. Community assembly, species richness and nestedness of arbuscular mycorrhizal fungi in agricultural soils. Mol. Ecol. 21, 2341–2353 (2012).

    Article  PubMed  Google Scholar 

  40. Caruso, T. et al. Stochastic and deterministic processes interact in the assembly of desert microbial communities on a global scale. ISME J. 5, 1406–1413 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Marasco, R. et al. Rhizosheath microbial community assembly of sympatric desert speargrasses is independent of the plant host. Microbiome https://doi.org/10.1186/s40168-018-0597-y (2018).

  42. Smith, M. B. et al. Natural bacterial communities serve as quantitative geochemical biosensors. mBio https://doi.org/10.1128/mBio.00326-15 (2015).

  43. He, Z. et al. Microbial functional gene diversity predicts groundwater contamination and ecosystem functioning. mBio 9, e02435-17 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kelly, L., Ding, H. M., Huang, K. H., Osburne, M. S. & Chisholm, S. W. Genetic diversity in cultured and wild marine cyanomyoviruses reveals phosphorus stress as a strong selective agent. ISME J. 7, 1827–1841 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kuang, J. et al. Predicting taxonomic and functional structure of microbial communities in acid mine drainage. ISME J. 10, 1527–1539 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jiang, Y. M., Huang, H. Y., Tian, Y. R., Yu, X. & Li, X. K. Stochasticity versus determinism: microbial community assembly patterns under specific conditions in petrochemical activated sludge. J. Hazard. Mater. https://doi.org/10.1016/j.jhazmat.2020.124372 (2021).

  47. Ács, É. et al. Trait-based community assembly of epiphytic diatoms in saline astatic ponds: a test of the stress-dominance hypothesis. Sci. Rep. 9, 15749 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  48. Stegen, J. C., Lin, X., Fredrickson, J. K. & Konopka, A. E. Estimating and mapping ecological processes influencing microbial community assembly. Front. Microbiol. https://doi.org/10.3389/fmicb.2015.00370 (2015).

  49. Bei, Q. et al. Extreme summers impact cropland and grassland soil microbiomes. ISME J. https://doi.org/10.1038/s41396-023-01470-5 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yuan, J. et al. Microbial and abiotic factors of flooded soil that affect redox biodegradation of lindane. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2021.146606 (2021).

  51. Tripathi, B. M. et al. Soil pH mediates the balance between stochastic and deterministic assembly of bacteria. ISME J. 12, 1072–1083 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Huot, O. B. & Tamborindeguy, C. Drought stress affects Solanum lycopersicum susceptibility to Bactericera cockerelli colonization. Entomol. Exp. Appl. 165, 70–82 (2017).

    Article  CAS  Google Scholar 

  53. Luo, C. H., Lu, F., Shao, L. M. & He, P. J. Application of eco-compatible biochar in anaerobic digestion to relieve acid stress and promote the selective colonization of functional microbes. Water Res. 68, 710–718 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Watson, D. B., Kostka, J. E., Fields, M. W. & Jardine, P. M. The Oak Ridge Field Research Center Conceptual Model (Natural and Accelerated Bioremediation Research Field Research Center, 2004).

  55. Tian, R. et al. Small and mighty: adaptation of superphylum Patescibacteria to groundwater environment drives their genome simplicity. Microbiome 8, 51 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kothari, A. et al. Native plasmid-encoded mercury resistance genes are functional and demonstrate natural transformation in environmental bacterial isolates. mSystems 4, e00588-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: and this is not optional. Front. Microbiol. https://doi.org/10.3389/fmicb.2017.02224 (2017).

  58. Hernandez, D. J., David, A. S., Menges, E. S., Searcy, C. A. & Afkhami, M. E. Environmental stress destabilizes microbial networks. ISME J. 15, 1722–1734 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Jiao, S., Zhang, B., Zhang, G., Chen, W. & Wei, G. Stochastic community assembly decreases soil fungal richness in arid ecosystems. Mol. Ecol. 30, 4338–4348 (2021).

    Article  PubMed  Google Scholar 

  60. Zhou, J. et al. Stochastic assembly leads to alternative communities with distinct functions in a bioreactor microbial community. mBio 4, e00584-12 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Yan, L. J. et al. Environmental selection shapes the formation of near-surface groundwater microbiomes. Water Res. https://doi.org/10.1016/j.watres.2019.115341 (2020).

  62. Fillinger, L., Hug, K. & Griebler, C. Selection imposed by local environmental conditions drives differences in microbial community composition across geographically distinct groundwater aquifers. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiz160 (2019).

  63. Stegen, J. C. et al. Groundwater–surface water mixing shifts ecological assembly processes and stimulates organic carbon turnover. Nat. Commun. https://doi.org/10.1038/ncomms11237 (2016).

  64. Ge, X. et al. Iron- and aluminium-induced depletion of molybdenum in acidic environments impedes the nitrogen cycle. Environ. Microbiol. 21, 152–163 (2019).

    Article  CAS  PubMed  Google Scholar 

  65. Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl Acad. Sci. USA 103, 626–631 (2006).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  66. Sauve, S., Hendershot, W. & Allen, H. E. Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter. Environ. Sci. Technol. 34, 1125–1131 (2000).

    Article  CAS  ADS  Google Scholar 

  67. Chen, X. B., Wright, J. V., Conca, J. L. & Peurrung, L. M. Effects of pH on heavy metal sorption on mineral apatite. Environ. Sci. Technol. 31, 624–631 (1997).

    Article  CAS  ADS  Google Scholar 

  68. Demtröder, L., Narberhaus, F. & Masepohl, B. Coordinated regulation of nitrogen fixation and molybdate transport by molybdenum. Mol. Microbiol. 111, 17–30 (2019).

    Article  PubMed  Google Scholar 

  69. Wen, X. et al. Characterization of vegetable nitrogen uptake and soil nitrogen transformation in response to continuous molybdenum application. J. Plant. Nutr. Soil Sci. 181, 516–527 (2018).

    Article  CAS  Google Scholar 

  70. Stanton, D. E., Batterman, S. A., Von Fischer, J. C. & Hedin, L. O. Rapid nitrogen fixation by canopy microbiome in tropical forest determined by both phosphorus and molybdenum. Ecology 100, e02795 (2019).

    Article  PubMed  Google Scholar 

  71. Rousk, K., Degboe, J., Michelsen, A., Bradley, R. & Bellenger, J.-P. Molybdenum and phosphorus limitation of moss-associated nitrogen fixation in boreal ecosystems. New Phytol. 214, 97–107 (2017).

    Article  CAS  PubMed  Google Scholar 

  72. Glass, J., Axler, R., Chandra, S. & Goldman, C. Molybdenum limitation of microbial nitrogen assimilation in aquatic ecosystems and pure cultures. Front. Microbiol. https://doi.org/10.3389/fmicb.2012.00331 (2012).

  73. Cvetkovic, A. et al. Microbial metalloproteomes are largely uncharacterized. Nature 466, 779–782 (2010).

    Article  CAS  PubMed  ADS  Google Scholar 

  74. Barras, F. & Fontecave, M. Cobalt stress in Escherichia coli and Salmonella enterica: molecular bases for toxicity and resistance. Metallomics 3, 1130–1134 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Paulo, L. M., Ramiro-Garcia, J., van Mourik, S., Stams, A. J. M. & Sousa, D. Z. Effect of nickel and cobalt on methanogenic enrichment cultures and role of biogenic sulfide in metal toxicity attenuation. Front. Microbiol. https://doi.org/10.3389/fmicb.2017.01341 (2017).

  76. Behera, M., Dandapat, J. & Rath, C. C. Effect of heavy metals on growth response and antioxidant defense protection in Bacillus cereus. J. Basic Microbiol. 54, 1201–1209 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. De, J., Ramaiah, N. & Vardanyan, L. Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury. Mar. Biotechnol. 10, 471–477 (2008).

    Article  CAS  Google Scholar 

  78. Nies, D. H. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol. Rev. 27, 313–339 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Fodelianakis, S. et al. Dispersal homogenizes communities via immigration even at low rates in a simplified synthetic bacterial metacommunity. Nat. Commun. https://doi.org/10.1038/s41467-019-09306-7 (2019).

  80. Muller, A. L. et al. Endospores of thermophilic bacteria as tracers of microbial dispersal by ocean currents. ISME J. 8, 1153–1165 (2014).

    Article  PubMed  Google Scholar 

  81. Lui, L. M. et al. Mechanism across scales: a holistic modeling framework integrating laboratory and field studies for microbial ecology. Front. Microbiol. https://doi.org/10.3389/fmicb.2021.642422 (2021).

  82. Vellend, M. et al. Assessing the relative importance of neutral stochasticity in ecological communities. Oikos 123, 1420–1430 (2014).

    Article  ADS  Google Scholar 

  83. Lowe, W. H. & McPeek, M. A. Is dispersal neutral? Trends Ecol. Evol. 29, 444–450 (2014).

    Article  PubMed  Google Scholar 

  84. Wu, W.-M. et al. In situ bioreduction of uranium(VI) to submicromolar levels and reoxidation by dissolved oxygen. Environ. Sci. Technol. 41, 5716–5723 (2007).

    Article  CAS  PubMed  ADS  Google Scholar 

  85. Thorgersen, M. P. et al. Molybdenum availability is key to nitrate removal in contaminated-groundwater environments. Appl. Environ. Microbiol. 81, 4976–4983 (2015).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  86. Akima, H. & Gebhardt, A. akima: Interpolation of Irregularly and Regularly Spaced Data v.0.5-12 (CRAN, 2015).

  87. Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).

    Google Scholar 

  88. Anderson, M. J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253 (2006).

    Article  MathSciNet  PubMed  Google Scholar 

  89. Oksanen, J. et al. vegan: Community Ecology Package v.2.5-7 (CRAN, 2020).

  90. Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  91. Caporaso, J. G. et al. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26, 266–267 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 90 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Chiu, C.-H., Wang, Y.-T., Walther, B. A. & Chao, A. An improved non-parametric lower bound of species richness via a modified good–turing frequency formula. Biometrics 70, 671–682 (2014).

    Article  MathSciNet  PubMed  Google Scholar 

  95. Stegen, J. C., Lin, X., Konopka, A. E. & Fredrickson, J. K. Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J. 6, 1653–1664 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wang, J. et al. Phylogenetic beta diversity in bacterial assemblages across ecosystems: deterministic versus stochastic processes. ISME J. 7, 1310–1321 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Legendre, P. & Anderson, M. J. Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol. Monogr. 69, 1–24 (1999).

    Article  Google Scholar 

  98. Borcard, D. & Legendre, P. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol. Modell. 153, 51–68 (2002).

    Article  Google Scholar 

  99. Newman, M. E. J. Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74, 036104 (2006).

    Article  MathSciNet  CAS  ADS  Google Scholar 

  100. Trygg, J. & Wold, S. Orthogonal projections to latent structures (O-PLS). J. Chemom. 16, 119–128 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study by ENIGMA (Ecosystems and Networks Integrated with Genes and Molecular Assemblies; http://enigma.lbl.gov), a Science Focus Area Program at Lawrence Berkeley National Laboratory, is based on work supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research under contract number DE-AC02-05CH11231 (to P.D.A., A.P.A., J.Z., T.C.H., E.J.A., M.W.F., M.W.W.A., R.C. and D.A.S.). The development of the theoretical framework and statistical methods was partly supported by NSF Grants EF-2025558 and DEB-2129235 to J.Z. and D.N. The study was also supported by the Office of the Vice President for Research at the University of Oklahoma (to J.Z.).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed intellectual input and assistance to this study and the paper preparation. J.Z. conceived the research questions. J.Z. and D.N. developed the theoretical framework. E.J.A., T.C.H., M.W.F., M.W.W.A., R.C., Z.H., J.Z., P.D.A. and A.P.A. designed and organized the experiment. Y.W., Y.F., J.W., J.D.V.N., L.W., P.Z., D.J.C., R.T., L.L. and F.P. generated or collected the data. D.N. integrated the data and performed statistical analyses with the assistance of Y.W.; J.Z. and D.N. wrote the paper with inputs from D.A.S., Z.H., J.W., L.L. and D.J.C.

Corresponding author

Correspondence to Jizhong Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Malak Tfaily, Michael Wilkins and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Maps of the concentrations of representative environmental variables in groundwater.

a, Nitrate-nitrogen. b, pH. c, Uranium (U). d, Dissolved oxygen (DO). The bubble size represents the value at each sampling position; R2CV is cross-validated R2 of the model used to generate each map; P values (one-sided) are based on permutational test; the uppercase A - D indicate hotspots of heterogeneous selection, the same as in Fig. 2.

Source data

Extended Data Fig. 2 Correlation between reference taxa number and log-transformed maximum stress index (ln MSI).

Each data point represents a sample. The line and shadow are the trendline and 95% confidence interval based on linear regression. r and P show Pearson correlation coefficient and significance (two-sided). The ‘reference taxa’ are defined as relatively abundant and common taxa in uncontaminated samples.

Source data

Extended Data Fig. 3 Variation of bacterial alpha diversity along the stress gradient.

a, Richness estimated by iChao1 index; b, Shannon index. The line and shadow show the trendline and 95% confidence interval based on linear regression. r and P are Pearson correlation coefficient and significance (two-sided). The significant Pearson correlation indicates a general decrease in bacterial richness as stress increased in the groundwater.

Source data

Extended Data Fig. 4 Determinism and stochasticity of groundwater bacterial assembly at different stress levels.

a, Abundance-weighted percentage of neutral taxa (NP) based on neutral theory model. b, Stochastic turnover ratio, that is, percentage of community turnovers governed by stochastic assembly processes based on a framework of entire-community null model analysis (QPEN). c, Relative importance of stochastic assembly processes based on a framework of phylogenetic-bin null model analysis (iCAMP). MSI, maximum stress index. The violin and box plots are based on bootstrapping results at each stress level (n = 13 in each level; bootstrapping 1000 times). Colors of violin plots indicate the stress levels. In box plots, center line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; dots, outliers; triangle, mean value at each stress level. Black line, gray shadow, R2, and P are the trendline, 95% confidence interval, coefficient of determination, and significance based on linear regression of the mean values as a function of log-transformed MSI.

Source data

Extended Data Fig. 5 Variation of groundwater bacterial assembly processes along the stress gradient.

a, Homogeneous selection (HoS). b, Homogenizing dispersal (HD). The violin and box plots are based on bootstrapping results at each stress level (n = 13 in each level; bootstrapping 1000 times). Colors of violin/box plots indicate the stress levels. In box plots, center line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; dots, outliers; triangle, mean value at each stress level. Black line, gray shadow, R2, and P values are the trendline, 95% confidence interval, coefficient of determination, and significance based on linear regression of the mean values as a function of log-transformed MSI.

Source data

Extended Data Fig. 6 Association network of environmental variables and relative importance of community assembly processes.

Links show significant correlation (cross-validated R2CV > 0.01 and P < 0.05); P values (one-sided) were calculated based on permutational test (1000 times) for correlations among environmental factors and Mantel test (permutated 1000 times) for correlations between assembly processes and environmental factors, then, adjusted by false discovery rate (FDR) method; line width reflecting the R2CV. Node area is related to its degree (associated node number). Nodes are grouped by modules based on greedy optimization. Dep. (T) and Dep. (B), depth of the screen top and bottom, respectively; geo.distance, geographic distance; cond., conductivity. Heterogeneous selection (HeS) showed much more strong associations with environmental variables and mainly with pH and metals in water phase (supernatant and suspended solid). The numerous gray links demonstrated the high density of strong associations among environmental variables.

Source data

Extended Data Fig. 7 Relationship between bacterial phylogenetic distance and niche preference difference (phylogenetic signal).

a, Mantel correlogram. b, Relationship curve and stepwise Mantel test. Mantel correlogram was performed as previously described. Stepwise Mantel test was used to evaluate the correlation between niche preference difference and phylogenetic distance within the phylogenetic distance from 0 to a certain value. On the relationship curves, each niche difference value is the mean value in each phylogenetic distance ‘class’ within a distance interval of 0.02. The niche preference difference was estimated based on nine representative environmental variables. In the nine variables, pH, U, and nitrate (NO3) are major stressors in the contaminated area; Yb-sup, Sulfide, 52Cr-ss, Cu-sup, Sr, and Rb-plt were identified as ‘centroid’ variables which showed the nearest distance to the centroids of six environmental variable clusters, to represent the variation of each cluster. The clusters were identified by hierarchical clustering based on pairwise correlation among environmental variables. The distances to centroid were calculated by multivariate homogeneity of groups dispersions using function ‘betadisper’ in R package ‘vegan’. P values (one-sided) are based on Mantel test (permutated 1000 times) and adjusted by false discovery rate (FDR) method. The Mantel correlograms and stepwise Mantel tests showed generally significant (P < 0.05) phylogenetic signal, validating the use of phylogenetic diversity to infer the influence of environmental selection. However, the trends in the relationship curves and the change of correlation coefficients and P values revealed the tipping points of phylogenetic signal at short phylogenetic distances around 0.2 to 0.6, supporting the necessity to use the phylogenetic-bin-based null model approach (iCAMP) which better exploits phylogenetic signal within relatively short phylogenetic distance.

Source data

Supplementary information

Supplementary Information

Supplementary Discussion A–D, Notes, References, Figs. 1–4 and Tables 1–9.

Reporting Summary

Supplementary Data 1

Source data for supplementary figures.

Source data

Source Data Fig. 2

Maps of sampling positions, stress and relative importance of community assembly processes.

Source Data Fig. 3

Variation in community assembly processes at different stress levels.

Source Data Fig. 4

Variation in assembly mechanisms across different phylogenetic groups.

Source Data Fig. 5

Correlation between environmental variables and assembly processes.

Source Data Extended Data Fig. 1

Maps of the concentrations of representative environmental variables in groundwater.

Source Data Extended Data Fig. 2

Correlation between reference taxa number and log-transformed maximum stress index.

Source Data Extended Data Fig. 3

Variation in bacterial alpha diversity along the stress gradient.

Source Data Extended Data Fig. 4

Determinism and stochasticity of groundwater bacterial assembly at different stress levels.

Source Data Extended Data Fig. 5

Variation in groundwater bacterial assembly processes along the stress gradient.

Source Data Extended Data Fig. 6

Associations among environmental variables and relative importance of community assembly processes.

Source Data Extended Data Fig. 7

Relationship between bacterial phylogenetic distance and niche preference difference.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, D., Wang, Y., Fan, Y. et al. Environmental stress mediates groundwater microbial community assembly. Nat Microbiol 9, 490–501 (2024). https://doi.org/10.1038/s41564-023-01573-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-023-01573-x

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research