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Leaf microbiome dysbiosis triggered by 
T2SS-dependent enzyme secretion from 
opportunistic Xanthomonas pathogens
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In healthy plants, the innate immune system contributes to maintenance of 
microbiota homoeostasis, while disease can be associated with microbiome 
perturbation or dysbiosis, and enrichment of opportunistic plant pathogens 
like Xanthomonas. It is currently unclear whether the microbiota change 
occurs independently of the opportunistic pathogens or is caused by the 
latter. Here we tested if protein export through the type-2 secretion system 
(T2SS) by Xanthomonas causes microbiome dysbiosis in Arabidopsis 
thaliana in immunocompromised plants. We found that Xanthomonas 
strains secrete a cocktail of plant cell wall-degrading enzymes that promote 
Xanthomonas growth during infection. Disease severity and leaf tissue 
degradation were increased in A. thaliana mutants lacking the NADPH 
oxidase RBOHD. Experiments with gnotobiotic plants, synthetic bacterial 
communities and wild-type or T2SS-mutant Xanthomonas revealed that 
virulence and leaf microbiome composition are controlled by the T2SS. 
Overall, a compromised immune system in plants can enrich opportunistic 
pathogens, which damage leaf tissues and ultimately cause microbiome 
dysbiosis by facilitating growth of specific commensal bacteria.

Host-associated microbial communities, collectively referred to as 
microbiota, promote development, growth and adaptation to abiotic 
and biotic stress in healthy host organisms. Bacteria are abundant 
members in the microbiota and assemble into taxonomically structured 
communities in animals and plants1–3.

Under certain circumstances, the relationship between the host 
and its microbiota can become unbalanced, resulting in an alternative 
state of the microbial community termed dysbiosis, which is commonly 
associated with disease and with an alteration in the composition 
or function of the microbiome4,5. The host immune system plays a 
central role in maintaining and controlling microbiota homoeostasis 
to prevent dysbiosis4,6. In addition, opportunistic pathogens are par-
ticularly relevant in dysbiosis as they are normally harmless for the 

host but are equipped with potential virulence functions and, under 
conducive conditions, eventually cause context-dependent diseases. 
In mammals, opportunistic pathogens present in the gut or on the skin 
have been associated with disease in hosts that have a compromised 
immune system and have a reduced microbiota diversity4,7,8. Therefore, 
dysbiosis has underlying contributions both from individual species 
with pathogenic potential and from the microbiota.

Dysbiosis can also occur in plant leaf microbiota9,10. A reverse 
genetic screen in Arabidopsis thaliana mutants with defects in the 
immune system revealed that rbohD knockout plants, among others, 
harbour an altered phyllosphere microbiota and develop disease9. 
In this case, two Xanthomonas strains were identified as opportunis-
tic pathogens in rbohD plants and as the driver of plant disease after 
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enriched in rbohD compared with Col-0, resulting in the characteristic 
microbiota shift in diseased rbohD plants as observed previously9. In 
addition to Xanthomonas Leaf131, we found that the Gammaproteobac-
teria Pseudomonas Leaf58, Leaf127 and Leaf434, the Alphaproteobac-
teria Sphingobium Leaf26 and Brevundimonas Leaf168, the Bacteroides 
Pedobacter Leaf41, as well as the Actinobacterium Sanguibacter Leaf3 
were enriched in their relative abundance (Fig. 1b and Extended Data 
Fig. 1c). None of the changes in the relative abundance of these strains 
could be observed in rbohD plants in the absence of Xanthomonas 
Leaf131, which is also a Gammaproteobacterium.

As the SynCom-137 did not show significant differences in com-
munity composition in rbohD compared with the control Col-0 with-
out Xanthomonas Leaf131 (Fig. 1a,b and Extended Data Fig. 1a,b), we 
conclude that rbohD does not affect the microbiota per se, but rather 
indirectly via Xanthomonas Leaf131. Consistently, only rbohD knockout 
plants showed disease symptoms and a reduced average plant fresh 
weight after inoculation with SynCom137+Leaf131, but not Col-0 or 
rbohD/RBOHD (Fig. 1c and Extended Data Fig. 1d).

To exemplarily validate that certain members of the microbiota 
benefit from the presence of Xanthomonas Leaf131 on rbohD plants 
but not on Col-0 wild-type plants, we selected a commensal strain, 
Pseudomonas Leaf434, that was enriched on rbohD plants on the basis 
of our data from the SynCom experiment (Fig. 1b), and assessed its 
absolute abundance in a binary inoculation experiment together with 
Xanthomonas Leaf131. Substantiating the results of the SynCom experi-
ment, Pseudomonas Leaf434 showed higher plant colonization levels 
only in rbohD plants when inoculated together with Xanthomonas 
Leaf131 compared with single inoculation or in control Col-0 and rbohD/
RBOHD plants (Fig. 1d).

Overall, our data show that the presence of the opportunistic 
pathogen Xanthomonas Leaf131 leads to dysbiosis and an enrichment, 
possibly through the promotion of growth, of specific microbiota 
members in rbohD plants.

Plant tissue degradation by opportunistic 
Xanthomonas
When examining possible virulence mechanisms, we found that Xan-
thomonas Leaf131 and also Leaf148, previously identified as opportunis-
tic pathogens9, degrade leaf tissue. We therefore set up a quantitative  
A. thaliana assay to assess tissue degradation using leaf discs (Fig. 2). 
Both Xanthomonas strains degraded the tissue, which we quantified 
using pixel brightness. We observed that tissue degradation was mark-
edly more severe in leaf discs of rbohD plants compared with Col-0 
plants (Fig. 2a,b), corroborating the stronger virulence phenotype of 
these Xanthomonas strains in rbohD plants9.

Leaf tissue degradation progressed gradually over time start-
ing at the edges of the leaf discs (Fig. 2b and Extended Data Fig. 2a). 
After complete degradation of leaf tissue, the leaf disc was translu-
cent and eventually lost its cellular cohesion and fragmented after 
mechanical impact (Fig. 2c and Extended Data Fig. 2b). In contrast to 
the effective degradation of leaf discs from rbohD plants, those from 
Col-0 plants showed reduced and patchy degradation even after 48 h 
(Extended Data Fig. 2c). We tested other plant genotypes impaired in 
pattern-triggered immunity signalling upstream of RBOHD, such as 
hyper-susceptible mutants lacking cell surface localized receptors 
(for example, Flagellin Sensitive 2 (FLS2)) or mutants of co-receptors 
(for example, BRI1-Associated Receptor Kinase 1 (BAK1))30,31. We found 
that the triple co-receptor mutant bak1/bkk1/cerk1 (bbc) but not the 
triple receptor mutant fls2/efr/cerk1 was susceptible to leaf disc deg-
radation similar to rbohD (Extended Data Fig. 3a, b). Consistently, bbc 
plants showed disease symptoms and reduced growth after inocula-
tion with Xanthomonas Leaf131 and Leaf148 (Extended Data Fig. 3c). 
Besides plant genotype, plant age influenced leaf disc degradation, 
with 5-week-old Col-0 plants being more susceptible compared with 
6-week-old plants (Supplementary Fig. 1), suggesting that multiple 

inoculation with a bacterial synthetic community (SynCom) of more 
than 200 strains that contained these opportunistic pathogens9. The 
two Xanthomonas strains, Leaf131 and Leaf148, are part of the rep-
resentative At-LSPHERE strain collection1 and were recently placed 
into distinct phylogenetic clades, that is Xanthomonas hortorum and 
Xanthomonas dyei, respectively11. Both strains lack a type-3 secretion 
system, a typical virulence factor of bona fide pathogens, which might 
render them non-virulent on A. thaliana Col-0 wild type. Opportunistic 
Xanthomonas in plants have been reported previously to cause soft rot 
in wounded plant tissue due to their pectolytic activity12,13.

In plants, the NADPH oxidase RBOHD produces apoplastic reac-
tive oxygen species (ROS) and is involved in several pathways related 
to growth, development and stress response14–16. Moreover, RBOHD 
is an important component of the plant immune system17. Plants 
recognize microorganisms due to microbe- or danger-associated 
molecular patterns or microbial effector proteins that lead to activa-
tion of RBOHD, which is a convergence point of pattern-triggered 
immunity and effector-triggered immunity signalling pathways18. 
RBOHD-produced ROS also function in cell wall polymer crosslinking 
during pathogen-induced lignification19,20. Apart from plants, other 
multi-cellular organisms possess NADPH oxidases, including fungi, 
where they serve both defence and differentiation signalling21, and in 
mammals14,22, they are involved in gut epithelial immune responses 
and prevent intestinal dysbiosis23,24.

In this study, we dissect the contribution of opportunistic Xan-
thomonas strains, their context-dependent virulence and host geno-
type to the bacterial community composition in the phyllosphere of 
A. thaliana mutants defective in RBOHD. We used a SynCom approach, 
which has emerged as a decisive tool to study the processes and inter-
actions shaping the microbiota and affecting the host9,25–29, and both 
targeted and random bacterial mutagenesis. Our results link plant 
immunity to dysbiosis by establishing a causal relationship between 
a plant protein (RBOHD) and a bacterial trait (enzyme secretion via 
T2SS) within a rather complex microbiome.

Dysbiosis caused by opportunistic Xanthomonas 
in rbohD plants
A. thaliana plants with defective RBOHD, but not wild-type plants, 
show impaired growth and disease when inoculated with a synthetic 
community and exhibited a dysbiotic microbiota. The rbohD pheno-
type can be remediated by removing the Xanthomonas Leaf131 strain 
from a 137-member microbiota community9. To determine whether the 
opportunistic pathogen not only drives plant disease but also alters the 
microbiota composition in rbohD plants, we inoculated microbiota-free 
A. thaliana seedlings with a SynCom of 137 strains that did or did not 
include Xanthomonas Leaf131 and analysed the community composi-
tion on Col-0 wild type, rbohD knockout and the complementation line 
rbohD/RBOHD by 16S ribosomal RNA (rRNA) amplicon sequencing.

As an indicator for monitoring overall community changes, we 
used effect size to quantify how much of the total variance in the micro-
biota is explained by the plant genotype. As expected, we observed 
that the microbiota composition in rbohD plants when compared with 
Col-0 was significantly altered when Xanthomonas Leaf131 was included 
in the microbiota, that is, SynCom-137+Leaf131 with an effect size of 
12.5% (P = 0.0001). In contrast, the community composition did not 
significantly change when Leaf131 was omitted from the SynCom-137 
(effect size 2.8%, P = 0.71) (Fig. 1a). Consistent with this, the difference in 
community composition of SynCom-137 in rbohD plants was observed 
when Xanthomonas Leaf131 was included, but not in the absence of 
the opportunistic pathogen, as indicated by a principal component 
analysis (PCA) (Extended Data Fig. 1a). Analysis of the effect of addi-
tion of Xanthomonas Leaf131 to the SynCom on the overall community 
composition for each genotype confirmed the rbohD-specific impact 
(Fig. 1 and Source Data). By analysing the changes in relative abundance 
of each strain in the SynCom-137, we found that specific strains were 
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plant factors affect the phenotype. While we found that intact leaves 
remained visually unaffected upon exposure to Xanthomonas Leaf131 
and Leaf148 within 2 days of observation, wounded leaves showed 
signs of degradation over the same time period, as expected due to 
more accessible tissue (Extended Data Fig. 2d). Xanthomonas Leaf131 
caused disease and stunted plant growth in germ-free rbohD not only 
upon inoculation of 10-day-old seedlings9, but also resulted in dis-
ease symptoms and reduced growth in older rbohD plants after spray 
inoculation (Supplementary Fig. 2a,b). Despite rbohD-dependent 
disease symptoms, bacterial colonization was not significantly differ-
ent between genotypes Col-0 and rbohD (Supplementary Fig. 2c,d). 
Spray inoculation of 5-week-old microbiota-free rbohD plants with 
Xanthomonas Leaf131 Tn7::Gm-lux led to disease symptoms 2 days 

after infection and co-localized with bacterial colonization based on 
luminescence (Supplementary Fig. 2e).

In general, our data indicate that opportunistic Xanthomonas spp. 
act as commensals in Col-0 plants and reveal their pathogenic potential 
in immunocompromised mutant plants where they elicit strong disease 
symptoms, in particular in the absence of a microbiota.

Secretion of cell wall-degrading enzymes via  
T2SS Xps
Leaf tissue degradation by Xanthomonas as a proxy for a virulence phe-
notype was observed by live bacteria but also by cell-free supernatants 
of liquid cultures (Fig. 3a), indicating that the phenotype is mediated 
by secreted factors. Consistent with this finding, the secretion of plant 
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Fig. 1 | Microbiota shift and plant disease driven by Xanthomonas Leaf131 in 
rbohD knockout plants. a, Composition of synthetic bacterial communities 
SynCom-137 + Xanthomonas Leaf131 or SynCom-137 in rbohD or rbohD/RBOHD 
plants was compared with Col-0 wild-type plants. Effect size represents 
percentage of total variance explained by genotype (shown by dot size and 
absolute value) and statistical significance is expressed with P values determined 
by PERMANOVA (Benjamini–Hochberg adjusted, n = 16). Number of differentially 
abundant strains (as shown in b) is shown by dot colour. b, Heatmap shows subset 
of strains in SynCom-137 with significant log2 fold changes (log2FC, P < 0.05) in 
rbohD or rbohD/RBOHD compared with Col-0 wild-type plants in the presence 
(+) or absence (−) of Xanthomonas Leaf131. Black rectangles show significant 
changes, P < 0.05 (n = 16, two-sided Wald test, Benjamini–Hochberg adjusted). 

Complete heatmap of all strains in SynCom-137 is shown in Extended Data Fig. 1c. 
c, Fresh weight of aboveground plant tissue of Col-0, rbohD and rbohD/RBOHD 
mock inoculated, with SynCom-137 or SynCom-137 + Xanthomonas Leaf131. Box 
plots show the median with upper and lower quartiles and whiskers present 1.5× 
interquartile range (n = 16, two-sided Mann–Whitney U test, P values indicated 
above box plots). Corresponding plant phenotypes are shown in Extended 
Data Fig. 1d. d, CFU counts of Pseudomonas Leaf434 per gram plant fresh 
weight after inoculation of germ-free Col-0, rbohD and rbohD/RBOHD plants 
with Pseudomonas Leaf434 as single inoculation or in binary inoculation with 
Xanthomonas Leaf131 Tn7::Gm-lux. Box plots show the median with upper and 
lower quartiles and whiskers present 1.5× interquartile range (n = 12, two-sided 
Mann–Whitney U test, P values indicated above box plots).
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cell wall-degrading enzymes (CWDE) by the T2SS is a known virulence 
function of other Xanthomonas species32,33. Xanthomonas Leaf131 and 
Leaf148 each possess two T2SS gene clusters, designated xps and xcs by 
homology search. To test whether the degradation activity is dependent 
on the T2SS, we deleted the core genes of the two T2SS operons (Fig. 3b) 
and generated double mutants in Xanthomonas Leaf131 and Leaf148. 
In both strains, the xps mutant and the double knockout xpsxcs did not 
show tissue degradation, in contrast to the xcs mutants, which were 
still able to degrade leaf discs (Fig. 3c,d). This indicates that the T2SS 
Xps is required for leaf degradation by Xanthomonas, which is in line 
with studies of other Xanthomonas bacteria reporting the importance 
of xps for virulence34–36.

In addition, we deleted the hrpX and hrpG genes in Xanthomonas 
Leaf131, which encode master regulators of virulence factors including 
T2SS-secreted enzymes in various Xanthomonas pathogens37–41. How-
ever, the hrpXhrpG double knockout mutant still showed leaf degrada-
tion activity (Supplementary Fig. 3) suggesting that the production 
or secretion of the degradative enzymes is not, or not exclusively, 
controlled by HrpX or HrpG in Xanthomonas Leaf131. In line with the 
absence of a phenotype for the hrpXhrpG knockout, transcriptomic 
studies in Xanthomonas campestris pv. campestris found that the T2SS 
genes and some (but not all) T2SS substrates were regulated by HrpG 
and that only a small subset of all genes regulated in planta were part 
of the HrpG regulon42.

To validate the finding that Xps is the primary T2SS involved in 
the secretion of plant polymer-degrading enzymes, we conducted 
agar plate assays using substrates for CWDE. We tested Xanthomonas 
Leaf131 and found that the strain was able to degrade milk powder, 
polygalacturonic acid (PGA), carboxymethyl cellulose (CMC), xylo-
glucan and xylan, suggesting secretion of proteases, pectate lyases, 
glucanases and xylanases, respectively, as shown by halos that formed 
around the bacterial colonies after incubation indicating substrate 
degradation (Fig. 3e). Notably, the T2SS mutants xps and xpsxcs showed 
reduced or delayed polymer degradation, unlike the xcs mutant strain 
(Fig. 3e). However, xps and xpsxcs mutants still resulted in a small halo 
indicating substrate degradation on xyloglucan plates after 24 h of 
incubation. At later timepoints, halos were observable on all plates 

(Supplementary Fig. 4), which might be due to cell lysis or alternative 
secretion mechanisms, such as outer membrane vesicles43.

Next, we tested the leaf degradation activity of supernatants 
from Xanthomonas grown in liquid culture. In contrast to the wild 
type, cell-free supernatant of Xanthomonas Leaf131 and Leaf148 T2SS 
mutant xpsxcs did not cause rbohD leaf disc degradation (Fig. 3f). 
Sodium dodecyl sulfate–polyacrylamide gel electrophoresis analysis 
of supernatants revealed the presence of protein bands (35–55 kDa) 
in the wild type that were absent in the xpsxcs mutant (Extended 
Data Fig. 4a). Identification of the corresponding protein fractions 
by liquid chromatography tandem mass spectometry (LC–MS/MS) 
showed T2SS-dependent secretion (Supplementary Table 1) and several 
candidate proteins predicted to harbour a secretion signal peptide 
and a function potentially involved in plant interaction (Extended 
Data Fig. 4d). This included genes annotated to encode an endoglu-
canase (ASF73_13775), a serine protease (ASF73_18370), two pectate 
lyases (ASF73_04230 and ASF73_20170) and a lysyl endopeptidase 
(ASF73_20190), which is in line with the activities observed in the agar 
plate assays. We generated in-frame deletion knockout strains in Xan-
thomonas Leaf131 and tested the mutant strains for their leaf tissue deg-
radation activity. For ASF73_20170 and ASF73_20190, which are located 
in proximity in the genome, we deleted the whole cluster (Extended 
Data Fig. 4b). Degradation was not affected in these mutant strains 
compared with wild type in rbohD leaf discs (Extended Data Fig. 4c). 
The mutant strains lacking a serine protease (ASF73_18370), a pectate 
lyase (ASF73_04230) or the gene cluster mutant ASF73_20170-20190 
showed a difference in degradation in Col-0 (Extended Data Fig. 4c); 
however, this difference was not observed consistently, as leaf degrada-
tion in Col-0 is, in general, less pronounced, slower and more variable 
compared with rbohD (Fig. 2b and Extended Data Fig. 2c).

Overall, our data suggest that Xanthomonas secretes a cocktail 
of potential CWDE responsible for leaf degradation via the T2SS Xps.

Involvement of T2SS Xps in virulence during  
plant infection
To test the importance of the T2SS for virulence in planta, we inocu-
lated Col-0 and rbohD plants with Xanthomonas Leaf131 wild type 
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and the T2SS mutants. Plant health was monitored by assessing 
disease symptoms and measuring plant fresh weight 3 weeks after 
inoculation using an established gnotobiotic growth system9. The 
infection experiment revealed that the virulence of Xanthomonas 
Leaf131 was dependent on the presence of the T2SS Xps, while Xcs did  
not contribute to virulence (Fig. 4a, b), corroborating the results of 
the leaf degradation assay (Fig. 3c). While the Xanthomonas Leaf131 
xps mutant was non-virulent in Col-0 plants, as indicated by similar 

plant weight compared with mock inoculation, the xps mutant showed 
residual virulence in rbohD plants (Fig. 4b), which suggests the  
presence of additional T2SS-independent virulence factors or alter-
native secretion pathways of leaf-degrading enzymes. Moreover, the 
overall colonization level of these disease-attenuated T2SS mutants 
xps and xpsxcs was significantly reduced by up to two orders of 
magnitude compared with Xanthomonas Leaf131 wild type in Col-0 
and rbohD plants (Fig. 4c and Source Data for statistical results), 
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highlighting the importance of the T2SS Xps for bacterial growth 
during plant colonization.

In addition to using a targeted approach by mutating the T2SS and 
genes for proteins that we found excreted under in vitro conditions, we 
used an untargeted approach by setting up a forward genetic screen 
in Xanthomonas Leaf131. The screening procedure was effective as we 
identified transposon (Tn) mutants that we had already confirmed 
as being important, that is the T2SS xps, and by identifying multiple 
independent transposon insertions in the same gene, suggesting high 
coverage (Supplementary Table 2). We identified 16 Tn mutant candi-
dates with reduced or delayed leaf tissue degradation activity (Supple-
mentary Note). To validate the results of the Tn screen, we generated 
and tested mutants in candidate genes by assessing leaf degradation 
phenotypes (Supplementary Fig. 5 and Supplementary Table 2) and 
virulence in planta (Supplementary Fig. 6). The selected targets were 
dsbB (ASF73_01480) encoding a thiol-disulfide interchange protein; 
gtf, encoding a predicted glycosyltransferase (ASF73_08425), located 
upstream of a flagellum gene cluster; and a gene (ASF73_19940) encod-
ing for a hypothetical protein with glucanase/lectin domain. In addi-
tion, we deleted a gene cluster including the operon encoding the 
identified glucanase, a TonB-dependent receptor, a pectin methylester-
ase and a pectate lyase, as well as the TonB-dependent receptor, which 
is named iroN (ASF73_19920) and has been identified in the transposon 
screen (Supplementary Fig. 7).

We examined the ability of the gene deletion strains to degrade 
plant tissue and their impact on plant fresh weight during rbohD infec-
tion. With the exception of the gtf mutant strain, all other mutants 
showed phenotypes. Leaf degradation by the dsbB mutant was abol-
ished in rbohD, similar to the xps mutant (Fig. 5a). In accordance with 
the impaired leaf degradation, the dsbB mutant was also reduced 
in virulence as indicated by higher fresh weight of dsbB colonized 
rbohD plants (Fig. 5b) and had a lower colonization level compared 

with the wild type, similar to xps and xpsxcs mutants (Fig. 5d). DsbB 
is involved in post-translational modification of secreted enzymes, 
including proteins of the T2SS, which therefore explains the similar 
phenotypes between the mutants44. The glucanase and iroN-glucanase 
mutants showed reduced or delayed leaf degradation in rbohD  
(Fig. 5a) and cell-free supernatant of liquid culture from the respective 
mutants revealed reduced degradation activities in rbohD leaf discs 
(Fig. 5c). This finding suggests that the glucanase might be directly 
involved in polymer degradation. All mutants with reduced degrada-
tion activity were also attenuated in overall virulence as indicated 
by higher fresh weight of rbohD plants (Fig. 5b), while glucanase and 
iroN-glucanase mutants maintained wild-type colonization levels  
(Fig. 5d). The gene encoding glucanase, which is absent in the glucanase 
and iroN-glucanase mutants (Supplementary Fig. 7), encodes a protein 
belonging to the glucanase superfamily (pfam13385) and contains a 
signal peptide for secretion. This glucanase contributed to leaf degra-
dation and virulence in planta, which was notable given the functional 
redundancy common to tissue-degrading enzymes.

Xanthomonas T2SS drives community shifts in 
rbohD plants
The secretion of extracellular enzymes is a crucial virulence factor of 
opportunistic Xanthomonas bacteria for plant colonization (Figs. 4  
and 5), and our SynCom experiments revealed that plant disease 
and the microbiota shift in rbohD depend on the presence of Xan-
thomonas Leaf131 (Fig. 1). To investigate whether both phenotypes are 
causally linked and dependent on T2SS-related virulence, we inocu-
lated plants with the SynCom-137 and added either Xanthomonas 
Leaf131 wild-type or attenuated mutant strains. We determined the 
microbiota profiles by 16S rRNA amplicon sequencing and com-
pared the community composition of the SynCom-137 containing 
Xanthomonas Leaf131 wild type or mutants with the SynCom-137 
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without Leaf131 as a control. Quantification of the impact of each 
Xanthomonas strain on the community composition revealed a signif-
icant effect only of Xanthomonas Leaf131 wild type (effect size 10.3%, 
P = 0.0002), as observed previously (Fig. 1a), but not the attenuated 
mutants in rbohD plants (Fig. 6a). Consistently, only the presence of 
virulent Xanthomonas Leaf131, but not mutants with defective T2SS 
or dsbB knockout, increased the relative abundance of other com-
mensals (Fig. 6b). The addition of Xanthomonas Leaf131 wild type to 
the SynCom-137 showed the characteristic shift in specific strains 
(Fig. 6b and Extended Data Fig. 5a), as observed previously (Fig. 1b). 
In contrast, inoculation of rbohD plants with SynCom-137 containing 
the Xanthomonas Leaf131 mutants xps, xpsxcs or dsbB resulted in a 
similar overall community composition as the SynCom-137 alone 
in rbohD and in Col-0 plants, as indicated by few changes of indi-
vidual strains in their relative abundance (Fig. 6b and Extended Data 
Fig. 5b) and by overlapping clusters of the different conditions in a 

PCA (Extended Data Fig. 5c). In addition, the T2SS mutants showed 
reduced relative abundance, and dsbB was hardly detected by 16S 
rRNA amplicon sequencing (Fig. 6c), which underlines the impor-
tance of these features for the competitiveness of Xanthomonas in 
the context of a bacterial community, similar to the plant inoculations 
with only Xanthomonas Leaf131 (Fig. 4c).

Furthermore, we examined in a binary strain inoculation experi-
ment the colonization level of the commensal Pseudomonas Leaf434 in 
response to attenuated Xanthomonas Leaf131. Strikingly, the increase in 
the commensal Pseudomonas Leaf434 observed during co-inoculation 
with virulent Xanthomonas Leaf131 was significantly reduced when 
the T2SS mutants xps and xpsxcs were paired with the Pseudomonas 
strain (Fig. 6d). This finding supports the conclusion that commen-
sals are enriched in their abundance in plants due to the virulence of 
Xanthomonas Leaf131, which is particularly pronounced in immuno-
compromised rbohD plants.
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In summary, our results indicate that specific microbiota members 
benefit indirectly from Xanthomonas Leaf131 due to T2SS-dependent 
virulence causing plant disease, rather than from the presence of  
Xanthomonas Leaf131 or the knockout of RBOHD per se.

Discussion
Dysbiosis is considered a condition with distorted microbiota with 
various compositional states, but associated to disease and often 
characterized by weakening of host control over microbial growth45,46. 
However, the concept of dysbiosis is controversial because the causal 
relationships are often unclear, that is whether the observed changes 
in the microbiota are caused by the host genotype or by infection with 

a pathogen, and whether a shift in the microbial composition is the 
consequence of host disease or promoting disease4,47. Several studies 
have reported dysbiosis in the phyllosphere of plants infected with a 
pathogen48–52; however, it remains to be shown whether the pathogen 
invaded the microbial community as external agent or was part of the 
microbiota that was initially kept under control. Indeed, environmental 
conditions and protective microbiota members determine the viru-
lence of pathogens28,30,53–55. Recently, experimental studies described 
that a functional immune system is required to maintain microbiota 
homoeostasis and prevent dysbiosis9,10,56.

Our previous finding that A. thaliana rbohD mutants display a 
microbiota shift and the identification of Xanthomonas Leaf131 and 
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Leaf148 as opportunistic pathogens9 gave us the opportunity to disen-
tangle the causation of dysbiosis in a representative leaf microbiome 
context. We found that conditional pathogenicity of the microbiota 
member Xanthomonas Leaf131 in immunocompromised rbohD 
mutants is governed by the T2SS and results in a dysbiotic microbial 
community characterized by increased abundance of Xanthomonas 
Leaf131 and other strains (Figs. 1 and 6). The enriched commensals 
might benefit from nutrients released from the plant as ‘public good’ 
and depend on their metabolic capacity that shapes microbiota 
composition57–59.

We found that leaf tissue damage caused by secreted CWDE via 
the T2SS Xps is a major virulence strategy of Xanthomonas Leaf131 
and Leaf148 during infection of A. thaliana. However, it is still unclear 
what underlies the context-dependent pathogenicity of Xanthomonas 
Leaf131 and Leaf148 in rbohD plants. Pathogenicity of these opportun-
istic Xanthomonas strains could be regulated by rbohD-specific cues 
(for example, nutrients, signalling molecules or absence of ROS) that 
trigger a behavioural switch in Xanthomonas towards a pathogenic 
lifestyle. It was recently shown in Xanthomonas citri pv. citri that deg-
radation products from the plant cell wall polymer xyloglucan induce 
transcription of virulence factors60. In our leaf degradation experi-
ments using supernatants, Xanthomonas produced CWDE during 
incubation in rich media, suggesting that CWDE production is a consti-
tutive trait and might not be dependent on host signals. A complemen-
tary study on Xanthomonas Leaf148 confirmed the T2SS-dependent 
pathogenicity, and a bacterial transcriptomics experiment indicates 
that genes encoding the T2SS and CWDE are more highly expressed 
in rbohD knockout plants61. We identified several T2SS-dependent 
proteins to be secreted by Xanthomonas Leaf131 and Leaf148 in liquid 
culture. Notably, some of these have been described in the context of 
virulence of Xanthomonas pathogens34,36,43,62. We have not observed a 
reduction in leaf tissue degradation in the gene knockout strains for 
two of the identified enzymes, an endoglucanase or serine protease, 
which is, however, not surprising given that a deletion of a single T2SS 
substrate often does not show a phenotype presumably due to func-
tional redundancy among the secreted proteins34,36.

Context-dependent pathogenicity of opportunistic Xanthomonas 
strains might rely on plant susceptibility due to altered immune sig-
nalling or physical barriers. The plant immune system detects micro-
bial activity and monitors the cell wall integrity63,64. Loss of microbe/
danger-associated molecular patterns-induced ROS production by 
RBOHD results in impaired immune signalling and increased suscep-
tibility to bacterial and fungal pathogens17,65,66 as well as reduced cell 
wall remodelling and lignification19,20,67. To explain susceptibility to 
opportunistic Xanthomonas, rbohD plants could mount an insufficient 
defence response. Many pathogens secrete CWDE to degrade plant 
polymers at certain stages during the infection process64,68 and, in turn, 
defects in cell wall composition make plants more susceptible69. As 
such, rbohD plants might have cell wall defects due to altered polymer 
crosslinking, which is in accordance with our data showing that tissue 
degradation activity of cell-free supernatants is higher in rbohD com-
pared with Col-0 leaf discs. In that case, opportunistic Xanthomonas 
would secrete CWDE that break down a vulnerable (pre-formed) 
cell wall of rbohD plants. Strikingly, we have identified a single gene 
(ASF73_19940), which is required for full leaf tissue degradation and 
virulence in rbohD plants, and encodes a protein annotated with a 
secretion signal and a glucanase/concanavalin A-like lectin domain, 
which is potentially involved in carbohydrate processing or adhesion. 
Importantly, in A. thaliana wild-type plants, both Xanthomonas Leaf131 
and Leaf148 protect from the virulent pathogen Pseudomonas syringae 
pv. syringae DC300053 and the related Xanthomonas WCS2014-23 is 
enriched in A. thaliana plants and limits infections with Hyaloperono-
spora arabidopsidis70,71 highlighting that these Xanthomonas can also 
be advantageous for the host when their pathogenicity is constrained. 
Mammalian NADPH oxidases produce ROS as a cell-to-cell messenger 

regulating the intestinal barrier, which is required for microbiota 
homoeostasis72, and ROS also form a physical barrier, which is thought 
to keep certain bacteria at distance from the epithelial surface24,73.  
This draws attention to striking similarities in the molecular mecha-
nisms for host control of microbiota homoeostasis across animal and 
plant kingdoms.

In conclusion, our study revealed the importance of the T2SS for 
opportunistic Xanthomonas strains both for their interaction with the 
plant and for their competitiveness within the microbiota. The condi-
tional pathogenicity of this opportunistic microbiota member depends 
on the host genotype and impacts both plant health and the microbial 
community. Our findings establish a causal link between a single plant 
gene to a specific genus of bacteria that drives a microbiota shift and 
highlight the crucial role of opportunistic pathogens in dysbiosis.

Methods
Plant growth conditions in soil
A. thaliana wild-type Col-0, bbc30, fls2/efr/cerk131, rbohD knockout 
mutant17 and complementation line rbohD/pRBOHD::RBOHD-FLAG 
(rbohD/RBOHD)65 were used in this study.

A. thaliana plants for leaf degradation assays were grown in 
peat-based potting soil (substrate 1, Klasmann-Deilmann) in a growth 
chamber (CU-41L4, Percival) under controlled conditions (11 h light 
cycle, 22 °C, 65% relative humidity, light intensity (photosynthetic 
active radiation) 200 µmol s−1 cm−2). Seeds were treated with 70% etha-
nol for 2 min, sown on soil and stratified for 2 days at 4 °C in the dark.

Gnotobiotic plant growth and bacterial inoculation
Gnotobiotic plants were prepared and grown in sterile microboxes 
filled with calcined clay as described previously9.

For the SynCom, 138 strains were selected on the basis of the 
At-LSPHERE strain collection (Supplementary Table 3) to have maxi-
mal phylogenetic diversity and to distinguish all strains with 100% 
sequence identity representing amplicon sequence variants (ASVs)9. 
Xanthomonas Leaf131 was used as single inoculum or mixed into the 
SynCom-137.

Bacterial growth, mixing of the synthetic community and plant 
inoculation were done as described before9. Each strain was mixed in 
equal volume ratio for inoculum mix. Germ-free, 11-day-old seedlings 
were inoculated with 200 µl bacterial solution. Plants were harvested 
between 35 and 38 days after germination. Experiments with SynCom, 
single strain or binary strain inocula were done in the same procedure. 
Axenic plants in gnotobiotic system were inoculated with buffer only 
and used as control for contamination by plating plant homogenate 
to monitor bacterial growth and were included as negative control in 
16S rRNA amplicon sequencing. To extract DNA for 16S rRNA amplicon 
sequencing, the phyllosphere was harvested, weighed and stored  
at −80 °C.

Spray inoculation was done with sterilized glass sprayer in 
24-day-old or 38-day-old gnotobiotic plants with bacterial culture 
diluted in 10 mM MgCl2 to optical density (OD)600 of 0.2 or 0.001, as 
indicated in corresponding figure legend.

To determine bacterial colonization levels, the phyllosphere was 
harvested, weighed and homogenized in 10 mM MgCl2 and a dilution 
series plated on R2A and methanol (MeOH) agar plates to count colony 
forming units (CFUs) after 2 days incubation at 28 °C. We excluded com-
pletely necrotic or dead plants from CFU count analysis as this would 
introduce inaccuracies depending on the time passed between plant 
death and the sampling timepoint. In the binary plant colonization 
experiments, the dilution series was plated on R2A-MeOH agar plates 
containing 10 µg ml−1 gentamycin and 25 µg ml−1 chloramphenicol to 
select for Xanthomonas Leaf131 Tn7::Gm-lux and Pseudomonas Leaf434, 
respectively. In addition, Xanthomonas Leaf131 and Pseudomonas 
Leaf434 can be distinguished by yellow and white colony pigmenta-
tion, respectively.
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Bacterial luminescence of Xanthomonas Leaf131 Tn7::Gm-lux was 
measured in planta using IVIS spectrum imaging system (Xenogen). 
Exposure was set to 50 s and emission filter to 500. Radiance values 
(p−1 s−1 cm−2 sr−1) were extracted and normalized to plant size by adjust-
ing elliptic region of interest for each plant.

16S rRNA amplicon sequencing and analysis
DNA extraction and 16S rRNA amplicon sequencing was done as pre-
viously published9, but polymerase chain reaction (PCR) reactions 
for 16S rRNA amplification and barcoding were not done in technical 
triplicate here.

16S rRNA amplicon data processing was done as described previ-
ously9,26. The ASV table (Supplementary Table 3) of each experiment 
was processed in R v.3.6.3 as described previously9. To account for 
varying sequencing depths between samples, the ASV table was log 
normalized and variance stabilized by DESeq2 v.1.14.1. To examine the 
effect on individual strains between the test and control conditions, 
the output of DESeq2 provided log2 fold change values and strains 
were considered to be differentially abundant according to Wald test 
implemented in DESeq2. P values were adjusted for multiple testing 
using the Benjamini–Hochberg method implemented in DESeq2. The 
differential strain abundances between the test and control conditions 
were visualized as a heatmap. To assess the overall effect on commu-
nities, PCA was performed with the transformed ASV table using the 
prcomp command. The effect size represents the variance explained 
by the compared factor and was calculated on Euclidean distances 
followed by a permutational multivariate analysis of variance (PER-
MANOVA) to test for statistical significance using the adonis command 
of the package vegan v.2 v.5-4. To summarize the relative abundance 
of Xanthomonas Leaf131 in a sample, the relative abundance values 
were calculated by proportional normalization of each sample by its 
sequencing depth.

The following R packages were used during analysis and visualiza-
tion: ape v.5.4 (ref. 74), ggplot2 v.3.3.0 (ref. 75), vegan v.2.5-4 (ref. 76), 
DESeq2 v.1.14.1 (ref. 77) and ggpubr v.0.3.0 (ref. 78).

Leaf disc degradation assay
Leaf discs of 5- or 6-week-old A. thaliana plants grown in soil were 
collected using a 4-mm-diameter biopsy puncher (BPP-40F, KAI MEDI-
CAL) and placed with the adaxial side up in a clear flat-bottom 96-well 
plate (655101, Greiner Bio-One) filled with 90 µl Milli-Q purified water. 
Xanthomonas were grown on R2A-MeOH agar plates for 2 days at 22 °C; 
bacterial cells were scraped off, resuspended in 10 mM MgCl2 by vor-
texing for 2 min and the bacterial solution was adjusted to OD600 of 
0.1. Leaf discs were inoculated with 10 µl of bacterial suspension and 
incubated at 22 °C for up to 48 h in the dark. Digital images were taken 
at regular intervals under standardized conditions using a black box 
and a light screen illuminating leaf discs from below to monitor leaf 
tissue degradation.

Quantification of leaf disc brightness
To quantify leaf tissue degradation, we developed a computational 
script MatlabR2022a (MathWorks), which recognizes leaf discs in a 
96-well plate, measures surface area, brightness of the red channel (in 
RGB images) and computes a ‘roughness’ parameter.

In short: the script normalizes the brightness of the images using 
the ‘illumgray’ and ‘chromadapt’ functions implemented in MATLAB. 
Subsequently, a binary mask is created, separating the area occupied by 
leaf discs from the rest of the image. Discs that deviate in ‘roundness’ are 
discarded from the analysis since they are probably broken or folded. 
The roughness parameter is created using the ‘Sobel’ edge detection 
function on the isolated discs in the red channel and computing the 
total number of pixels recognized as edge within each disc. The area of 
each disc is computed by counting the number of pixels per disc times 
the pixel size retrieved from an image scaling step. The brightness 

value represents the mean brightness value of the red channel for each 
individual leaf disc.

The MatlabR2022a code and user manual is available79.

Transformation of electrocompetent Xanthomonas cells
Electrocompetent Xanthomonas cells were made by an established 
protocol80. Exponentially growing Xanthomonas cells in 200 ml lysog-
eny broth (LB) at 28 °C with an OD600 between 0.6 and 1 were cooled 
on ice for 20 min and kept on ice for the entire procedure. Cells were 
collected by centrifugation for 15 min at 4,000g at 4 °C and washed 
three times in chilled sterile 10% glycerol to remove growth medium. 
After the final washing step, cells were concentrated approximately 
100-fold compared with initial volume in 10% glycerol and aliquots 
frozen at −80 °C.

Electrocompetent Xanthomonas cells were thawed on ice and 50 µl 
was mixed with 200 ng plasmid. Cells were transformed by electropo-
ration in 1-mm electro-cuvettes applying 1.8 kV electric current. Cells 
were recovered in LB medium for 2–4 h shaking at 28 °C before plating 
100 µl on LB agar plates containing selective antibiotics.

Xanthomonas Leaf131 cells were transformed with pUC18-mini- 
Tn7T-Gm-lux81 and helper plasmid pTNS3 (ref. 82) for site-specific Tn7 
integration of luxCDABE. Transformed cells of Xanthomonas Leaf131 
Tn7::Gm-lux were selected on LB agar plates containing 10 µg ml−1 
gentamycin.

Bacterial gene knockout strains
Markerless gene deletion in Xanthomonas strains (Supplementary 
Table 4) were made according to a method based on double homol-
ogous recombination using the suicide plasmid pK18mobSacB as  
vector83. Gene deletion plasmids were designed to result in in-frame 
deletion of the gene of interest while leaving an open reading frame 
of three to four amino acid peptide. Briefly, 500 bp of flanking regions 
upstream and downstream of the gene of interest were amplified 
by PCR and cloned into pK18mobSacB plasmid. The plasmids were 
cloned using either classical restriction enzyme digest or Gibson 
Assembly (oligonucleotides are provided in Supplementary Table 4) 
in Escherichia coli DH5α. Gene deletion constructs were confirmed 
by Sanger sequencing.

Electrocompetent Xanthomonas cells were transformed, recov-
ered in LB medium for 2–4 h and transformed cells were selected on 
LB agar plates containing 50 µg ml−1 kanamycin. Transformed cells 
were re-streaked on fresh selective LB agar plates and a single colony 
resuspended in LB medium for 2 h before plating on LB agar plates 
containing 5% sucrose to select for double cross-over events due to 
homologous recombination and chromosomal deletion of the gene of 
interest and the vector backbone. After sucrose selection, individual 
colonies were tested for sensitivity to kanamycin. Cells were re-streaked 
to obtain single colonies that were cultured and frozen in 25% glycerol 
at −80 °C. Genomic deletion was confirmed by PCR using primers out-
side of flanking regions and Sanger sequencing the PCR product and 
by the absence of PCR product using primers inside genomic deletion.

Bacterial supernatant of liquid culture
Xanthomonas were grown in triplicates in 100 ml liquid 0.5× LB 
medium until late exponential growth phase (approximately OD600 
of 2) at 28 °C while shaking. Cells were harvested by centrifugation at 
4,000g for 15 min and washed twice in 10 mM MgCl2. Bacterial cells 
were resuspended in 10–20 ml fresh 0.5× LB medium at an OD600 of 
3 and incubated for 4 h in flasks at 28 °C while shaking. To obtain the 
cell-free supernatant, we centrifuged the samples at 4,000g for 15 min 
to remove bacteria and filter sterilized the supernatant using 0.22-µm 
filter units (no. 99505, ‘rapid’-Filtermax, TTP) and a vacuum pump. A 
total of 10 ml of cell-free supernatant was concentrated ten-fold by 
using Ultrafiltration Units Amicon-15 with a molecular weight cutoff 
10 kDa (Merck) and centrifugation at 3,500g at 4 °C for 20–40 min. 
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Cell-free supernatants were directly tested for leaf degradation activity 
and kept on ice until further processing for protein analysis.

Cell-free supernatant or concentrated supernatant was applied 
to leaf discs to test for tissue degradation activity. Leaf discs were 
collected from 5- or 6-week-old plants and floated in 40 µl Milli-Q 
purified water in a 96-well plate. To each leaf disc, 40 µl supernatant 
was added. Leaf discs were incubated at 22 °C and photographs taken 
at regular intervals.

Analysis of protein bands by LC–MS/MS
To test for the secretion of proteins, the concentrated cell-free super-
natant of Xanthomonas liquid cultures was obtained as described 
above. Protein concentration of the concentrated supernatant was 
determined by the Pierce BCA assay kit (Thermo Fischer Scientific) 
according to the manufacturer’s instructions. Protein content of 
supernatant samples were normalized and analysed using sodium 
dodecyl sulfate–polyacrylamide gel electrophoresis (mPAGE 
Bis-Tris 8%, Merck) revealing specific protein bands in the super-
natant while comparing wild type and the T2SS mutant (xpsxcs) of 
Xanthomonas Leaf131 and Leaf148. The protein bands of interest were 
cutout and identified by in-gel digestion and LC–MS/MS analysis as 
described previously84. Reference genomes of Xanthomonas Leaf131 
and Xanthomonas Leaf148 accessed under NCBI:txid1736270 and 
NCBI:txid1736275, respectively.

Substrate degradation by secreted enzymes in agar plates
Agar plate assays to detect glucanase, xylanase, pectate lyase and 
polygalacturonase or protease activity were modified after refs. 85–87.

Xanthomonas strains were streaked on R2A-MeOH plates and 
grown at 22 °C for 2 days. Bacterial cells were scraped off and resus-
pended in 1 ml 10 mM MgCl2 by vortexing for 5 min to disperse cell 
aggregates. Cell density was adjusted to OD600 of 0.4 and 4 µl of the 
bacterial suspensions were spotted on R2A agar plates either contain-
ing 0.5% sodium CMC (Sigma-Aldrich, C5678), 0.05% Remazol Brilliant 
Blue-Xylan (RBB-Xylan; Sigma-Aldrich, M5019), 0.1% azo-xyloglucan 
(Megazyme, S-AZXG) or 0.1% PGA in 1 M sodium phosphate buffer 
pH 7.0 (Sigma-Aldrich, 81325) or on 1.5% agar plates containing 3% 
skimmed milk powder (Rapilait), 1% peptone, 0.025% MgSO4 and 0.05% 
K2HPO4, respectively. The plates were incubated at 22 °C, and photo-
graphs were taken at regular intervals.

Glucanase activity can be detected by yellow halos against the red 
background after staining with 0.1% Congo red (Sigma-Aldrich, C6767) 
dye solution (solved in 50% ethanol) for 30 min and destaining with 
1 M NaCl for 15 min. Pectate lyase or polygalacturonase activity can be 
detected by light-pink halos against the darker pink background after 
staining with 0.05% ruthenium red (Sigma-Aldrich, R2751) dye solution 
(solved in water) for 30 min and destaining with water. Xylanase or 
protease activity can be detected by a light-blue or clear halo forming 
around the colonies, respectively.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Raw data of 16S rRNA amplicon sequencing can be found at the Euro-
pean Nucleotide Archive under accession number PRJEB64618. Source 
data are provided with this paper.

Code availability
Customized code to analyse data and generate figures can be found 
at https://github.com/MicrobiologyETHZ/phylloR/releases/tag/
v1.1. The code to quantify leaf disc brightness using MatlabR2022a 
and user manual is available at https://github.com/gaebeleinC/
leaf-disc_quantification.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Microbiota composition of SynCom-137 and plant 
phenotype in presence and absence of Xanthomonas Leaf131. a) Principal 
component analysis of SynCom-137+Xanthomonas Leaf131 and of b) SynCom-137 
in Col-0 (blue), rbohD (green) and rbohD/RBOHD (light blue). Axes show  
principal components PC1 and PC2 with their explained variance (%). Statistical 
analysis (PERMANOVA) analysis is represented by effect size shown in Fig. 1A  
c) Heatmap shows log2 fold changes (log2FC) of strains in SynCom-137 in rbohD 

or rbohD/RBOHD compared to Col-0 wild-type plants in the presence (+) or 
absence (-) of Xanthomonas Leaf131. Black rectangles show significant changes, 
p-value < 0.05 (n = 16, two-sided Wald test, Benjamini–Hochberg adjusted). 
Subset of same data is shown in Fig. 1b. d) Plant phenotype of Col-0 (blue arrow), 
rbohD (green arrow) and rbohD/RBOHD (light blue arrow) mock inoculated or 
with SynCom-137 or SynCom-137+Xanthomonas Leaf131. Two representative 
replica growth boxes are shown for each treatment.
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Extended Data Fig. 2 | See next page for caption.

http://www.nature.com/naturemicrobiology


Nature Microbiology

Article https://doi.org/10.1038/s41564-023-01555-z

Extended Data Fig. 2 | Xanthomonas disrupts leaf tissue cohesion and 
requires plant wound. a) Time-course of leaf discs from five-week-old rbohD 
plants inoculated with Xanthomonas Leaf131 (OD=0.02). Scale bar represents  
1 mm. b) Leaf discs of rbohD plants in 96-well plate after 48 hours incubation with 
Xanthomonas Leaf131 were vortexed for two seconds. Scale bar represents 1 mm 
in left and middle panel, and 0.5 mm in right panel. c) Leaf discs of five-week-old 

Col-0 plants after 48 hours incubation with Xanthomonas Leaf131. Scale bar 
represents 1 mm in left and middle panel, and 0.5 mm in right panel. Experiment 
shown in panel A-C was repeated at least ten times. d) Leaves of five-week-
old rbohD plants floating in water with undamaged leaf edge (left panels) or 
wounded leaf edge (right panels) were mock inoculated (10 mM MgCl2) or with 
Xanthomonas Leaf131 or Leaf148 (OD=0.02).
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Extended Data Fig. 3 | Plant genotype influences leaf disc degradation and 
susceptibility to Xanthomonas. a) Time-course of leaf discs brightness from 
six-week-old Col-0, rbohD, fls2/efr/cerk1 (fec) and bak1/bkk1/cerk1 (bbc) plants 
inoculated with Xanthomonas Leaf131 or b) Leaf148. Statistical differences of 
leaf disc brightness between plant genotype at varying time points is indicated 

with p-value above box plots (two-sided Mann–Whitney U-test, n = 4). Box plots 
show the median with upper and lower quartiles and whiskers present 1.5x 
interquartile range. c) Plant phenotype of gnotobiotic Col-0, rbohD and bbc 
plants mock inoculated (blue arrow) or with Xanthomonas Leaf131 (yellow arrow) 
or Xanthomonas Leaf148 (orange arrow) at 24 days post inoculation.
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Extended Data Fig. 4 | Proteomic analysis of supernatant from Xanthomonas 
Leaf131 and Leaf148 liquid culture identified T2SS-specific proteins. 
 a) Coomassie stained SDS-PAGE of cell-free supernatant from Xanthomonas 
Leaf131 and Leaf148 wildtypes and xpsxcs mutants liquid cultures (n=3). Black 
arrows with numbers indicate protein bands excised from gel and analysed by 
LC-MS/MS with results of different fractions shown in Supplementary Table 2. 
b) Genomic region encoding T2SS-dependent secreted proteins pectate lyase 
(ASF73_20170) and lysyl endopeptidase (ASF73_20190). Orange line indicates 

in-frame deletion of gene cluster. c) Leaf discs of Col-0 or rbohD plants (six weeks 
old) were mock treated or with Xanthomonas Leaf131 wildtype or mutant strains 
with gene deletions of ASF73_13775, ASF73_18370, ASF73_04230, ASF73_20170-
ASF73_20190. Box plots show the median with upper and lower quartiles and 
whiskers present 1.5x interquartile range. Sample size, n = 8. d) Table shows 
candidate genes of T2SS-dependent secreted proteins identified by LC-MS/
MS (Supplementary Table 1) and gene identifiers of homologues in other 
Xanthomonas species as described in the literature.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Microbiota composition in presence of virulent 
or attenuated Xanthomonas Leaf131. a) Heatmap shows log2 fold changes 
(log2FC) of strains in SynCom-137 in rbohD compared to Col-0 wild-type plants in 
the presence (+) or absence (−) of Xanthomonas Leaf131. b) Heatmap shows log2 
fold changes (log2FC) of strains in the presence of either Xanthomonas Leaf131 
wildtype or the mutants xps, xpsxcs, or dsbB compared to SynCom-137 without 

Leaf131. Black rectangles show significant changes, p-value < 0.05 (n = 16, two-
sided Wald test, Benjamini–Hochberg adjusted). Subset of same data is shown 
in Fig. 6a. c) Principal component analysis of community in rbohD plants (upper 
panel) and Col-0 (lower panel) inoculated only with SynCom-137 or SynCom-137 
containing either Xanthomonas Leaf131, xps, xpsxcs, or dsbB. Axes show principal 
components PC1 and PC2 with their explained variance (%).
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