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Recent gene selection and drug resistance 
underscore clinical adaptation across 
Candida species

Miquel Àngel Schikora-Tamarit    1,2 & Toni Gabaldón    1,2,3,4 

Understanding how microbial pathogens adapt to treatments, humans 
and clinical environments is key to infer mechanisms of virulence, 
transmission and drug resistance. This may help improve therapies and 
diagnostics for infections with a poor prognosis, such as those caused by 
fungal pathogens, including Candida. Here we analysed genomic variants 
across approximately 2,000 isolates from six Candida species (C. glabrata, 
C. auris, C. albicans, C. tropicalis, C. parapsilosis and C. orthopsilosis) and 
identified genes under recent selection, suggesting a highly complex 
clinical adaptation. These involve species-specific and convergently 
affected adaptive mechanisms, such as adhesion. Using convergence-based 
genome-wide association studies we identified known drivers of drug 
resistance alongside potentially novel players. Finally, our analyses reveal 
an important role of structural variants and suggest an unexpected 
involvement of (para)sexual recombination in the spread of resistance. 
Our results provide insights on how opportunistic pathogens adapt to 
human-related environments and unearth candidate genes that deserve 
future attention.

Fungal infections pose a serious health threat, affecting more than one 
billion people and causing approximately 1.5 million deaths each year1,2. 
The problem is growing due to insufficient diagnostic and therapeutic 
options3,4, increasing numbers of susceptible patients1,5, the expansion 
of pathogens partly linked to climate change6,7 and the alarming rise 
of antifungal drug resistance4,8,9. Candida species are a major cause 
of severe hospital-acquired infections1, prompting the classification 
of some species (Candida auris, Candida albicans, Candida glabrata, 
Candida tropicalis and Candida parapsilosis) as critical or high-priority 
targets by the World Health Organization2.

A promising strategy to improve current therapies is to understand 
the evolutionary mechanisms of adaptation to antifungal drugs as 
well as to the human host. Candida pathogens have highly dynamic 
genomes (both within species10–12 and within patient13,14), which prob-
ably underlie these adaptive processes13,15–18. For example, in vitro 

evolution studies have pinpointed genome-wide changes underlying 
drug resistance19–21. In addition, analyses of serial clinical isolates13,14, 
genome-wide association studies (GWAS)22,23 and population genomics 
research11,12,24 have partially clarified the clinical relevance of resistance 
mechanisms. Similarly, directed evolution experiments in mice25–27, 
the analysis of paired clinical isolates13 and population genomics stud-
ies12,28 have explored host adaptation mechanisms involving virulence, 
adhesion or filamentous growth. Furthermore, some studies used 
ratios between non-synonymous and synonymous variation (such 
as πN/πS) to infer signatures of selection, which are useful to predict 
genes involved in clinical adaptation where the relevant phenotypes 
(such as drug susceptibility or cell adhesion within a patient) are not 
measurable12,29–31.

However, our understanding of how Candida species adapt in 
a clinical context is limited due to many reasons. First, most clinical 
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some distant conspecific strains have a genetic distance of about 10 
SNPs kb−1 (1% divergence) or higher (Fig. 2a,b). In some species (that 
is, C. orthopsilosis36 and C. albicans10), this could be attributed to their 
hybrid nature. For non-hybrid species (C. glabrata and C. auris), this 
indicates that their diversification predates human colonization, which 
must have occurred in parallel in divergent clades for each species.  
C. parapsilosis is an exception to this trend, pointing to a more recent 
origin of this lineage.

Regarding non-SNP variants, we found that the SV and indel 
distances correlate to SNP distances (Fig. 2a), which suggests that 
they were accurately called. Conversely, the CNV and SNP distances 
were not always correlated (Fig. 2a), which could be attributed to 
inaccurate definitions of CNV boundaries, probably complicating 
distance metrics. As expected, SNPs were quantitatively the most 
common variant type, followed by indels—one order of magnitude 
less prominent—and then SVs and CNVs at much lower frequencies 
(Fig. 2b). Despite their lower abundance, SVs and CNVs can affect a 
significant fraction of protein-coding genes (Fig. 2c), highlighting 
their relevance. We investigated the mechanisms underlying the for-
mation of SVs and CNVs, and found that most variants are unrelated 
to repetitive elements or rearrangements derived from homologous 
recombination (Extended Data Fig. 2 and Methods). This suggests that 
non-homologous-end-joining DNA repair pathways37,38 could be the 
main driver of SVs and CNVs in Candida species, consistent with such 
repair often resulting in rearrangements39. In summary, we found that 
all variant types are quantitatively important and therefore should not 
be overlooked in subsequent analyses.

Signatures of recent selection reveal adaptation mechanisms
To infer the signatures of recent clinically relevant selection, we took 
advantage of the predominance of clinical strains in our collection. 
We reasoned that recently acquired variants in clinical isolates may 
be enriched in those acquired in a clinical context and could therefore 
inform on selective pressures related to adaptation to human-related 
environments. The standard approach of calculating πN/πS ratios12,31,40,41 
is not suitable for our aim for the following reasons. First, we focus 
on recently acquired variants and πN/πS considers all mutations in a 
gene, thereby also detecting ancient selection. Second, considering 
only recent variants poses a statistical challenge to reliably calculate 
πN/πS, given that many genes have few recent variants and thus a πS of 
zero. Third, πN/πS cannot be applied to indels, SVs and CNVs, which we 
deem important.

To overcome these drawbacks, we developed a πN/πS-inspired 
method that detects genes with an excess of recent functionally rel-
evant variants (non-synonymous SNPs, in-frame indels, gene duplica-
tions or truncations; Methods, Fig. 3a and Extended Data Figs. 3,4). 
Duplications could be SVs or CNVs, and deletions could be nonsense 
SNPs, frameshifting indels, SVs or CNVs. Note that an excess of deletions 
in a gene could reflect either positive selection acting on deletions or 
recent relaxation of purifying selection. To focus on recent variants, 
we identified monophyletic clusters comprising only clinical strains 
with high genetic relatedness (Supplementary Fig. 1) and only con-
sidered variants inferred to have appeared within the cluster. These 
clusters probably represent clonally propagating lineages that evolved 
in human-associated environments (as they are closely related and 
recurrently isolated from patients), and therefore recent mutations 
may reflect selective pressures related to adaptation to the host, hos-
pital environments or antifungal drugs. We used these variants to 
define genes under recent selection as those with an excess of recurrent 
functionally relevant variants.

We detected several recently selected genes using our approach, 
belonging to 879/7,499 orthologous groups (OGs, a proxy for gene 
families) (Fig. 3b and Supplementary Table 2). The low numbers in  
C. orthopsilosis and C. parapsilosis probably reflect reduced statistical 
power due to few strains and low intraspecific diversity, respectively. 

studies include small sample sizes and/or lack rigorous statistical 
testing of the associations between genotypes and adaptive changes. 
Second, most studies involve only C. albicans, leaving open questions 
in other species2. Third, despite the importance of structural variants 
(SVs; such as deletions, duplications, inversions and/or translocations; 
Fig. 1)32–34, their contribution to clinically relevant adaptation remains 
largely unexplored. Fourth, similarities in adaptation mechanisms 
across species remain elusive because most studies focus on only one 
species and use different methods. This is key to understanding the 
epidemiology of these pathogens as well as enabling personalized 
treatments and prevention strategies. Fifth, many exploratory clini-
cal studies focus only on known adaptive mechanisms (that is, known 
drug-resistance genes, as discussed previously23), which means that 
there may be unexplored factors. Finally, current studies of selection 
consider all variants within a gene, which may reflect ancient adap-
tation unrelated to the clinics. It may be important to only analyse 
recently emerged variants, as they are more likely to reflect clinically 
relevant selective pressures (as proposed in ref. 35).

To address these gaps, we used approximately 2,000 avail-
able genomes from major Candida species to investigate two open 
questions in clinical adaptation. First, we used phylogenetics and 
πN/πS-inspired tools to infer the genes with signatures of recent and 
potentially clinically relevant selection in C. glabrata, C. auris, C. albi-
cans, C. tropicalis, C. parapsilosis and C. orthopsilosis. Second, we used 
convergence-based GWAS to infer the genomic drivers of resistance 
to echinocandins, polyenes and azoles in C. glabrata, C. auris and  
C. albicans. In both cases we measured the contribution of various 
variant types, including SVs. Our analyses revealed both expected and 
novel adaptive mechanisms, including those convergently acting in 
several species.

Results and discussion
Public sequences allow the study of recent evolution in 
Candida
To identify genes under recent selection in Candida pathogens, we 
retrieved all publicly available short-read whole-genome sequenc-
ing data for pure isolates (that is, clinical and environmental) of six 
major species and identified four variant types: single-nucleotide 
polymorphisms (SNPs), small insertions and deletions (indels), SVs 
and copy-number variants (CNVs; Methods, Fig. 1 and Extended Data 
Fig. 1). We enriched genomic information with strain metadata from the 
literature, including isolation source and antifungal drug susceptibility, 
where available (Fig. 1b and Supplementary Table 1). This dataset, com-
prising 1,987 high-quality samples (available at https://candidamine.
org), is unprecedented in terms of the types of variants and number 
of strains considered11,12,24,28,36.

To provide a phylogenetic framework to our analysis, we inferred 
a strain tree (Fig. 1b and Supplementary Table 1) and used a systematic 
approach to identify genetically divergent monophyletic clades in 
each species (Methods and Supplementary Fig. 1a). A comparison with 
previously defined clades (Methods) revealed an overall consistency, 
underscoring the validity of our clade-definition approach, but also 
showed that our dataset encompasses a higher intraspecific diversity. 
In summary, we generated a dataset with unprecedented power to 
study the signs of selection and drug-resistance mechanisms in major 
Candida pathogens.

Structural variants underlie intraspecific variation
To determine the relevance of considering different variant types 
in subsequent analyses, we quantified their relative contribution to 
genetic diversity. Such comparative analysis across Candida species 
is lacking, as most previous studies have focused on SNPs and used 
specific methodologies. For each variant type, we measured the genetic 
distance (variants kb−1) between all pairs of isolates within a given spe-
cies. We found that most species span high levels of diversity so that 

http://www.nature.com/naturemicrobiology
https://candidamine.org
https://candidamine.org


Nature Microbiology | Volume 9 | January 2024 | 284–307 286

Analysis https://doi.org/10.1038/s41564-023-01547-z

a

b

Strain type: clinical, environmental, other Clade

C. tropicalis (89)

C. albicans

(642) 

NCBI SRA
Candida WGS SNP, indel

Drug resistance Type strain

Recent adaptation analysis

+

+ SV, CNV

C. glabrata (420)

X

C. orthopsilosis
(33)

C. parapsilosis (51)

C. auris (752)

Deletion

Inversion

Tandem
duplication 

xxx

+++

c

+++

xxx

Copy–paste insertion

Cut–paste insertion

Translocation

SVs

Genome

C
ov

er
ag

e

Duplication 

Deletion  

SNP Small indel

CNVs

Small variants

Clade type: known (=); new (*); inconsistent (x)

*

*

**
*

*
x*

***
*

*

**
**

**

**

*

**

*

*

*

*

x

x

Fig. 1 | A genome dataset to study recent evolution across major Candida 
species. a, Overview of the data-generation process. To study the genome-wide 
signs of recent selection and drug resistance, we processed available whole-
genome sequencing datasets from the National Center for Biotechnology 
Information Sequence Read Archive (NCBI SRA) for C. glabrata, C. auris,  
C. albicans, C. tropicalis, C. parapsilosis and C. orthopsilosis. We used these data 
to identify SNPs, indels, CNVs and SVs in each strain. In addition, we manually 
curated the associated literature to obtain antifungal drug-susceptibility data 
and information about the type of strain (that is, clinical or environmental). 
WGS, whole-genome sequencing. b, SNP-based trees for all strains of each 
species (Methods). The size of each tree is proportional (in logarithmic scale) 
to the number of strains (indicated in parentheses). The clades inferred here 
are represented in different colours in the branches and outer strips. Symbols 
were used to indicate how each clade overlaps with clades defined in other 

recent population studies (C. albicans28, C. auris11, C. glabrata12, C. tropicalis24 
and C. orthopsilosis36): =, known (one-to-one match); *, new; and X, inconsistent 
(it is inconsistent with previous clade definitions; Methods). Supplementary 
Table 1 includes all the clade definitions as well as the trees in Newick format. 
The inner strip represents the type of strain, where ‘other’ refers to strains with 
engineered genomes or strains resulting from directed evolution experiments. 
In this inner strip, the width of each colour indicates the number of strains 
of each type in each clade but they are not displayed in the order of the tree. 
Branches with support < 95 were collapsed. The species tree (top) was obtained 
using OrthoFinder. c, Variant types identified in this study. Structural variants 
are complex rearrangements identified with a breakpoint-detection algorithm, 
whereas CNVs are variants generating large duplications and deletions inferred 
from changes in coverage (Methods).
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Thus, further sequencing efforts will be needed to fully understand the 
signs of selection in these species. Most OGs are affected by a single 
variant type, with few exceptions that suggest complex evolution-
ary interactions (sometimes antagonistic) among the OG members  
(Fig. 3b and Supplementary Results). We found several expected genes 
related to virulence and drug resistance, providing support for the 
validity of our approach (Fig. 3b and Supplementary Table 2). Some 
examples include ALS genes in C. albicans (implicated in adhesion 
and biofilm formation42); TAC1b, ERG11 and MRR1 in C. auris (related 

to azole resistance11,21,43,44); PDR1 in C. glabrata (implicated in azole 
resistance19,45); EPA genes in C. glabrata (related to adhesion32,46); a 
drug exporter in C. orthopsilosis (gene CORT_0G00240) or filamentous 
growth proteins in C. tropicalis (genes CTRG_00655 and CTRG_03085). 
In addition, significant overlaps between these genes and those with 
recurrent mutations across clonal within-patient serial isolates were 
observed, providing support for the idea that these genes are often 
involved in clinical adaptation (Supplementary Results). Further-
more, there were signs of selection on all variant types in most species, 
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Fig. 2 | All variant types contribute significantly to intraspecific diversity. a, 
Overview of the genetic distance (variants kb−1) patterns across all species 
generated by each variant type. Each row and column represents a strain ordered 
as in the strain tree and coloured by clade (see Fig. 1b); each cell corresponds to 
the genetic distance (log-transformed) between all pairs of strains. We added a 
pseudocount of 0.001 variants kb−1 for the logarithmic calculations. b, The same 
as in a but as a boxplot. Each cell in a corresponds to one point in the distributions 

shown here. Thus, there are n!
2!(n−2)!

 points for each box in a given species, where n 

represents the number of strains (see Fig. 1b). For instance, for a species with five 
strains we would have 5!

2!(5−2)!
= 10 comparisons. These data correspond to 

biological replicates, as each point corresponds to a pairwise comparison 
between two strains. c, Distribution of the predicted percentage of proteins that 
are altered by the different variant types across all pairs of strains. Each point of 
the distribution corresponds to a pair of strains, shown in a boxplot as in b. We 
added a pseudocount of 1% of genes affected for the logarithmic calculations. 
b,c, Boxplots: the box represents the interquartile range of the distribution, from 
the first to the third quartile, with the line representing the median. The whiskers 
extend to points that lie within 1.5× the interquartile range of the first and third 
quartiles, and values outside this range are shown as independent points.
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Fig. 3 | Genome-wide signatures of recent selection in clinical isolates of 
Candida species. a, Schematic representation of our pipeline for measuring 
recent selection for each gene by different variant types, using C. glabrata as an 
example. (i) We first defined recent variants as those that were acquired during the 
diversification of monophyletic clusters of close clinical strains (where all strains  
have ≤1 SNP kb−1 to each other). An example for gene X that has three variants, 
including some that were recently acquired, is shown. The grey stripes represent 
the relevant strain clusters for this gene. (ii) We then calculated the selection 
score (S), proposed here, which measures whether a gene (each point) has an 
excess of recurrent, recent functionally relevant variants (non-synonymous 
SNPs, in-frame indels (if_INDEL), gene duplications (DUP) or gene truncations 
(DEL)). For SNPs (left), S takes into account which strains have a typical hallmark 
of positive selection (πN > πS). Thus, we defined S as the harmonic mean between 
the fraction of strains with πN > πS (x axis) and the fraction of clusters with at 
least one strain that has πN > πS (y axis). In the scatter plots we show these values 
for C. glabrata genes. For the other variant types (if_INDEL, DEL and DUP; right) 
we defined S as the harmonic mean between the fraction of strains with a variant 
in that gene (x axis) and the fraction of clusters with at least one strain that has a 
variant (y axis). S measures the ‘excess of recurrent variants’ in these variant 
types. The example shows the results of DEL variants in C. glabrata. (iii) Finally, 
we defined ‘genes under selection’ as those that had a significantly high  
S value. For SNPs (left), we defined genes under selection as those that had a low 
empirical probability of observing S under a neutral model of evolution 

(false-discovery rate (FDR)-corrected probability P(S) < 0.05; Methods). The 
scatterplot shows, for each C. glabrata gene, the S and −log10[FDR-corrected P(S)] 
values with significant genes under selection in red. For other variant types 
(right), we defined genes under selection as those that had an S value above the 
90th percentile of all genes (red). The list of genes and OGs under selection are in 
Supplementary Table 2. In addition, Extended Data Figs. 3 and 4 show these 
distributions for all species and types of variants. b, Distribution of the number of 
gene families (Orthologous Groups, OGs) with genes under selection by different 
variant types across species. The numbers of such OGs are provided. The 
heatmaps show the overlap between OGs with genes under selection by different 
variant types, measured as the Jaccard distance. To infer the significance of 
having a given number n of overlapping OGs across genes under selection by 
different variant types, we calculated the empiric probability (P) of having n or 
more overlapping OGs when taking random genes from each set of compared 
genes (Methods). For example, there are 25 genes under selection by DELs (from 
21 OGs) and 92 genes under selection by SNPs (from 90 OGs) in C. glabrata (top 
left). There are six OGs with genes under selection by both SNPs and DELs, and 
the probability of having ≥6 overlapping OGs when taking 25 and 92 random 
genes is 0.0001. Thus, the P values come from an empirical one-sided statistical 
approach. c, Distribution of the numbers of OGs with genes under selection  
(by any variant type) across species. The heatmap shows the overlaps between 
such OGs as in b. *P < 0.05.
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suggesting that considering SVs and CNVs is relevant. This gene cat-
alogue constitutes a valuable resource to validate the clinical rele-
vance of evolutionary mechanisms inferred from future non-clinical 
studies (that is, in vitro evolution19,21, virulence in animal models27 or 
high-throughput genotype–phenotype screenings47,48).

To understand the similarities in selective processes across spe-
cies, we screened for OGs with a gene affected by selection in multiple 
taxa. Only 68/879 such OGs were identified, suggesting that each spe-
cies has unique signatures of selection (Fig. 3c). Although this could 
be partly attributed to different sampling criteria and statistical power 
across taxa, it is consistent with generally different infection mecha-
nisms in each species, which is also reflected in mostly non-overlapping 
transcriptional profiles on host interactions49,50. However, in many 
instances the number of overlapping OGs was higher than expected 
by chance (P < 0.05; Methods, Fig. 3c and Supplementary Table 2), 
pointing to convergent adaptive mechanisms in Candida pathogens. 
Relevant example genes within these OGs include ALS genes from C. 
albicans and C. auris, OPT2 and OPT3 (transporters related to pseudo-
hyphal growth and fluconazole presence) in C. albicans and C. tropicalis, 
MRR1a in C. auris and C. tropicalis (related to drug resistance), FLO8 and 
MSS11 (related to pseudohyphal growth) in C. glabrata and C. auris, 
MDS3 (virulence factor) in C. albicans and C. auris, CST6 (associated 
with azole resistance22) in C. glabrata and C. auris, and WOR4 (related 
to phenotype switching) in C. albicans and C. auris.

We performed enrichment analyses on functional annotations and 
identified 1,074 domains, 151 gene ontology (GO) terms, five MetaCyc 
and three Reactome pathways that were enriched across all gene sets 
(Fig. 4, Supplementary Fig. 2 and Supplementary Table 2), including 
hyphal growth, biofilm formation, transcriptional regulation, response 
to temperature, cell adhesion, carbohydrate metabolism, cell wall 
and membrane regions (Fig. 4). Most enriched functional groups are 
unique to a single species (991/1,074 domains, 143/151 GO terms, and 
all MetaCyc and Reactome pathways), suggesting that each species has 
unique signatures of recent selection also at the pathway and domain 
level (Fig. 4). These species-specific enrichments reflect the distinct 
adaptive paths affecting each of these Candida pathogens (discussed 
in Supplementary Results). However, there are several convergently 
affected pathways and domains, which may reflect conserved adap-
tive mechanisms (Fig. 4 and Supplementary Fig. 2). Relevant examples 
include a zinc-dependent transcription factor domain in C. tropicalis, 
C. albicans and C. auris; disordered regions in C. tropicalis, C. albicans 
and C. glabrata, and hyphally regulated cell wall proteins in C. tropica-
lis, C. albicans and C. auris (Supplementary Fig. 2). Several GO terms 
related to adhesion (‘biological process involved in symbiotic interac-
tion’, ‘adhesion of symbiont to host’ and ‘cell–cell adhesion’) were also 
enriched in genes with selected deletions from C. tropicalis, C. albi-
cans and C. glabrata, suggesting recurrent rewiring of these functions  
(Fig. 4). Further research is needed to associate these functions with 
possible adaptive advantages. For instance, disordered proteins 
can generate new traits in yeast51 and the deletion of adhesion genes 
could modulate host attachment, biofilm formation or immune eva-
sion52–55, therefore improving survival. In summary, our results suggest 
hundreds of gene families (about 10% of all families) and pathways 
under recent selective pressure, often in a single species. This may be 
explained by the natural niche of these pathogens being massively dif-
ferent to the human host. In addition, we found convergently selected 
families and pathways that may be at the core of recent adaptation 
and constitute interesting therapeutic targets. Future experiments 
should validate these results and pinpoint the most important drivers 
of recent adaptation.

Convergence GWAS to study antifungal resistance
Drug susceptibility is a measurable phenotype that has been deter-
mined for a sizeable fraction of the strains used in our study (Sup-
plementary Table 1 and Fig. 5a), which motivated us to find genomic 

changes underlying the drug-resistance phenotype in clinical isolates. 
For this, we performed a convergence-based GWAS, which uses ances-
tral state reconstruction (ASR) to find variant changes that are sig-
nificantly associated with transitions in drug-resistance phenotypes in 
their reconstructed evolutionary histories56,57. Given the peculiarities 
of our dataset, we developed a custom pipeline, inspired by the hog-
wash synchronous algorithm58 (Methods and Fig. 5b). In addition, we 
tested the association between groups of collapsed variants and the 
phenotype to take into account that different variants may drive drug 
resistance by altering the same feature (a gene or a pathway). To focus 
on key associations, we only analysed species–drug combinations with 
at least five sharp transitions (from high susceptibility to high resist-
ance or vice versa; Methods and Supplementary Fig. 3). This resulted 
in 12 species–drug datasets including seven compounds from all main 
classes (azoles, echinocandins and polyenes) and covering most clades 
of C. albicans, C. glabrata and C. auris (Supplementary Table 1 and  
Figs. 1b, 5a). To ensure high-confidence hits, we used a conservative 
approach that minimized the false positives expected from such mul-
tiple testing and chose the GWAS algorithm parameters and filtering 
criteria based on previous expectations of resistance genes (Methods 
and Supplementary Fig. 4). To remove redundancy, we kept the strong-
est and most-specific association among overlapping high-confidence 
variants, genes, domains and pathways (Methods and Supplementary  
Table 3). As an example of a significant association, we found that small 
variants affecting PDR1 (drug-efflux regulator45) are correlated with vori-
conazole resistance in C. glabrata (Fig. 5c and Supplementary Table 3).  
In Supplementary Results we discuss results that do not meet this strin-
gent selection but that we deem interesting.

Unexpectedly, in some cases the Manhattan plots showing vari-
ant–phenotype correlations suggested the existence of linked vari-
ants—that is, variants distributed across the genome jointly segregating 
with the phenotype (Extended Data Figs. 5,6,7 and Supplementary 
Results). Such a distribution may be explained by recent inter-strain 
recombination partly underlying the emergence of drug resistance. 
This is consistent with previous studies suggesting sexual (or parasex-
ual) cycles in these species12,28,59 and points to a possible role of (para)
sexual recombination in the spread of antifungal resistance. A possible 
role of recombination makes the detection of causal variants slightly 
more difficult, as they may be linked to passenger variants unrelated 
to the phenotype. We therefore focused on protein-altering variants, 
which are more likely to underlie changes in drug resistance19,60,61. When 
considering all types of groupings, 227 non-redundant significant asso-
ciations (hits) affecting 130 OGs and 38 pathways across all 12 datasets 
were identified, with variations across datasets probably reflecting 
differences in sample size (Supplementary Table 3 and Fig. 6). Close 
examination of these hits underscored the importance of considering 
SVs/CNVs and domain/pathway grouping of variants (Supplementary 
Results and Extended Data Fig. 8).

In summary, our multispecies genotype–phenotype association 
study revealed genome-wide determinants of drug resistance to all 
major drug classes. Beyond our analysis, this is a valuable resource 
to validate that the resistance mechanisms found in future studies 
are meaningful in clinical isolates, as we illustrate for a recent in vitro 
evolution study19 (Supplementary Results).

GWAS analysis suggests drivers of drug resistance
To validate our GWAS strategy and gain insights into known mecha-
nisms of antifungal drug resistance, we checked the GWAS results for 
expected driver genes (Fig. 6, Extended Data Figs. 8,9, Supplemen-
tary Table 3 and Supplementary Results). Our analysis confirmed that 
ERG11 (target of azoles62) is associated with fluconazole resistance 
in C. albicans as well as fluconazole and voriconazole resistance in  
C. auris, TAC1b (drug-efflux regulator60) underlies pan-azole resistance 
in C. auris, FKS (echinocandin target63) mutations are probable driv-
ers of strong pan-echinocandin resistance in C. auris and C. glabrata, 
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and PDR1 underlies pan-azole resistance in C. glabrata. Conversely,  
ERG11 may be unrelated to resistance towards long-tailed azoles in 
C. auris, confirming earlier observations from in vitro studies64–66 and 
showing that resistance mechanisms are not equivalent for all azoles 
(Supplementary Results).

Beyond these ‘known genes’ our results hint to other players. 
To focus on the most-relevant potentially conserved mechanisms, 
we considered OGs associated with resistance in more than one 
drug–species combination (Supplementary Table 3). These included 
PDR1, ERG11 and 13 other OGs, which are often (12/13 OGs) related 
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Fig. 4 | Species-specific and conserved functions are enriched among genes 
under recent selection. Heatmap representing the GO terms, MetaCyc and 
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in different species by different variant types. The enrichment P values were 
calculated using a one-sided Fisher’s exact test, followed by FDR-based 
correction. Only pathways with an FDR-corrected P < 0.05 were considered as 
significant and shown here; this P value is shown in the colour map. The GO terms 

are clustered by Lin’s semantic similarity for ease of comparison. In addition, we 
ran a REVIGO-like redundancy-reduction algorithm to only keep representative 
terms for this plot (Methods). Conversely, the Reactome and MetaCyc pathways 
are clustered according to the Jaccard distance between the OGs affected in 
different sets of genes. Pathways enriched in genes under selection in >1 taxa 
are indicated with asterisks. C. para., C. parapsilosis; C. ortho., C. orthopsilosis. 
Supplementary Table 2 contains all of the related enrichments.
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Fig. 5 | Genome-wide genotype–phenotype associations underlying 
resistance towards antifungal drugs. a, Drug-susceptibility data were available 
for a fraction of our strains (Supplementary Table 1), which motivated us to 
perform a convergence-based GWAS study to understand the genomic 
determinants of this phenotype. These plots show the distribution of the 
available drug-susceptibility data across the tree of each species for which we 
performed such a GWAS. We only considered strains with either strong 
susceptibility or strong resistance; we discarded those with intermediate 
susceptibility or unavailable data. We only performed a GWAS on these datasets 
because we could find ≥5 transitions from strong susceptibility to strong 
resistance or vice versa in the evolutionary history of these strains. The clades are 
colour coded (as in Fig. 1b), showing how each dataset covers the diversity of each 
species. Supplementary Table 1 includes all these data. b, Schematic view of the 
GWAS pipeline. (i) First, we defined the GWAS tests to be performed, which 
included one test for each variant and one test for different groups of collapsed 
variants (to take into account that different variants may drive resistance by 
altering the same gene, domain or pathway). (ii) We then tried to find groups (or 
single variants) where transitions in the variants were significantly associated 
with phenotype transitions. An example group, ‘gene X’, which has two variants 
(black stars) associated with changes in voriconazole resistance in C. glabrata is 
shown. In the tree the colours (equivalent to a) represent the resistance state of 
each node of (inferred with ASR). To measure the strength and significance of the 
association, we generated a two-by-two table with the number of nodes that have 

a transition in the resistance phenotype and/or a transition in any of the variants 
of the group (‘gene X’ in this case). In this example there are four nodes with both 
a transition in the phenotypes and in some variants. The strength of the 
association was approximated with the convergence statistic ε, and the 
significance was inferred with various P values for each group, such as P(χ2), P(4) 
or PFisher. For example, P(4) is the empiric probability of having ≥4 nodes with 
both variant and phenotype transitions by chance (Methods). (iii) Finally, we 
used information on known drug-resistance genes to choose a filtering strategy 
for each dataset (such as which P values to consider), resulting in the final set of 
high-confidence GWAS associations (hits). In addition, we kept only non-
redundant hits (see Methods and Supplementary Table 3). c, Visual 
representation of an example high-confidence GWAS hit—that is, variants in the 
gene PDR1 that are correlated to voriconazole resistance in C. glabrata. The tree 
represents the strains with available voriconazole-susceptibility information. At 
each node, the resistance phenotype (resistant, susceptible or unknown) and 
presence of different variants (all missense mutations) are indicated. In ancestral 
nodes, these phenotypes or variants were inferred with ASR. To illustrate relevant 
transitions, the size of the sphere indicates whether the node has a phenotype 
transition (so that the phenotype in the node is different from the parent 
phenotype); phenotype-transition nodes that also have a transition in the 
variants (genotype transition) are indicated. For clarity, only PDR1 variants that 
are correlated to resistance in some nodes are shown. In this case there are ten 
phenotype transitions, seven of which are also correlated to a transition in PDR1.
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to ‘core’ resistance mechanisms towards multiple drugs of the same 
species. We identified six such OGs in C. glabrata that were related 
to various azoles and micafungin resistance—that is, four adhesin 
family members (CAGL0J01727g, PWP4/AWP13, AWP4/AWP9 and 

EPA19/EPA11), the orthologue of Saccharomyces cerevisiae NET1 (puta-
tive chromatin-silencing ribosomal RNA regulator) and CAGL0K07502g 
(a protein with unknown function). The link between adhesins and 
resistance could be explained by their role in biofilm formation,  
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a known resistance mechanism67,68. In addition, the role of NET1 is con-
sistent with studies linking chromatin silencing with azole resistance in  
C. glabrata69 as well as with the observation that its deletion in S. cerevi-
siae increases sensitivity to some compounds70,71. Similarly, we found 
six ‘core’ OGs in C. auris: B9J08_005550 (with RNA-binding activity) 
related to fluconazole and voriconazole resistance, B9J08_004248 and 
B9J08_004896 (putative RNA-dependent DNA polymerases) related 
to amphotericin B and multiple azole resistance, B9J08_004249 and 
B9J08_005494 (putative zinc-binding transcription factors) associated 
with amphotericin B and fluconazole resistance, and the orthologue 
of S. cerevisiae MRPS35 (mitochondrial ribosomal protein) related to 
itraconazole and voriconazole resistance. These results suggest that 
different aspects of gene regulation (transcription and RNA life-cycle 
regulation) are key for multidrug resistance in C. auris. In addition, 
the role of MRPS35 is consistent with the observations that its dele-
tion decreases resistance to some compounds in S. cerevisiae71 and 
that mitochondrial regulation is linked to drug efflux in C. albicans72.

On another note, we found one OG related to fluconazole resist-
ance in both C. glabrata and C. auris affecting the orthologues of  
S. cerevisiae NRG1 and NRG2, respectively, both of which are transcrip-
tional repressors. These NRG1 and NRG2 convergent associations 
suggest that this is a drug-resistance mechanism that is conserved 
across species. This is consistent with the fact that both NRG1- and 
NRG2-null mutants impact azole resistance and biofilm formation in  
S. cerevisiae73,74. To validate these high-confidence hits, we investigated 
whether equivalent genotype–phenotype associations were detected 
in independent datasets. This was the case for most genes (18/22, 
82%) belonging to OGs with GWAS hits in more than one drug–species 
combination, further confirming the importance of these novel gene 
families (Supplementary Results and Extended Data Fig. 10). In sum-
mary, we detected several lesser-known gene families associated with 
resistance in multiple datasets, which illuminate core and conserved 
functions related to antifungal drug resistance. These results may guide 
future confirmatory experimental work, which is necessary and could 
provide information on the most important drivers as well as suggest 
relevant therapeutic targets.

Conclusion
Understanding human-associated adaptation in pathogens is a 
long-standing question because it underlies virulence, hospital trans-
mission and drug-resistance mechanisms. Our current knowledge is 
limited due to insufficient sampling, a lack of multispecies studies 
as well as an exclusive focus on SNPs and on specific genes. We have 
addressed these gaps in six major Candida species by analysing the 
publicly available genomes and phenotypes of approximately 2,000 
(mostly clinical) strains. Our collection is a valuable resource due to 
its unprecedented size, the common analysis framework in multiple 

species, the consideration of complex variants (SVs and CNVs) and the 
availability of phenotypes. This underscores the value of depositing 
genomic and clinical data in public repositories that can be mined to 
generate new knowledge.

First, we used the generated variants to find genes affected by 
recent potentially clinically relevant selection. We found hundreds of 
affected gene families and pathways, mostly species-specific, suggest-
ing highly variable, multifactorial adaptive mechanisms. In addition, 
we predicted novel conserved adaptive processes involving drug resist-
ance and cell-adhesion functions, which are interesting pan-fungal 
therapeutic targets. We next analysed the variants, genes and path-
ways associated with clinical resistance towards all major antifungal 
drugs in three Candida species. Beyond confirming the implication of 
known drivers of resistance, which validates our approach, our results 
identified potential novel players related to adhesion, biofilm forma-
tion and transcriptional regulation. These novel mechanisms involve 
genes underlying cross-resistance towards multiple drugs of the same 
species and also gene families driving resistance in multiple species. 
Beyond the general trends discussed here, our catalogue of selection 
signatures and drivers of drug resistance is valuable to validate gene 
functions inferred from non-clinical studies (such as drug-resistance 
genes predicted from in vitro evolution). Finally, our analyses reveal an 
important role of the generally neglected complex variants (CNV and 
SV) and suggest an unexpected involvement of (para)sexual recombi-
nation in the spread of resistance mechanisms.

In summary, we provide novel insights and valuable resources that 
improve our understanding of selection and drug resistance across 
major Candida pathogens. Our findings may guide future confirmatory 
experiments, which could improve therapeutic and diagnostic options.

Methods
Generation of the filtered variant-calling dataset for each 
Candida species
We used the NCBI SRA toolkit (v2.10.9; https://github.com/ncbi/
sra‑tools) to download all paired-end whole-genome re-sequencing 
datasets for the NCBI taxon identifiers75 related to each species  
(C. albicans, C. auris, C. glabrata, C. tropicalis, C. orthopsilosis and  
C. parapsilosis) from the NCBI SRA database76 (accessed 9 June 2020). 
For each sequencing run, we used fastQC (v0.11.9; https://www.bioin-
formatics.babraham.ac.uk/projects/fastqc) and trimmomatic (v0.38)77 
with default parameters to remove adaptors and trim the reads. Finally, 
we ran perSVade (v0.6)78 to align (with BWA MEM (v0.7.17); http://
bio-bwa.sourceforge.net/bwa.shtml) the trimmed reads to the ref-
erence genome (included in Supplementary Table 1) and calculate 
the coverage per window using mosdepth (v0.2.6)79. We filtered out 
low-quality runs with a read depth of <40× or <90% coverage of the 
reference. Note that a few of these runs could be redundant, as a given 

Fig. 6 | Hundreds of GWAS hits underlie known and potentially novel 
mechanisms of drug resistance. The heatmap (left) shows the number of 
high-confidence non-redundant (NR) GWAS hits (or groups) obtained for each 
dataset (columns) when using different variant grouping strategies (rows). To 
consider different ways of grouping variants, we performed one ‘grouped’ GWAS 
for different combinations of the variant type (SVs, CNVs, small variants or any 
combination thereof), mutation type (non-synonymous, non-synonymous 
non-truncating or truncating) and collapsing level (domains, genes or pathways 
(GO, Reactome or MetaCyc)). For example, in one of these GWAS we tested the 
genotype–phenotype association for each gene (type of collapsing, genes), 
considering truncating (type of mutation, truncating mutations) small variants 
and SVs (variant type, small variants and SVs). We thus ran a total of 113 GWAS 
analyses for each species and drug—one for the single variants (variant type, 
all variants; type of collapsing, none) and 112 for different combinations of 
collapsing modes. Each row in the heatmap corresponds to one of these GWAS 
analyses, restricted to those that yield some high-confidence hits. These 

grouping strategies yielded redundant results (e.g. a significant variant may drive 
a significant association in the genes affected by that variant) so that we only kept 
(and show here) the strongest most-specific association among sets of redundant 
hits. For example, if we had a gene that is significant when considering either 
small variants (with ε = 0.3) or small variants and SVs (with ε = 0.4), we would keep 
the hit that considers small variants and SVs, as it has the highest ε. Similarly, 
if there was a significant gene (with ε = 0.3) and a significant variant altering 
that gene (with ε = 0.3), we would keep the variant as it is more specific. This 
redundancy reduction ensures that the numbers of hits by different collapsing 
strategies are informative (that is, hits involving SVs around a gene will only 
appear here if they yield stronger associations than the hits that only consider 
small variants in the same gene). The small inset plot (right) summarizes the 
number of unique hits (for instance, if a gene is found in two datasets it will only 
count as one hit here) obtained when considering different grouping strategies, 
which provides information on the most important ones. In addition, the arrows 
point to hits involving known drug-resistance genes.
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strain may have been re-sequenced multiple times. Accordingly, we 
found that 2.64% of all strains (as annotated in the NCBI SRA; see Sup-
plementary Table 1) have multiple runs. However, we consider strain 
annotations to be impractical as unique identifiers of biological sam-
ples given that strain information can be missing or inaccurate in the 
NCBI SRA record. For instance, different clonal isolates from a given 
patient may have equal strain annotations, although these are clearly 
different biological samples. In addition, many strain names in the NCBI 
SRA are alphanumeric identifiers that do not correspond to standard 
strain definitions. Thus, we decided to use ‘sequencing runs’ as a proxy 
for isolates/strains and throughout the paper we use them indistinctly.

We next used the aligned reads to call variants using perSVade 
(v0.6)78, which calls and functionally annotates SNPs, small indels, 
CNVs and SVs. Structural variants are complex variants for which we 
could find the precise underlying rearrangements (such as tandem 
duplications, inversions or balanced translocations). Conversely, 
CNVs are variants generating large (>600 base pairs (bp)) duplications 
and deletions (inferred from changes in read depth) with unknown 
underlying rearrangements. Technically, CNVs are a type of SV but we 
differentiate them because the method used to infer them is different, 
and some CNV-like SVs (e.g. tandem duplications) may be detectable 
with the coverage-based method but not with the SV-detection method. 
By considering these two types of variants, we provide a comprehensive 
characterization of SVs. Note that any CNV that had an equivalent SV 
was not considered.

The small variant-calling pipeline integrates the results of three 
callers—that is, GATK Haplotype Caller (v4.1.2)80, freebayes (v1.3.1)81 
and BCFtools (v1.9; https://github.com/samtools/bcftools). The 
CNV-calling pipeline detects deletions and duplications from cov-
erage alterations using two algorithms—HMMcopy (v1.32.0)82 and 
AneuFinder (v1.18.0)83. The SV-calling pipeline finds rearrangements 
with GRIDSS (v2.9.2)84 (which uses split reads, discordantly paired reads 
and de novo assembly signatures) and summarizes them into actual 
SVs using CLOVE (v0.17)85. The called SVs are tandem duplications, 
deletions, inversions, translocations, copy–paste insertions, cut–paste 
insertions, inverted copy–paste insertions, inverted cut–paste inser-
tions, inverted translocations and unclassified breakpoints (Extended 
Data Fig. 1). In addition, perSVade automatically selects the optimal 
GRIDSS- and CLOVE-filtering parameters for each sample based on 
simulations of SVs, which is useful for Candida species (where SV call-
ers have not been tested extensively). PerSVade also integrates SVs and 
CNVs, which may be partially redundant, so that any CNV overlapping 
an equivalent SV would be discarded. Finally, this pipeline uses VEP 
(v100.2)86 to annotate the functional effect of each variant and Repeat-
Modeler (v2.0.1)87, followed by RepeatMasker (v4.0.9)88 to annotate 
which variants overlap repeats. Note that for the functional annotation, 
we used the general feature format (GFF) files corresponding to each 
genome (included in Supplementary Table 1), with the exception of  
C. tropicalis and C. parapsilosis (which lacked annotations of the mito-
chondrial DNA). For these two species, we generated the mitochondrial 
DNA annotations using AUGUSTUS (v3.2.3)89 with default parameters 
and ‘candida_albicans’ as the train species.

We ran perSVade with custom parameters adapted to either 
haploid (C. glabrata and C. auris) or diploid (C. albicans, C. tropicalis,  
C. parapsilosis and C. orthopsilosis) species. For small-variant calling, 
we used ‘–ploidy 1–run_ploidy2_ifHaploid’ for haploid species, which 
runs the calling in both haploid and diploid mode or ‘–ploidy 2’ for 
diploid species, and ‘–coverage 12’ to discard positions with a read 
depth of <12×. Note that we ran the variant calling in diploid mode 
for the haploid organisms to take into account that they may have 
heterozygous variants in duplicated regions. For CNV calling, we used ‘–
window_size_CNVcalling 300’ to call CNVs based on windows of 300 bp 
and ‘–min_CNVsize_coverageBased 600’ to discard CNVs <600 bp. For 
SV calling, we used ‘–min_chromosome_len 100000’ (to use only large 
chromosomes for SV simulations), ‘–simulation_ploidies auto’ (which 

results in parameter optimization based on haploid SVs for haploid 
species or heterozygous SVs for diploid species) and ‘–range_filter-
ing_benchmark theoretically_meaningful_NoFilterRepeats’ (to run 
parameter optimization without filtering out repetitive elements). In 
addition, we used a custom function (‘get_integrated_SV_CNV_df_sev-
eralSamples’ (v0.6)78) from the perSVade source code to integrate the 
CNVs and SVs from different samples in a way that equivalent variants 
get the same identifier. This is not a trivial task given that the algorithms 
used often lack single-bp resolution and thus the same variant in dif-
ferent samples may get slightly different coordinates. To solve this, the 
get_integrated_SV_CNV_df_severalSamples function from perSVade 
uses bedmap from the bedops suite (v2.4.39)90 to cluster variants from 
the same type that reciprocally overlap by >75% of their total length and 
where their breakpoints are <50 bp from each other. In addition, we 
ran perSVade with custom NCBI translation codes (https://www.ncbi.
nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi) to perform functional vari-
ant annotations. We set the genomic DNA code to one for C. glabrata 
(standard code) and 12 for C. albicans, C. tropicalis, C. parapsilosis,  
C. auris and C. orthopsilosis. We set the mitochondrial DNA code to 
four for C. albicans, C. tropicalis, C. parapsilosis and C. orthopsilosis, 
and three for C. auris and C. glabrata. This procedure yielded the raw 
variant calls and their corresponding functional annotations. We dis-
carded all runs where any of these steps (read trimming, alignment 
or variant calling) could not be performed due to file truncation or 
incompatible file formats.

To get the high-confidence variants, we applied extra filtering to 
discard artifacts. For small variants, we kept variants that passed the 
filters in at least two callers and where the fraction of reads covering 
the variant was ≥0.9 (for haploid configuration) or ≥0.25 (for dip-
loid configuration). For CNVs, we filtered variants based on both the 
predicted relative copy number (which in a diploid may be zero for a 
homozygous loss, 0.5 for a heterozygous loss, 1.5 for a trisomy and 
2.0 for a tetrasomy) and the relative coverage (measured as the ratio 
between the median coverage of the region under CNV and the median 
coverage across the whole genomic DNA). For deletions, we required 
copy number = 0 and relative coverage ≤ 0.1 for haploid species, and 
copy number ≤ 0.5 and relative coverage ≤ 0.6 for diploid species. For 
duplications, we required copy number ≥ 2.0 and relative coverage ≥ 1.7 
for haploid species, and CN ≥1 .5 and relative coverage ≥ 1.3 for diploid 
species. For SVs, we calculated the variant allele frequency (VAF; as in 
https://github.com/PapenfussLab/gridss/issues/234) for each break-
end forming each SV to discard variants with low VAF that may not 
be real haploid/diploid events. We kept SVs fulfilling two criteria: (1) 
they should have at least one breakend with VAF ≥ 0.8 for haploid spe-
cies or VAF ≥ 0.3 for diploid species and (2) all breakends should have 
VAF ≥ 0.2 for haploid species or VAF ≥ 0.1 for diploid species. These 
filters yielded the high-confidence variant calls used in this paper. Note 
that for haploid species, we used the small variants called in haploid 
configuration in all analyses described below, except for the GWAS 
analyses, where we also used the heterozygous small variants from 
duplicated regions. In addition, this strategy assumes that all strains 
have the canonical ploidy of the species. Although the assumption 
may not be necessarily accurate in all cases, ploidy switches are rarely 
observed in such haploid species91 and we have no accurate way to infer 
ploidy directly from the sequences.

Strain-tree generation
To reconstruct a phylogenetic tree for all strains of a given species, 
we used a different approach depending on the species ploidy. For 
haploid species, we generated a pseudo-genome sequence for each 
strain based on the reference genome but substituting the reference 
sequences according to filtered haploid SNPs. To avoid the biases intro-
duced by CNVs and indels, these pseudo-genomes only included posi-
tions matching the following criteria in all strains: (1) ≥12× coverage,  
(2) absence of indels and (3) absence of heterozygous SNPs. In addition, 
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we only considered variable positions. We used Biopython (v1.78)92 and 
bedmap to obtain the aligned pseudo-genomes, with 285,345 sites in 
C. auris and 311,174 sites in C. glabrata. We then obtained the unrooted 
tree, using IQ-TREE (v2.1.2)93, from these aligned pseudo-genomes 
using ‘-m TEST + ASC’ to use default automatic model selection and 
ascertainment bias correction (which is necessary to calculate mean-
ingful branch lengths). Next, we used midpoint rooting (that is, no 
out-group was assumed) to obtain the final tree, which has support 
values from 1,000 bootstraps. Note that the heterozygous SNP patterns 
(along the tree) in these haploids were visually inspected to pinpoint 
runs that may be mixed or contaminated strains (which are expected 
to have many heterozygous SNPs). Two such C. auris samples that had 
heterozygous SNPs with a VAF of approximately 35% were found and 
discarded from subsequent analyses.

It was not possible to use an analogous method for diploid spe-
cies due to the high heterozygosity in C. albicans28, C. tropicalis24 
and C. orthopsilosis36. Inspired by refs. 24,94, we implemented a 
tree-generation method to take into account both homozygous and 
heterozygous SNPs. We generated 100 pseudo-genome sequences for 
each strain based on the reference genome but substituted the refer-
ence sequences according to filtered SNPs (only those that had defined 
heterozygous or homozygous genotype calls). These pseudo-genomes 
only included positions matching the following criteria in all strains: 
(1) ≥12× coverage and (2) absence of indels. All 100 pseudo-genomes 
included all homozygous SNPs and a random selection of heterozygous 
SNPs (each heterozygous SNP with a probability of 0.5 to be included). 
We then obtained one unrooted tree for each of these 100 aligned 
pseudo-genomes (with only variable positions) with IQ-TREE using ‘-m 
GTR+F+ASC+G4’ (equivalent to the ‘GTRGAMMA’ model used previ-
ously24), required to have a consistent model and ascertainment bias 
correction. The pseudo-genomes had 319,439–320,188 sites for C. 
albicans, 765,044–766,422 sites for C. tropicalis, 11,627–11,827 sites for 
C. parapsilosis and 575,685–576,053 sites for C. orthopsilosis. We rooted 
all 100 trees with midpoint rooting and generated a final consensus 
tree with branch lengths using IQ-TREE (-con argument), followed by 
the consensus.edges function from phytools (v0.7_90)95. Note that the 
branch support for this consensus tree was derived from the number 
of re-sampled trees including a given branch. Supplementary Table 1 
includes all the used trees in Newick format. In addition, we provide 
the tree-generation pipeline as a stand-alone software package that 
can be useful (Code availability).

Clade definition
To define meaningful clades in each tree, we first identified poten-
tial ‘clade-qualifying’ nodes as those with support ≥ 95 and long 
subtending branches (above a ‘min_relative_branch_length’ thresh-
old). For a given min_relative_branch_length threshold, the clades 
would be clade-qualifying nodes where none of the children were 
also clade-qualifying nodes. We defined the ‘relative_branch_length’ 
for each node of each tree as the actual branch length normalized 
to the furthest distance between any two nodes. Thus, the min_rela-
tive_branch_length was the minimum relative_branch_length required 
for ‘clade-defining’ nodes. Note that the choice of a meaningful value 
for min_relative_branch_length was not trivial, and some values may 
leave out many strains without an assigned clade. To identify a rea-
sonable min_relative_branch_length for each tree, we tried a range of 
values (between 0.001 and 0.2) and calculated, for each value, the total 
number of clades and the fraction of samples assigned to some clade. 
The final min_relative_branch_length was defined as the value that 
maximized the number of samples with a clade and minimized the total 
number of clades. We were able to find such optimal values, resulting 
in 4–24 clades (depending on the species) and >90% of strains within 
some clade for all species (Supplementary Fig. 1a).

To evaluate our clade definition, we compared it with previous 
population genomics studies for C. albicans28, C. auris11, C. glabrata12, 

C. tropicalis24 and C. orthopsilosis36 (Fig. 1b). Most clades (21/21 in C. albi-
cans, 22/24 in C. glabrata, 4/5 in C. orthopsilosis, 2/4 in C. auris and 2/3 
in C. tropicalis) were determined to be new (the strains within the clade 
were not included in the previous study) or to have a one-to-one strain 
correspondence with the previous study. To verify the absence of arti-
factual clades, we manually inspected the inconsistencies (Supplemen-
tary Table 1). We found that our clades 15 and 8 from C. glabrata were 
grouped into clade 5 in ref. 12, but our larger dataset provides higher 
resolution supporting the split of this clade in two. This is consistent 
with previous reports suggesting that clade 5 from ref. 12 is polyphyl-
etic29. In addition, we found that one C. auris strain (SRR10852068) had 
been previously assigned to clade 3 (ref. 11) but it appears as clade 2 in 
our analysis (clade 1 in ref. 11), which suggests that there may have been 
a previous11 misclassification. This means that our clade definition in C. 
auris is fully consistent with ref. 11, except for this strain. Furthermore, 
we found that our tree topology in C. orthopsilosis is different around 
clade 4 (compared with ref. 36), resulting in some unclassified sam-
ples. Finally, we describe three highly divergent clades in C. tropicalis  
(Figs. 1b and 2a), whereas a previous study24 only assigned clades for 
one of them (our clade 3). This explains the inconsistency in our clade 
assignment. Together, these findings suggest that our clade assign-
ments are largely consistent with previous findings. Supplementary 
Table 1 lists all current and former clade assignments.

Generation of the strain metadata and definition of drug 
resistance
To obtain relevant metadata information (type of isolate and 
drug-susceptibility information) for all datasets with variant calls, we 
compiled two types of information. First, we used either the BioSa-
mpleParser package (https://github.com/angelolimeta/BioSam-
pleParser) or Entrez-Direct utilities (v13.9)96 (only if BioSampleParser 
failed) to get the BioSample annotations (http://www.ncbi.nlm.nih.
gov/biosample/) for each sequencing dataset. This provided the 
already accessible machine-ready metadata, including the strain iden-
tifiers. We then manually curated the literature associated with each 
of these strains to get the information about the strain type as well as 
the available drug-susceptibility information. From a total of 1,987 
samples, we found 1,705 clinical isolates, 30 environmental strains, 
49 genome-engineered strains, 201 strains from directed evolution 
experiments and 2 reference samples. We were able to find minimum 
inhibitory concentrations (MIC) or reports (statements in the litera-
ture) on susceptibility to amphotericin B (464 strains), beauvericin (five 
strains), 5-flucytosine (162 strains), terbinafine (one strain), micona-
zole (11 strains), ketoconazole (69 strains), isavuconazole (47 strains), 
voriconazole (250 strains), posaconazole (214 strains), itraconazole 
(151 strains), fluconazole (796 strains), micafungin (462 strains), caspo-
fungin (463 strains) and anidulafungin (141 strains). To define discrete 
susceptibility profiles for each strain (susceptibility, S; intermediate 
susceptibility, I; resistance, R), we relied on either breakpoints for MIC 
data or direct reports of R or S (when MIC data were not available). We 
defined the breakpoints (BPs) for MICs based on either EUCAST rec-
ommendations (v10.0; https://www.eucast.org/), previous work11,97,98 
or manually curated breakpoints based on our data (Supplementary  
Fig. 3). If MIC data were available, we defined each strain as R 
(MIC ≥ 2BP), S (MIC ≤ BP / 2) or I (BP / 2 < MIC < 2BP). Supplementary 
Table 1 includes all this metadata.

Diversity analysis
To measure the pairwise genetic distance (number of variants kb−1) 
across all pairs of isolates in a given species, we counted the filtered 
variants unique to each strain of the pair. To measure the number of 
genes with protein-altering variants between each pair of isolates, we 
calculated the number of proteins that were altered by these unique 
variants (according to the functional annotation of perSVade). For 
small variants, we considered either haploid mutations (for haploid 
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species) or both homozygous and heterozygous variants (for diploid 
species). For SVs and CNVs, we considered all variants.

We calculated the minor-allele frequency (MAF) of each haploid 
small variant, SV and CNV as MAF = (number of strains with variant)/
(number of strains). This may be an oversimplification for SVs and CNVs 
but we considered it appropriate given that we could not get precise 
genotype calls for such complex variants. For each diploid small vari-
ant, we calculated it as:

MAF = (
n

∑
i=1
GTi) /(numberof strains)

Where n is the number of strains with the variant, i refers to the strain 
(from one to n) and GTi is either 0.5 (for heterozygous calls) or 1.0 (for 
homozygous variants). Note that we only considered diploid small 
variants with a genotype call (homozygous or heterozygous) that 
was consistent across all algorithms that identified a given variant. 
In addition, only MAFs for variants with a MAF < 0.5 were considered. 
Extended Data Fig. 1b includes the MAF distributions.

Investigating mechanisms of SV formation
To understand the mechanisms of SV and CNV formation, we first 
investigated whether each variant overlaps RepeatMasker annota-
tions88. We extracted the regions under SVs and CNVs (duplicated, 
inverted, deleted or translocated) and ran RepeatMasker on them 
using standard libraries and species-specific RepeatModeler87 libraries. 
The module ‘infer_repeats’ of perSVade78 was used to run these pro-
grammes. If ≥10% of the altered region (duplicated, inverted, deleted 
or translocated) was covered by a RepeatMasker annotation, this was 
considered as the formation mechanism. These included insertions 
of transposable elements and expansions or contractions of transfer 
RNA, rRNA or simple repeats. We could not find such overlaps for most 
variants (Extended Data Fig. 2), which suggests that other mechanisms 
are essential for SV and CNV formation. For all of the remaining vari-
ants, we investigated the role of homologous regions in SV formation, 
which could be relevant37,38. We checked whether each variant had 
breakpoints with exact microhomology (2–10 bp are identical), inexact 
microhomology (2–10 bp are similar), exact homology (>10 bp are 
equal) or inexact homology (>10 bp are homologous) between the 
breakends. Variants with microhomology may have been generated by 
microhomology-mediated end joining (a double-strand-break-repair 
pathway), and variants with long homology could be attributable to 
meiotic non-allelic homologous recombination37. If none of these 
signatures were found, we classified the variant as ‘other’, which may 
be related to non-homologous end joining to repair double-strand 
breaks37. Note that we did not consider variants that were potentially 
biased by overlapping simple repeats and low-complexity regions for 
this analysis. For CNVs, such variants were those with simple repeats 
of low-complexity regions spanning ≥25% of the CNV (inferred with 
RepeatMasker), which may affect coverage calculations. For SVs, these 
were variants where at least one breakend overlapped any such repeti-
tive elements, inferred with bedmap. Extended Data Fig. 2 includes the 
results of this analysis.

Gene annotations
We obtained broad gene annotations (gene name, type of gene, loca-
tion, description and Saccharomyces cerevisiae orthologues) from the 
Candida Genome Database (CGD) chromosomal feature files99 (avail-
able in Supplementary Table 1). The gene length was calculated from the 
GFF annotations, considering untranslated regions, if available. To get 
protein functional annotations, we first obtained the protein sequences 
by retrieving spliced transcripts from each GFF using gffread (v0.12.1)100 
and then translating these transcripts using Biopython. We next ran 
Interproscan (v5.52-86.0)101 on these proteins with the arguments 
‘-appl Pfam,ProSitePatterns,ProSiteProfiles,PANTHER,TIGRFAM,SFLD, 

SUPERFAMILY,Gene3D,Hamap,Coils,SMART,CDD,PRINTS,PIRSR,Mo
biDBLite,PIRSF’ (to run several annotation modules), --pathways (to 
get MetaCyc and Reactome annotations) and -goterms (to get auto-
matic GO annotations). To obtain information on orthologous groups 
(hereafter referred to as ‘gene families’), we ran OrthoFinder (v2.5.2)102, 
with the arguments ‘-M dendroblast -S diamond’, on the proteomes of 
all Candida species. To get the set of GO annotations shown in all the 
tables, we mixed annotations from both Interproscan and CGD (see 
Supplementary Table 1).

We applied some extra steps to get the pathway annotations for 
GWAS and enrichment analyses (see below). To map each gene to 
the complete set of MetaCyc pathways, we took all annotations from 
Interproscan and added the parent pathways (using Pathway Tools 
(v25.0)103). MetaCyc pathways where the taxonomic range did not 
include Ascomycota were discarded. Similarly, to map each gene to 
the set of Reactome pathways, we took the Interproscan annotations 
and added the parents (using the files ReactomePathways.txt and 
ReactomePathwaysRelation.txt from https://reactome.org/download/
current/; accessed 4 October 2021). Given that Reactome has several 
mammalian-specific pathways, we only kept annotations under the 
following groups: ‘Metabolism of proteins’, ‘Autophagy’, ‘Transport of 
small molecules’, ‘Gene expression (Transcription)’, ‘Cellular responses 
to stimuli’, ‘Reproduction’, ‘Digestion and absorption’, ‘Signal trans-
duction’, ‘Extracellular matrix organization’, ‘DNA repair’, ‘Chromatin 
organization’, ‘Cell cycle’, ‘Metabolism’, ‘Organelle biogenesis and main-
tenance’, ‘DNA replication’, ‘Programmed cell death’, ‘Vesicle-mediated 
transport’, ‘Metabolism of RNA’, ‘Cell–cell communication’, ‘Protein 
localization’ and ‘DNA replication and repair’. In addition, we only 
considered pathways annotated for ‘Saccharomyces cerevisiae’ and 
‘Schizosaccharomyces pombe’. Finally, to map each gene to all GO terms, 
we used both annotations from CGD and Interproscan, and added all 
the parent terms (using GOATOOLS (v1.1.6)104 and the obo file from 
http://purl.obolibrary.org/obo/go/go-basic.obo; accessed 30 June 
2021). In addition, to ensure that the annotated terms are meaningful 
in each species, we only kept GO terms that were defined in some gene 
of the CGD-curated dataset (see Supplementary Table 1).

Measuring signatures of recent selection
The measurement of selection in such population genomic data is often 
achieved through the use of sweep detection- or πN/πS-based (similar to 
dN/dS but for population genomic data12,40) methods41. Candida species 
mostly propagate clonally, which suggests that a πN/πS-based method 
(where synonymous SNPs reflect near-neutral evolution and can be 
useful to correct biases in mutation rates across genes) is more suit-
able to detect signatures of selection. However, standard approaches 
were unfit for our question because we wanted to measure recent 
selection for various variant types (discussed below in more detail). 
Thus, to understand the signatures of recent positive selection, we 
developed a custom method to identify genes that recently acquired 
non-synonymous or functional variants in a highly recurrent manner 
(variants appearing often in different parts of the tree). The sections 
below explain this method in detail.

Obtaining recent variants. To only consider recent variants, we 
defined monophyletic clusters of (likely) clonally propagating strains 
with a recent common ancestor (they should be under nodes with 
support ≥ 95 where all leaf strains have ≤1 SNP kb−1 to each other). The 
pairwise SNP kb−1 values were calculated using the approach described 
in the ‘Diversity analysis’ section; however, positions with <12× cover-
age in any strain were discarded (using mosdepth and bedmap). This 
1 SNP kb−1 threshold was not trivial to set, as a high threshold may group 
very divergent strains together, and a low threshold may leave many 
strains without a cluster and would thus not be considered by our 
analysis. We tested this trade-off for several thresholds and found that 
1 SNP kb−1 was a reasonable value, where most strains were classified 

http://www.nature.com/naturemicrobiology
https://reactome.org/download/current/
https://reactome.org/download/current/
http://purl.obolibrary.org/obo/go/go-basic.obo


Nature Microbiology | Volume 9 | January 2024 | 284–307 297

Analysis https://doi.org/10.1038/s41564-023-01547-z

into some cluster (98% in C. glabrata, 99% in C. auris, 78% in C. tropicalis, 
59% in C. albicans, 100% in C. parapsilosis and 36% in C. orthopsilosis; 
Supplementary Fig. 1b,c). Note that the large fraction of unassigned  
C. orthopsilosis samples (64%) may limit our power to detect selection 
in this species. Next, we then ran ASR on all variants to define those 
that appeared after the diversification of each clonal cluster. For this, 
we ran Pastml (v1.9.34)105 with ‘–prediction_method ALL’ (to use the six 
available ASR methods) on each variant independently using the strain 
tree generated as described in the ‘Strain-tree generation’ section. To 
avoid having branches with a length of zero, we added a pseudocount 
to each branch length (10% of the shortest leaf with a non-zero branch 
length) for the ASR using ete3 (v3.1.2)106. Variants were considered 
as ‘recent’ in a given strain if they were not predicted to be present in 
the common ancestor of the clonal cluster by any of the ASR methods 
implemented in Pastml. Loss-of-heterozygosity events were not spe-
cifically considered.

Defining functional types of variants. To measure selection by dif-
ferent variant types, we grouped these recent SNPs, indels, CNVs and 
SVs into functionally equivalent categories according to the effects 
on coding regions (taken from the ‘Consequence’ field of perSVade). 
Non-synonymous SNPs (nsyn_SNPs) were SNPs with ‘stop_lost’ or ‘mis-
sense_variant’ consequences. Synonymous SNPs (syn_SNPs) were SNPs 
with ‘synonymous_variant’ or ‘stop_retained_variant’ consequences. 
In-frame indels (if_INDELs) were indels with ‘start_retained_variant’, 
‘inframe_deletion’ or ‘inframe_insertion’ consequences. Duplications 
(DUPs) were SVs or CNVs with ‘transcript_amplification’ consequence. 
Deletions (DELs) were truncating small variants (with ‘stop_gained’, 
‘protein_altering_variant’, ‘frameshift_variant’, ‘start_lost’ or ‘coding_
sequence_variant’ consequences), gene-deleting SVs or CNVs (with 
‘transcript_ablation’ consequence) or transcript-breaking SVs (with 
frameshift_variant, inframe_deletion, start_retained_variant, inframe_
insertion, start_lost, stop_lost, coding_sequence_variant, protein_alter-
ing_variant, stop_gained, ‘5_prime_UTR_variant’, ‘3_prime_UTR_variant’, 
‘splice_region_variant’ or ‘intron_variant’ consequences). Our selection 
detection method identified genes with either an excess of recurrent 
nsyn_SNPs (using syn_SNPs to correct for neutral evolution) or with 
particularly high numbers of recurrent if_INDELs, DUPs and DELs (see 
below). We thus only considered protein-coding genes with no pseu-
dogene annotation (according to the chromosomal feature files from 
CGD; ‘Gene annotations’ section). In addition, we discarded all vari-
ants that were potentially biased by overlapping simple repeats and 
low-complexity regions for this analysis. For CNVs, these variants were 
those with simple repeats of low-complexity regions spanning ≥25% 
of the CNV (inferred using RepeatMasker), which may affect coverage 
calculations. For SVs and small variants, these were variants where 
some part of the variant overlapped any such repetitive elements, as 
inferred with bedmap.

Finding genes under selection by non-synonymous SNPs. To find 
genes under selection by non-synonymous SNPs, we implemented 
a selection detection method inspired by the πN/πS (ratio between 
non-synonymous (πN) and synonymous (πS) diversity) approach, where 
synonymous SNPs reflect neutral evolution and can be useful to correct 
biases in mutation rates across genes. Given our focus on the few recent 
variants that appeared within clusters of clonal strains, we considered 
that we had insufficient mutations to infer selection based only on raw 
πN/πS values, as is commonly done12,29. As synonymous SNPs are the 
least common, strains with some adaptive non-synonymous variants 
(πN > 0) may have πS = 0, which does not allow for πN/πS calculations. In 
addition, even in strains with some synonymous SNP, the low variant 
counts would probably result in inaccurate πN/πS calculations due to 
single variants dramatically changing the ratio. Thus, we reasoned that 
we lacked resolution to detect selection for a given gene in each strain, 
as previously done when considering all (not only recent) variants29. 

We instead devised a strategy to measure average per-gene selection 
pressures. Given the inaccurate nature of such πN/πS values, we consid-
ered that simply measuring the average πN/πS for a given gene across all 
strains (as done previously12) may not be appropriate for our purposes. 
These constraints justified the need for a novel method that was more 
suited to detect recent selection.

To solve this, we use alternative metrics and an empirical statistical 
method to pinpoint genes with an excess of recurrent non-synonymous 
SNPs. To avoid problems with solely relying on πN/πS calculations, but 
still capture average selective pressures, we defined genes with πN > πS 
in a high number of strains and clusters (higher than expected under 
an empiric model of neutral evolution) as genes under recent selection 
(Extended Data Fig. 3). For each gene, we define ‘strains under selection’ 
as those with a πN > πS, which suggests accelerated evolution and poten-
tially positive selection35. We then calculated the selection score (S) for 
each gene as the harmonic mean between the fraction of strains under 
selection (πN > πS) and the fraction of clusters that have a strain under 
selection. We used the harmonic mean (h(x, y) = (2 ⋅ x ⋅ y)/(x + y)) because 
it is a value between zero and it is only high if both values are high. This 
ensures that genes with high S values have πN > πS in several strains and 
clusters, suggesting that they bear the strongest signatures of recent 
selection. In addition, by considering both the number of strains and 
the number of divergent clusters, we corrected for possible stochastic 
errors derived from biased sampling of some clades and/or recent 
clonal population expansions could be unlinked to selection. We cal-
culated diversity (πN or πS) for each gene in each sample as:

Diversity(π) = nrecent,gene/(c ⋅ f)

where nrecent,gene is the number of recent SNPs (either non-synonymous 
for πN or synonymous for πS), c the length of the coding sequence (CDS) 
that does not overlap repeats or low-complexity regions and f is either 
0.75 for πN or 0.25 for πS. Note that f is a normalization parameter to 
take into account that synonymous variants are less likely to happen 
and we set the f as done previously12. We used the bedtools (v2.30.0)107 
‘subtract’ and ‘merge’ modules to calculate the CDS lengths. Note that 
we considered that diploids have two copies of each gene (c is twice the 
annotated CDS length), so that heterozygous SNPs add one to nrecent,gene 
and homozygous SNPs add two.

One of the biases for the S calculation is that, given that we con-
sidered only recent variants, the πN and πS values could be low or zero 
for some genes, leading to high S values due to stochastic biases from 
low variant counts. To provide a statistical framework and find genes 
with significantly high S values, we calculated the empiric probability 
(P) that a gene has a S greater than or equal to that observed under a 
neutral model of evolution. To do this, we obtained a distribution of S 
values generated randomly (on the same strains used to calculate the 
real S) by a model considering the neutral mutation rate of each gene. 
We used synonymous SNPs as a proxy for such a neutral mutation rate. 
To calculate a synonymous SNP mutation rate (rS), we used information 
from all the synonymous SNPs (not only recent variants) present in each 
strain, so that rS is defined (for each gene) as:

rS = mean (nall,gene/nall,all)

This reflects a mean mutation rate across strains, where nall,gene is the 
number of all synonymous SNPs in the gene for a given strain and nall,all 
is the number of all synonymous SNPs in any gene. For calculating rS  
in each gene, we only used strains with nall,gene ≥1 and nall,all ≥10 (good 
strains), and we filtered out genes with <3 good strains. We assume that 
the synonymous mutation rate per gene is similar across all strains and 
between recent and ancestral variants (those that appeared before the 
cluster diversification). Under these assumptions, rS represents the 
probability of having a synonymous SNP in the gene for each synony-
mous SNP in any gene. In addition, assuming that non-synonymous SNPs 
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are three times more frequent than synonymous SNPs, we defined a rN = 3 ⋅ rS, 
which represents (under neutral evolution) the probability of having  
a non-synonymous SNP in the gene for each synonymous SNP in any gene.

We used these probabilities to generate random numbers of recent 
SNPs (expected by neutral evolution) from a binomial distribution 
where nrecent,all (for a given strain, the total number of recent SNPs in any 
gene) is the ‘number of tries’ and r is the ‘probability of SNP for each 
try’. For each gene and 10,000 samples we generated, in each strain:

randomneutral diversity (πR,i) = binomial(nrecent,all, r)/(c ⋅ f)

where i reflects the sample index (from 1 to 10,000), r is rN for 
non-synonymous random neutral diversity (πN,R,i) or rS for synonymous 
random neutral diversity (πS,R,i), c is the length of the CDS that does not 
overlap repeats or low-complexity regions and f is either 0.75 for πN,R,i 
or 0.25 for πS,R,i. We then calculated, for each gene and each sample, 
a random neutral selection score SR,i as the harmonic mean between 
the fraction of strains under ‘selection’ (πN,R,i > πS,R,i) and the fraction 
of clusters that have a strain under ‘selection’. We calculated the final 
empirical probability P(S), which indicates the likelihood of observing 
a given S under neutral evolution, as:

P(S) = (
10,000
∑
i=1

1 if (SR,i ≥ S)) /10,000

To validate this neutral model, we reasoned that the observed 
πS values (considering recent variants) should fall within the neutral 
distribution of πS,R,i. We thus calculated, for each strain, whether the 
observed πS is extreme in the neutral distribution (>95% of samples with 
πS,R,i > πS or >95% of samples with πS,R,i < πS). We found that most strains 
in the majority of genes have non-extreme πS values (Extended Data  
Fig. 3c), suggesting that the null model is generally reasonable. To 
discard possible biases, we filtered out genes where ≥10% of strains had 
such extreme πS values. In addition, to discard genes with low variabil-
ity, we only considered genes with πN > πS in ≥2 clusters and ≥3 strains.

Finally, genes with convergent signs of recent positive selection 
by non-synonymous SNPs were defined as those with an FDR-corrected 
P(S) < 0.05.

Finding genes under selection in-frame indels, duplications and 
deletions. To find genes where in-frame indels, duplications and dele-
tions are selected, we implemented a different approach given that the 
concept of synonymity does not apply here. For each gene and variant 
type (in-frame indels, duplications and deletions), we calculated the S 
score as the harmonic mean between the fraction of strains that have 
a recent variant and the fraction of clusters that have a strain with a 
variant. Genes with high S values are likely to be those with the most 
frequent recurrent variants, suggesting selection on them. To discard 
genes with low variability, we only considered genes with recent variants 
in ≥2 clusters and ≥3 strains. Finally, we defined genes under selection by 
these variants as those with an S above the 90th percentile of considered 
genes (Extended Data Fig. 4b). One limitation of this approach is that 
recurrent variant acquisition could be sometimes unrelated to selection, 
given that some genomic regions may have higher mutation rates for 
these types of variants. However, given our focus on functional variants 
we consider it a valid proxy to identify genes potentially under recent 
selection. In addition, an observation of an excess of recurrent deletions 
(in deletion genes) may reflect relaxation of purifying selection rather 
than positive selection. Nevertheless, we consider that deletion genes 
inform about the process of recent adaptation in Candida pathogens 
and thus included them in our analyses.

Strain filtering. We filtered out some strains to get meaningful S score 
calculations. To ensure that the inferred genes may be under clini-
cally relevant selective processes (like adaptation to the host, hospital 

environments or antifungal drugs), we only considered clinical isolates. 
To avoid biases derived from low coverage and pseudogenization, we 
filtered out some strains for each gene. For non-synonymous SNPs and 
in-frame indels, we wanted to discard strains where the gene may be 
broken, so that we required the following criteria to accept strains: (1) 
≥24× median coverage, (2) ≥95% of the gene is covered and (3) absence 
of truncating small variants or transcript-breaking SVs or CNVs (defined 
earlier). This ensured that the definition of ‘excess of nsyn_SNPs and/or 
if_INDELs’ is only based on isolates where the gene was complete and 
with proper coverage (also with no deletion mutations). For deletions 
and duplications, we wanted to consider strains where the cluster’s 
ancestor had the intact gene, so that we required the absence of truncat-
ing small variants or transcript-breaking SVs or CNVs in the ancestor (by 
all ASR methods used here). In addition, to ensure that all strains used 
had some degree of divergence to measure the S, we only considered 
strains that acquired at least one synonymous SNP in any gene after 
the cluster diversification.

The list of genes under positive selection by different variant 
types is in Supplementary Table 2, and Fig. 3a includes a cartoon that 
explains how selection was calculated. Note that Supplementary Table 2 
includes both the genes under selection as well as the S selection scores 
and P values for all genes in which S could be calculated.

Validation of the clinical relevance of the recent selection signa-
tures. To validate that these selection signatures often reflect clinical 
adaptation, we checked the overlap between genes with recurrent 
mutations across clonal serial isolates and those under recent selec-
tion (Supplementary Results). We first mined the literature associ-
ated with our dataset to pinpoint pairs of serial clinical isolates from 
the same patient (Supplementary Table 1). To discard redundancies 
and ensure that the compared strains were truly serial, we only kept 
one run for each time point in each patient (the one with the highest 
average coverage). For each pair of serial isolates, we then identified 
non-synonymous SNPs, in-frame indels, duplications and deletions 
(defined as described earlier) that appeared in the latter isolate and 
we only considered pairs of isolates with <1 new SNP kb−1 for further 
analysis. In addition, for a given gene, we only considered pairs of 
isolates that met a quality control criteria matching the strain filter-
ing used in the recent selection analysis (‘Strain filtering’ section). For 
instance, for non-synonymous SNPs and in-frame indels mutations, we 
only considered pairs where both isolates had (1) ≥24× median cover-
age, (2) ≥95% of the gene covered and (3) absence of truncating small 
variants or transcript-breaking SVs or CNVs. Similarly, for deletion and 
duplication variants, we only considered pairs where the first isolate 
had the gene meeting these three criteria. Finally, we identified ‘genes 
with signs of selection’ in these serial isolates as those that had a new 
variant in at least two pairs.

To test whether there was a significant overlap between these 
genes and those under recent selection (according to the approach 
defined in Fig. 3 and in the earlier subsections of ‘Measuring signatures 
of recent selection’), we considered, for each species and type of vari-
ant, whether each gene (out of all protein-coding genes) belongs to any 
of the following categories:

We used statsmodels (v0.11.1) to perform a one-sided Fisher’s exact 
test (where the null hypothesis is that there is no positive association 
between these two sets of genes) for each of these tables. We consid-
ered that if P < 0.05 was obtained for this test, it reflects significant 

Gene under recent 
selection

Yes No

Gene recurrently mutated 
in serial isolates

Yes w y

No x z
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enrichment of clinical selection signatures in the genes under recent 
selection defined here.

Calculating the significance of the overlaps between 
orthologous groups
We used an empirical approach to calculate the significance of the 
overlap between OGs with genes under selection between either pairs 
of species or pairs of variant types of a given species (Fig. 3 and Sup-
plementary Results). We tried to answer the following question: if we 
observe O overlapping OGs between two sets of n,m genes (i.e. n genes 
under selection in C. glabrata and m genes under selection in C. auris), 
what is the empirical probability (P(O)) of having an overlap ≥O when 
randomly sampling genes? To answer this question for each pair of 
n,m gene sets (to compare), we generated 10,000 sets of randomly 
sampled ni,mi genes. For each pair of random gene sets, we obtained the 
corresponding OGs and calculated the number of overlapping groups 
Oi. We then calculated P(O) as:

P(O) = (
10,000
∑
i=1

1 if (Oi ≥ O)) /10,000

For example, there are 25 genes (n = 25) under selection by dele-
tions (from 21 OGs) and 92 genes (m = 92) under selection by SNPs (from 
90 OGs) in C. glabrata (Fig. 3b and Supplementary Table 2). There are 
six OGs with genes under selection by both SNPs and deletions (O = 6), 
and the probability P(6) of having ≥6 overlapping OGs when taking 25 
and 92 random genes is 0.0001. We consider this overlap significant 
because P < 0.05.

Functional enrichment of genes under recent selection
To get the domains and pathways enriched in genes under selection, 
we ran a Fisher’s exact test on each gene set (selected in each species, 
by each variant type) for all relevant (described earlier) GO terms, 
Reactome, MetaCyc pathways and Interproscan annotations (a proxy 
for domains). We defined enriched groups (pathways or domains) as 
those with raw P < 0.05, FDR-corrected P < 0.05 and odds ratio ≥ 2. 
Note that we ran the FDR correction independently for the following 
sets of groupings: domains, Reactome, MetaCyc pathways, GO bio-
logical process, GO molecular function and GO cellular component 
terms. We used statsmodels (v0.11.1)108 to perform the Fisher’s test and 
FDR correction. Supplementary Table 2 includes the results of these 
enrichments. For all pathway types (MetaCyc, Reactome and GO), we 
discarded very general annotations (they are in 25% of genes).

To visualize the enriched groups across different species and vari-
ant types (Fig. 4 and Supplementary Fig. 2), we performed some cluster-
ing of the groups for easier interpretation. For domains, Reactome and 
MetaCyc pathways, we mapped each gene to the OGs and hierarchically 
clustered the groups (see domains in Supplementary Fig. 2) according 
to the Jaccard distance between OG sets in different species.

To visualize only a subset of representative GO terms (out of signifi-
cant terms in all species; Fig. 4), we performed a redundancy-reduction 
step inspired by the REVIGO algorithm109. To define these representa-
tives, we iterated through all pairs of terms with a Lin semantic simi-
larity104 of ≥0.5 (pairs sorted by descending similarity). For each pair 
of terms, we defined a ‘rejected’ (non-representative) term following 
a hierarchical algorithm. If one term was very general (the median 
percentage of genes with that term (across species) was ≥5%) and the 
other was not, we rejected the general term. Alternatively, if the terms 
had clearly different P values (the median P across species of one term 
was less than half of the median P of the other,) we rejected the term 
with the highest P. Alternatively, if one term was a parent of the other, 
we rejected the child unless both terms were similar (the Jaccard index 
between the children of both terms was ≥0.75). If none of these condi-
tions were met, we rejected the second term after numeric sorting 
of the GO identifiers. At the end we defined ‘representative terms’ as 

those that were not rejected in any pairwise comparisons. For each 
non-representative term, we assigned the representative term as the 
closest representative term (in terms of Lin’s semantic similarity). The 
output of this process is shown in Fig. 4, where each row is one repre-
sentative term (hierarchically clustered by semantic similarity) and the 
P value is the lowest across all significant terms (in each species-type 
variant) mapped to that representative. This visualization ensures 
that similar significant GO terms appear in the same row, improving 
the interpretation of the shared functions under selection in different 
species and types of variant. Note that the key change from the original 
REVIGO is that our algorithm can select representatives across sets of 
GO terms from different species.

Convergence-based GWAS
To find the variants underlying resistance, we performed a 
convergence-based GWAS. Briefly, we used ASR on each variant and 
the drug-resistance phenotype to find nodes of the strain tree with 
variant and/or phenotype transitions (Fig. 5a). Nodes with variant 
or phenotype transitions are those that acquired or lost the variant 
or resistance phenotype when compared with the parent node. We 
identified variants whose transition is statistically correlated with the 
transition in the drug-resistance phenotype. The following sections 
describe in detail how we ran this analysis.

Selecting strains and building a tree for each species and drug. 
To maximize our power to detect variant–phenotype associations, 
we treated drug resistance as a dichotomous trait and only analysed 
strains with either strong resistance (R strains) or strong susceptibility 
(S strains; ‘Generation of the strain metadata and definition of drug 
resistance’ section and Supplementary Fig. 3), discarding intermedi-
ate phenotypes. In addition, to make sure that the associations are 
clinically relevant, we only considered clinical isolates. We only ran 
the GWAS pipeline for drugs with ≥5 R and S clinical strains in a given 
species, which we could find for C. albicans, C. glabrata and C. auris. 
Note that although we could find ≥5 R and S strains for C. tropicalis–
caspofungin, we decided to not perform a GWAS on this dataset due 
to potential technical biases. The resistance breakpoint for this drug 
was based on calculating the MIC at 24 h in a liquid-based assay with 
multiple concentrations97. However, the susceptibility data come from 
growth after 48 h in solid plates in only three concentrations24. Thus, 
although the susceptibility data may be interesting for other purposes, 
we considered that in this case the S/R discretization may not be accu-
rate and thus did not perform a GWAS for C. tropicalis–caspofungin. 
Further experimental and sequencing efforts are needed to increase 
available data and investigate the determinants of clinical antifungal 
resistance in C. tropicalis, C. orthopsilosis and C. parapsilosis.

To have a balanced set of R/S isolates and reduce redundancy, we 
first pruned the strain tree to keep only R/S strains and then selected 
three representative isolates for each monophyletic node (where 
all strains are either R or S). To select these representatives, we per-
formed a multidimensional scaling representation of all strains within 
a monophyletic node based on pairwise branch distances using sklearn 
(v0.24.2)110 and chose the three strains that are closest to uniformly 
spaced along the first axis of the multidimensional scaling. This strat-
egy ensured that the representative strains included the highest diver-
sity possible of each monophyletic node. We then built one tree for each 
species–drug combination considering only the representative R or S 
samples using the same pipeline as described in the ‘Strain-tree genera-
tion’ section. This tree was used to do the convergence-based GWAS.

Defining groups of variants for collapsed GWAS running. To define 
a set of variants for GWAS, we took all the filtered SNPs, indels, SVs and 
CNVs found in each sample. In addition, to take into account the role of 
aneuploidies (whole chromosome losses or deletions) in drug resist-
ance, we defined aneuploid chromosomes as additional variants for 
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GWAS testing. To identify aneuploidies, we used bedmap to find chro-
mosomal windows (5,000 bp each) under duplication (if the median 
copy number based on called CNVs (copy number) was ≥1.8) or dele-
tion (if the copy number was ≤0.2). Chromosomes that had ≥50% of 
windows under deletion or duplication were considered aneuploid. 
For small variants, we used a different set of variants depending on 
the ploidy of each species. For diploids, we kept both homozygous and 
heterozygous calls. For haploids, we kept all haploid variants and the 
diploid heterozygous variants from duplicated regions (positions with 
a copy number of ≥2 according to perSVade’s outputs).

To consider that different variants may drive similar resistance 
by altering the same genomic feature, we wanted to collapse vari-
ants into groups. This allowed us to test the association between the 
transition in any variant of a group and the phenotype transition. We 
collapsed variants taking into account the following: (1) the type of 
variant (‘all variants’, ‘small variants’, ‘CNVs’, ‘SVs’, ‘SVs and CNVs’, ‘small 
variants and SVs’ or ‘small variants and CNVs’), (2) the type of mutation 
(‘all mutations’, ‘non-synonymous’, ‘truncating’ or ‘non-synonymous 
that are not truncating’) and (3) the type of collapsing (at the level of 
‘domains’, ‘genes’, ‘Reactome’, ‘GO’ or ‘MetaCyc’). We ran one GWAS 
for each combination of ‘variant type’, ‘type of mutation’ and ‘type of 
collapsing’, with the exception of domain and pathway-level collaps-
ing, where we only considered types of mutations that were either 
non-synonymous, truncating or non-synonymous that are not truncat-
ing. Note that for the domain and pathway-level collapsing, we only 
considered protein-coding genes because these are the ones that we 
could map to such functional annotations. Finally, we ran a total of 113 
GWAS analyses for each species and drug: one for the non-collapsed 
variants (where we tested each variant individually) and 112 for each 
combination of collapsing modes. For example, one of these GWAS 
analyses involved collapsing truncating SVs and small variants into 
genes (type of variant, small variants and SVs; type of mutation, trun-
cating; and type of collapsing, genes), testing whether the truncation 
of each gene by small variants or SVs was correlated to the resistance. 
To avoid redundancy with the single-variant uncollapsed GWAS runs, 
we only considered groups with ≥2 variants.

To define this type of mutation, we used the perSVade functional 
annotations of each variant in each gene. Truncating variants were 
defined as those that had at least one of the following consequences 
on each gene: ‘stop_gained’, ‘protein_altering_variant’, ‘frameshift_vari-
ant’, ‘start_lost’, ‘coding_sequence_variant_BND’, ‘intron_variant_BND’, 
‘non_coding_transcript_exon_variant_BND’, ‘transcript_ablation’, 
‘non_coding_transcript_variant_BND’ and ‘coding_sequence_variant’. 
Note that 'BND' refers to 'break-end', so that consequences ending 
with '_BND' imply that there is a rearrangement overlapping certaing 
gene regions (i.e. introns or coding sequences). Non-synonymous 
variants were defined as those that had at least one of the following 
consequences on each gene: stop_gained, protein_altering_vari-
ant, frameshift_variant, start_lost, coding_sequence_variant_BND, 
intron_variant_BND, non_coding_transcript_exon_variant_BND, tran-
script_ablation, non_coding_transcript_variant_BND, ‘inframe_inser-
tion’, coding_sequence_variant, ‘missense_variant’, inframe_deletion, 
stop_lost and transcript_amplification. Finally, variants wer defined as 
non-synonymous that are not truncating if they had non-synonymous 
consequences but no truncating consequence in a given gene.

To define the type of collapsing, we considered the gene, domain 
and pathway annotations as described in the section ‘Gene annotations’. 
For domain collapsing, we grouped variants overlapping each Interpro-
scan annotation and also each window of 10, 25, 50 or 100 amino acids 
from all proteins. A variant was considered to have altered a domain 
if it overlapped it by at least 1 bp according to bedmap’s output. For 
example, we grouped all variants affecting a given domain from a gene 
and tested whether the transition in any of these variants was correlated 
to the phenotype transition. For gene collapsing, we grouped variants 
according to the consequences on genes annotated in the perSVade 

outputs. We thus tested whether the transition in any variant from a 
given gene correlated with the phenotype transition. Finally, for path-
way collapsing, we extended the gene collapsing to the GO, Reactome 
and MetaCyc annotations. To avoid having variant groupings that were 
too general, we discarded pathways involving ≥5% of all genes in each 
species. For example, we grouped all variants affecting any gene from 
a given pathway together and tested whether the transition in any of 
these variants correlated with the phenotype transition.

Running the GWAS analysis. To measure the association of each 
group of variants (or single variants without grouping) to the resistance 
phenotype to each drug in each species, we used a custom pipeline 
inspired by the hogwash synchronous algorithm58. For simplicity, the 
paragraphs below mention ‘groups’ to indicate both groups of variants 
(that is, the ones that belong to a gene) or single variants.

One of the challenges of this analysis was that there are no studies 
in Candida species using similar convergence-based GWAS methods, 
suggesting that previous methods (designed for bacteria, like hog-
wash) may not be directly transferable. For example, hogwash used 
a maximum likelihood (ML) method to run ASR, but using maximum 
parsimony (MP) could be more accurate in some of our datasets. To 
address this, we ran the analysis using different parameters, changing 
the ASR methods, the branch-support thresholds and the methods to 
calculate empirical P values (see below). This allowed us to define the 
optimal parameters for our datasets, as described in the section ‘Filter-
ing GWAS results’. The following paragraphs describe how we measured 
the associations by different parameter combinations.

The first step to run convergence-based GWAS was to infer ances-
tral states for all variants and resistance phenotypes. For this, we used 
the same ASR pipeline as described in the ‘Obtaining recent variants’ 
section but using the strain tree generated for each drug and species. 
This yielded, for different ASR methods, a state of one (presence of 
the variant or phenotype in the node), zero (absence of the variant 
or phenotype) or not available (NA; unknown state due to uncertain 
ASR results) in each node. To test the effect of different ASR methods 
(implemented in Pastml105), we considered the results from the mar-
ginal posterior probabilities approximation (MPPA) ML method, the 
DOWNPASS MP method and the consensus between the ML and MP 
methods. We defined the ML and MP consensus state as one (if both 
ML and MP were one, ML was one and MP was NA or ML was NA and MP 
was one), zero (if both ML and MP were zero, ML was zero and MP was 
NA or ML was NA and MP was zero) or NA if none of these conditions 
were met. In addition, to discard lowly supported branches, we set all 
nodes with a branch support below a ‘min_branch_support’ threshold 
(either 50 and 70) to NA states. This means that for each group, we ran 
six different association measurements using the ML, MP or ML and 
MP ASR methods and a min_branch_support of 50 or 70. Note that 
loss-of-heterozygosity events are not specifically considered.

To measure the association of each group to the resistance we 
identified the following types of nodes:

•	 Genotype transition nodes, where at least one variant has a state 
of one in the node and a state of zero in the parent (or vice versa).

•	 Genotype no-transition nodes, where all the variants have the same 
state (zero or one) in the parent and the node.

•	 Phenotype-transition nodes, where the phenotype has a state of 
one in the node and a state of zero in the parent (or vice versa).

•	 Phenotype no-transition nodes, where the phenotype has the same 
state (zero or one) in the parent and the node.

Note that many nodes were not assigned to any of these types due 
to low support or uncertain ASR results (which generated NA states). We 
only ran the analysis on nodes assigned to one of these types for both 
genotypes and phenotypes. In addition, to avoid biases from consid-
ering nodes with long branches, we discarded branches longer than 
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25% of the sum of all branch lengths in the tree (similar to hogwash’s 
approach). To calculate the association of genotype and phenotype, 
we considered the following two-by-two table indicating the number 
of nodes belonging to each type:

For example, nGt,Pt indicates the number of nodes that are both 
genotype transition and phenotype-transition nodes. To measure the 
strength of the association for each group, we considered the epsilon 
statistic (as defined in hogwash):

ε = 2 ⋅ nGt,Pt/ (nGt + nPt)

This is a value between zero and one summarizing how often the 
transition in the phenotype is explained by a transition in the genotype 
as well as how often the transition in the genotype underlies a transi-
tion in the genotype. If ε = 1, the association is complete, meaning that 
there cannot be a genotype transition without a phenotype change 
and vice versa.

To measure the statistical significance of the association, we 
calculated the probability (P; either parametric or empirical) of hav-
ing an association as strong (or stronger) as that observed by chance. 
To obtain parametric P values, we used scipy.stats (v1.5.2)111 to calcu-
late the PFisher of each tested group. To infer empiric P values, we 
considered either nGt,Pt or the χ2 values of the two-by-two table (cal-
culated using scipy.stats) as test statistics measuring the strength 
of the association. To generate a null distribution of test statistics 
for a given group, we generated 10,000 trees with randomly reshuf-
fled phenotypes and real genotypes, only considering nodes with 
clear transition states for both genotypes and phenotypes. We then 
calculated, for each random sample i, the two-by-two association 
matrix and the corresponding χ2

i
 and nGt,Pt,i statistics. We defined two 

empiric P values as

P(χ2) = (
10,000
∑
i=1

1 if (χ2
i
≥ χ2)) /10,000

P(nGt,Pt) = (
10,000
∑
i=1

1 if (nGt,Pt,i ≥ nGt,Pt)) /10,000

To obtain each set of null phenotypes, we reshuffled the original 
per-strain resistance and ran ASR and phenotype state inference to 
define null phenotype-transition or no-transition nodes. Finally, we 
used the Bonferroni-corrected P(χ2), P(nGt,Pt) or PFisher as indicators of 
significance (using statsmodels.stats.multitest).

A limitation of using such P values is that Bonferroni correction 
can be conservative as there is no independence between groups due 
to linkage between variants. This is also true for other widely used 
multiple-testing correction algorithms such as the FDR method used 
in hogwash. To address this, we calculated additional P values using 
the empiric maxT method, which has been proposed to be useful in 
GWAS112,113. Briefly, we first calculated the maximum χ2 and ε (across all 
groups) values for each random phenotype sample i (1,000 samples 
in total from the 10,000 mentioned earlier). This yielded a distribution 
of max(χ2)i and max (ε)i null statistics, which we used to calculate the 
maxT P values for each group as:

P(χ2)(maxT) = (
1,000
∑
i=1

1 if (max(χ2)i ≥ χ2)) /1,000

P(ε)(maxT) = (
1,000
∑
i=1

1 if (max(ε)i ≥ ε)) /1,000

Note that these P values are already corrected for multiple testing 
because the null distribution of statistics considers all of the tested 
groups.

There are four differences between our approach to calculate P 
values and that used by hogwash. First, hogwash only usesnGt,Pt, which 
is not a statistic per se (it could be inadequate in some cases); we also 
considered the X2 value because it is a common statistic to measure 
associations from two-by-two tables. Similarly, we calculated the PFisher 
value, which is not considered in hogwash. Second, hogwash uses 
genotype reshuffling, which may be biased in trees with highly variable 
branch lengths (as we discussed in https://github.com/katiesaund/
hogwash/issues/87) and motivated us to use phenotype reshuffling. 
Third, hogwash uses FDR correction (instead of Bonferroni) on P values, 
which may give misleading results in our dataset where there is high 
dependence between groups. Fourth, we calculated parametric and 
maxT P values, which are not considered in hogwash. All in all, this 
means that for each group, min_branch_support and ASR method, we 
obtained five association P values that may define significantly  
associated hits.

To maximize computational efficiency, we implemented several 
steps (some of them are improvements in comparison to hogwash). 
First, to focus on relevant groups, we only tested associations for 
groups with nGt,Pt ≥ 2, nGnt,Pnt ≥ 1 and an odds ratio (of the two-by-two 
table) of ≥1 (similar to the approach of hogwash). Second, we parallel-
ized many steps to optimize resource consumption. Third, to avoid 
redundancy in variant ASR, we grouped variants into sets of fully linked 
variants and ran ASR for only one representative of each group. Fourth, 
to avoid redundancy in association tests, we merged the groups that 
have the same variants to only run the association test on one repre-
sentative group. Fifth, to minimize the burden of P value inference, we 
first calculated empiric P values on 1,000 null samples, and we only 
used 10,000 samples if the P based on 1,000 samples was <0.1. All of 
the computational optimization steps were necessary to run the  
analysis on such a high number of species, drug and parameter 
combinations.

In summary, we applied a custom GWAS pipeline to each species 
and drug, resulting in an association P value in each group for each 
ASR method, min_branch_support and type of P value. Our approach 
is more comprehensive than current implementations like hogwash 
because we use more ASR methods, consider different types of  
P values and optimize many steps of the process. This pipeline can be 
used as a stand-alone software on any input dataset (see ‘Code avail-
ability’). The following sections explain how we chose the optimal 
parameters (ASR method, P-value type and min_branch_support) to 
define the high-confidence non-redundant set of groups underlying 
drug resistance.

Filtering GWAS results. To obtain enough power to detect associa-
tions, we only considered datasets (one for each species and drug) 
with at least five resistance transitions according to the ML and MP 
consensus ASR methods and a min_branch_support of 70. This resulted 
in 12 analysed species–drug pairs, comprising seven antifungal drugs 
(fluconazole, itraconazole, posaconazole, voriconazole, anidulafungin, 
micafungin and amphotericin B) in the three species (Supplementary 
Table 1 and Fig. 5).

To find a meaningful filtering strategy, we evaluated the signifi-
cantly associated genes yielded by different parameter and filter com-
binations. We considered combinations of varying ASR methods (ML, 
MP or ML and MP), min_branch_support (50 or 70), types of P value 
(Bonferroni P(χ2), Bonferroni P(nGt,Pt), Bonferroni PFisher, P(χ2)(maxT)  
and/or P(ε)(maxT)), minimum ε (0, 0.1, 0.2, 0.3, 0.4 or 0.5) and minimum 

Genotype transition 
nodes (nGt)

Genotype no-transition 
nodes (nGnt)

Phenotype-transition 
nodes (nPt)

nGt,Pt nGnt,Pt

Phenotype no-transition 
nodes (nPnt)

nGt,Pnt nGnt,Pnt

http://www.nature.com/naturemicrobiology
https://github.com/katiesaund/hogwash/issues/87
https://github.com/katiesaund/hogwash/issues/87


Nature Microbiology | Volume 9 | January 2024 | 284–307 302

Analysis https://doi.org/10.1038/s41564-023-01547-z

nGt,Pt (two or three). For example, the most conservative parameter and 
filter combination would be to use the GWAS results based on the ML 
ASR method and a min_branch_support of 70, and define groups with 
P < 0.05 by all five types of P values, ε ≥ 0.5 and nGt,Pt ≥ 3 as significant. 
To obtain significant genes, we applied each set of parameters and 
filters to the raw GWAS results from both the single-variant analysis 
(only for non-synonymous variants) and the collapsing of 
non-synonymous variants at the gene and domain level. Any gene 
affected by significant variants or domains would also be considered 
as a gene yielded by the given parameter and filter combination.

We reasoned that ‘appropriate’ sets of parameters and filters 
should meet two criteria. First, they should yield <100 significant genes 
to skip overly permissive parameters. Second, appropriate parameters 
should minimize the false-positive burden derived from multiple test-
ing. To test if a given parameter and filter set addressed this burden, we 
applied it to the single-variant GWAS results (yielding N significant vari-
ants) and calculated the empirical probability of having ≥N significant 
variants (P(N)) in a null dataset with random phenotypes (which lack 
true associations). To calculate P(N), we generated, for each species and 
drug combination, 50 datasets with randomly reshuffled phenotypes 
and then ran a per-variant GWAS analysis on each set as described in 
‘Running the GWAS analysis’. For each random dataset i, we used the 
tested parameters and filters on the raw per-variant GWAS results and 
obtained Ni significant variants, which allowed us to calculate P(N) as:

P(N) = (
50
∑
i=1
1 if (Ni ≥ N)) /50

Parameters addressing the multiple-testing burden should have 
P(N) < 0.05, indicating that the observed number of significant associa-
tions is higher than what would be expected solely by random multiple 
testing. Note that this analysis implied a high computational cost, which 
is why we only used 50 re-samples. In addition, different combinations 
of species and drugs may require different parameters because the 
underlying trees and drug-resistance evolution modes may be differ-
ent. After analysing this trade-off for 2,232 filter combinations, we 
could find appropriate parameters yielding at least one significant 
gene for most datasets (11/12; all except C. glabrata–posaconazole), 
suggesting that our parameter range yields meaningful GWAS hits 
(Supplementary Fig. 4a).

We found several appropriate filters for a given dataset (Supple-
mentary Fig. 4a), suggesting that additional criteria were necessary 
to select the final optimal parameters. We reasoned that the presence 
of known resistance genes (ERG11 in C. albicans, ERG11 and TAC1b in 
C. auris, and PDR1 in C. glabrata providing resistance to azoles; FKS1 
and FKS2 in C. glabrata, and FKS1 in C. auris providing resistance to 
echinocandins) among the list of significant hits could be such a cri-
terion. To understand whether this is the case, we analysed how often 
the appropriate filters yielded such expected genes in 11 datasets (all 
except C. auris–amphotericin B, where we could not define expected 
genes). We found such expected genes in five of the datasets, but not in 
the other six (Supplementary Fig. 4a). To understand whether this lack 
of expected genes was due to limited power, we investigated whether 
the omission of multiple-testing considerations (P value corrections 
and P(N) constraints) would yield the expected genes (Supplementary 
Fig. 4c). We found that the omission of multiple-testing considerations 
was sufficient to yield the expected ERG11, PDR1 and TAC1b genes in 
four of the six datasets (posaconazole, itraconazole and C. albicans–
fluconazole; Supplementary Fig. 4c). This suggests that the expected 
genes may have mild associations to resistance but we lacked enough 
power to detect them without risking false positives derived from 
multiple testing. Conversely, none of the parameter combinations 
yielded the expected FKS genes in the other two datasets (C. auris–
anidulafungin and C. glabrata–micafungin; Supplementary Fig. 4a,c), 
suggesting that association is probably absent in our dataset (further 

discussion on these datasets in Supplementary Results). In summary, 
expected genes may be useful to select the final filters in 5/12 datasets 
but not in the others due to power limitations and a lack of expected 
associations. We thus defined ‘potentially good’ filters as those that 
either yielded expected genes (in these 5/12 datasets) or that yielded 
some significant gene (in the remaining 7/12 datasets).

To choose the optimal parameters for each dataset, we first 
defined a rationally designed ‘base’ set of parameters: using the GWAS 
results based on the ML and MP ASR as well as a min_branch_support 
of 70, and defining groups with P(χ2)(maxT) < 0.05, P(ε)(maxT) < 0.05, 
ε ≥ 0.1 and nGt,Pt ≥ 2 as significant. For each dataset, we then defined 
the optimal set of filters as those that were potentially good for that 
dataset while having the least number of changes compared with the 
base filters (Supplementary Fig. 4b). This ensured sets of optimal 
parameters that were similar to one another, while adapted to each 
dataset, suggesting that they are useful to detect relevant associations. 
Note that in C. glabrata–posaconazole we used the base parameters 
because we could not find any potentially good filters, probably due 
to power limitations. We found that solely using maxT P values and 
filtering based on the convergence level is a suitable strategy in almost 
all datasets. Conversely, the choice of ASR methods and minimum 
branch support may be less universal, indicating that these parameters 
may need to be tailored to each dataset. However, the most common 
useful strategy is based on using a consensus between different ASR 
methods based on either ML or MP and requiring a minimum support 
of 70 (Supplementary Fig. 4b).

All in all, these were the parameters and filters used to define 
high-confidence GWAS results. Given that convergence-based GWAS 
approaches have been underused for the analysis of Candida patho-
gens, this collection of filters provides first insights into the most 
suitable parameters.

These parameter choices are relevant to evaluate the statistical 
power of our approach compared with other GWAS studies performed 
in fungal pathogens. For instance, previous studies in Aspergillus 
fumigatus114 and C. glabrata22 used P < 0.01 and P < 2.56 × 10−7, respec-
tively as significance thresholds. Conversely, we mostly used P < 0.05 
(for maxT P values), which at first glance may be interpreted as a sign 
that our filtering is overly permissive. However, note that in contrast 
to these previous studies, our maxT P values are corrected for multiple 
testing in a way that is tailored to each dataset (described earlier). Thus, 
we consider our P value threshold, although not directly comparable 
to previous studies, as sufficiently conservative to address the 
multiple-testing burden. Accordingly, we found that all these param-
eter sets yield P(N) < 0.05 (see above), further indicating that the chosen 
filtering strategies have an adequate statistical power.

Removing redundancy in filtered GWAS results. Given that we col-
lapsed variants into partially overlapping groups (that is, each variant 
may be in several groups), these high-confidence significant hits were 
expected to be highly redundant. For example, if a variant is associated 
with resistance we expect the genes, domains and pathways related to 
the variant may also be significant. To remove redundancy and keep 
only the relevant associations, we implemented a filtering strategy to 
always keep the strongest and most-specific results among clusters 
of redundant GWAS hits. In addition, to prioritize functional asso-
ciations, we only focused on protein-altering variants. The following 
paragraphs describe our redundancy-removal algorithm for any set 
of input GWAS hits.

To define a list of non-redundant hits for a set of input hits, we 
iterated through all of the relevant variants (those that belong to a 
significant group), sorted by maximum ε (across all groups that contain 
the variant) in a non-ascending way. For each variant, we identified all 
of the (redundant) hits that involve the variant and selected one repre-
sentative non-redundant hit (the one with the strongest most-specific 
association). To ensure proper redundancy reduction, in each iteration 
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we discarded (redundant) hits with variants related to some already 
defined non-redundant hit. To find each non-redundant hit, we hier-
archically sorted the redundant hits by ε, odds ratio, specificity of 
the type of collapsing, variant type, type of mutation and number of 
variants related to the hit. For ε and odds ratio, we prioritized the larg-
est values to keep the strongest associations. For the type of collaps-
ing, we prioritized uncollapsed variants, followed by domains, genes, 
MetaCyc pathways, GO terms and finally Reactome annotations. For 
the type of variant, we prioritized single variant types (e.g. SVs) over 
combinations of types (e.g. SVs and CNVs). For the type of mutation, we 
prioritized more specific types (e.g. truncating) over more general ones  
(e.g. non-synonymous). Finally, for the number of variants, we prior-
itized hits with the smallest numbers of variants to increase specificity.

In some cases we found that these criteria were insufficient to get 
a single representative non-redundant hit, given that multiple hits 
had the same ε, odds ratio, number of variants and grouping specific-
ity levels. In these cases we applied additional hierarchical sorting, 
taking into account different parameters for each type of collaps-
ing. For gene-level collapsing, we considered the conservation across 
Candida (prioritizing genes with orthologues in the highest number 
of species), whether the gene had a defined name, whether the gene 
had orthologues in S. cerevisiae, the number of annotated GO terms in 
CGD (prioritizing the largest) and the gene length (prioritizing shorter 
genes). For domain-level collapsing, we considered the type of annota-
tion (prioritizing domain-like signatures (such as Pfam or PANTHER) 
over biochemical-like annotations (e.g. MobiDBLite)), the range of 
the protein covered (prioritizing the smallest), the start of the domain 
(prioritizing more amino-terminal annotations), the domain annota-
tion description lengths (prioritizing annotations with longer descrip-
tions in cases where they cover the same protein coordinates) and 
the alphabetical order of the description text (in few cases where two 
redundant domains had a description of equal length). For Reactome 
collapsing, we considered the fraction of genes with a given annotation 
(prioritizing annotations found in fewer genes), the source species of 
the pathway (prioritizing S. cerevisiae over S. pombe annotations), the 
number of parent pathways (prioritizing those with more parents), the 
length of the pathway description (prioritizing longer descriptions) 
and the alphabetical order of the description text (as with domains). 
For MetaCyc collapsing, we considered the fraction of genes with a 
given annotation (prioritizing annotations found in fewer genes), the 
number of parent pathways (prioritizing those with more parents), the 
length of the pathway description (prioritizing longer descriptions) 
and the alphabetical order of the description text. For GO collapsing, 
we considered the fraction of genes with a given annotation (prioritiz-
ing annotations found in fewer genes), the namespace (prioritizing 
biological process, followed by cellular component and then molecular 
function), the number of children terms (prioritizing those with fewer 
children), the level and depth of terms (prioritizing higher values), the 
length of the pathway description (prioritizing longer descriptions) 
and the alphabetical order of the description text.

To generate the final list of high-confidence non-redundant 
hits (found in Supplementary Table 3), we applied this 
redundancy-reduction algorithm to different subsets of all signifi-
cant GWAS hits. To define a set of non-redundant hits covering all 
involved genes, we applied the redundancy-reduction pipeline to 
each group of hits affecting a given gene (through either gene/domain 
collapsing or single-variant analysis). Next, to define non-redundant 
significant pathways, we first discarded significant pathways that were 
based on variants already considered in the significant genes. In addi-
tion, we applied the redundancy-reduction pipeline to all remaining 
hits grouped by each type of collapsing (Reactome, GO and Meta-
Cyc). This generated our final list of non-redundant GWAS hits, which 
includes (mostly) one hit for each significant gene and also one hit 
for each significant non-redundant pathway that does not involve  
significant genes.

Generating a set of comprehensive low-confidence non-redundant 
GWAS hits. The previous sections describe how we obtained the list 
of high-confidence non-redundant GWAS hits analysed in the main 
text and shown in Fig. 6. We also generated additional sets of 
non-redundant GWAS hits based on more relaxed filters 
(low-confidence hits; Supplementary Results). We generated six such 
low-confidence sets, one for each combination of ASR method (ML, 
MP, and ML and MP) and min_branch_support (50 and 70), defining 
significant groups as those with an (uncorrected) P(χ2) < 0.05, ε ≥ 0 
and nGt,Pt ≥ 2 . After applying these filters, we obtained the set of 
non-redundant hits using the same algorithm described in the ‘Remov-
ing redundancy in filtered GWAS results’ section. These datasets prob-
ably include some false positives and may be unsuited for exploratory 
analysis but they could be useful (as an example) to validate hypoth-
eses about specific genes (where the burden of multiple testing is less 
prominent). In Supplementary Results we provide some examples of 
such hypotheses that can only be tested using the low-confidence 
datasets. All the low-confidence non-redundant sets of GWAS hits are 
provided in Supplementary Table 3.

Validation of high-confidence GWAS hits. To validate the GWAS 
high-confidence results, we tested whether we could find similar sig-
natures of genotype–phenotype convergence in datasets published 
between June 2020 and June 2023. To identify such datasets, we que-
ried PubMed to find studies related to each species and the keywords 
‘genome’ and ‘susceptibility’. We then manually curated the search 
results to pinpoint articles providing whole-genome sequences and 
susceptibility measurements of clinical isolates (for each species) to 
the previously analysed antifungal drugs (Fig. 5a). For each genome 
with susceptibility information, we trimmed the reads, mapped them 
and called variants (small variants, SVs and CNVs) as described in the 
‘Generation of the filtered variant-calling dataset for each Candida 
species’ section. In addition, we obtained a strain tree for each species 
and drug combination (GWAS dataset) as described in ‘Strain-tree 
generation’. We then ran a GWAS analysis for each of these datasets 
as described in the ‘Defining groups of variants for collapsed GWAS 
running’ and ‘Running the GWAS analysis’ sections, considering the 
same combinations of groupings (skipping pathway-level collapsing) 
and parameters but only taking into account variants affecting genes 
with previously defined non-redundant high-confidence hits (see 
‘Removing redundancy in filtered GWAS results’). To obtain enough 
statistical power, we only considered datasets with at least five resist-
ance transitions according to the consensus ML and MP ASR meth-
ods and using a min_branch_support of 70. We could find such data 
for five combinations of species and drugs: C. glabrata–fluconazole,  
C. auris–amphotericin B, C. auris–itraconazole, C. auris–posaconazole 
and C. auris–voriconazole (Extended Data Fig. 10). All of the isolates 
used are listed in Supplementary Table 1.

To analyse the overlap between the results of the initial GWAS and 
this new analysis, we identified the best ‘new hit’ related to each gene 
with initial high-confidence hits (query gene). For each query gene, we 
ranked all new hits related to that gene in a hierarchical manner by P(χ2), 
P(nGt,Pt), ε, min_branch_support, collapsing level, mutation type, variant 
type and ASR method. We prioritized lower values for P(χ2) and P(nGt,Pt), 
and higher values for ε and min_branch_support. For the type of col-
lapsing, we prioritized uncollapsed variants, followed by domains and 
then genes. For the type of variant, we prioritized single variant types 
(e.g. SVs) over combinations of types (such as SVs and CNVs). For the 
type of mutation, we prioritized more specific types (that is, truncating) 
over more general ones (that is, non-synonymous). Finally, for the ASR 
method we prioritized ML-, followed by MP- and then ML and MP-related 
hits. This ranking enabled us to define one new best hit (at the top of 
this ranking) for each query gene, which is necessary to compare the 
results of both GWAS analyses (Supplementary Results and Extended 
Data Fig. 10). Note that for some genes we could not find any such genes, 
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as there were <2 nodes with convergence (both genotype and pheno-
type transitions).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All of the NCBI SRA sequencing datasets analysed are in Supplemen-
tary Table 1. In addition, the variants are available at https://can-
didamine.org. Furthermore, the GitHub repository https://github.
com/Gabaldonlab/Candida_Selection_DrugResistance contains the 
comma-separated-value (CSV) versions of the supplementary tables.

Code availability
All of the code and software environments used to generate the data-
sets, results, tables and figures presented here are in https://github.
com/Gabaldonlab/Candida_Selection_DrugResistance. Note that this 
GitHub repository contains the convergence-based GWAS and the 
tree-generation stand-alone pipelines, which may be useful beyond 
this project.
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Extended Data Fig. 1 | Our dataset includes different variant types.  
a, Representation of the types of variants identified in this work. SVs are complex 
variants where we could find the precise underlying rearrangements and 
breakpoint positions. Unclassified breakpoints are also a type of SV where we 
do not know the exact type of underlying rearrangement, either because it is an 
unknown type of SV or because we missed other breakpoints that could explain 

the SV. Conversely, CNVs are variants generating large (>600 bp) duplications 
and deletions (inferred from changes in coverage) with unknown underlying 
rearrangements. b, Distribution of Minor Allele Frequencies across all variant 
types and species. ‘NA’ indicates that a given variant type could not be found in 
that species.
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Extended Data Fig. 2 | Proportion of SVs and CNVs attributable to different 
mechanisms of formation. a, Absolute number of variants, and b, the fraction 
of variants relative to each species and type of variant. Variants potentially 
biased by simple repeats were discarded, including CNVs largely overlapping 
simple repeats and SVs where the breakpoints are around such repeats. This 
explains why there are some variants classified as ‘simple repeats’ (e.g. deletions 
that involve a region with simple repeats but where the breakpoints do not 

overlap them). Variants classified as ‘other’ could not be assigned to any of the 
other categories. Note that the categories ‘exact microhomology’, ‘inexact 
microhomology’, ‘exact homology’ and ‘inexact homology’ refer to variants likely 
generated via homologous recombination. In addition, we interpret that the 
variants not attributable to any of these categories (‘other’) are likely generated 
by Non-Homologous End Joining repair pathways. See Methods for more details.
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Extended Data Fig. 3 | Distribution of selection scores by SNPs across 
Candida species. a, Distribution of the selection score S and definition of genes 
with significantly high S, shown as in Fig. 3a, for all species and SNPs. Note that 
the p(S) represents the FDR-corrected empirical probability of having an S higher 
or equal to the observed one under a model of neutral evolution (see Methods), 
which represents a one-sided test. In b, the text inset shows the number of genes 
that are considered to be ‘under selection’, out of all the genes for which we could 
measure S. We only measured S values for genes with enough variability to make 
calculations, which explains why some distributions have few or zero (plots with 
‘NA’) genes. We only considered genes with πN > πS in ≥2 clusters and ≥3 strains, 

and we discarded genes where the null model may not be reasonable (see c). Note 
that Supplementary Table 2 includes all these measurements. c, Distribution of 
samples with extreme πS according to the neutral evolution model. To validate 
this neutral model, used to define p(S) in b, we reasoned that the real, observed πS 
should fall within the simulated, empirical distribution of neutral πS generated by 
the model. This panel shows the distribution across genes of the fraction of 
strains with extreme πS according to the neutral model (see Methods). We only 
considered genes with a fraction < 0.1 (dashed line) for all analyses, including the 
data from a and b.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Distribution of selection scores by non-SNP variants 
across Candida species. a, Distribution of the selection score S and definition 
of genes with significantly high S, shown as in Fig. 3a for all species and types of 
variants. In b, the text inset shows the number of genes that are considered to 
be ‘under selection’, out of all the genes for which we could measure S. We only 

measured S values for genes with enough variability to make calculations, which 
explains why some distributions have few or zero (plots with ‘NA’) genes. We only 
considered genes with recent variants in ≥2 clusters and ≥3 strains. Note that 
Supplementary Table 2 includes all these measurements.
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Extended Data Fig. 5 | Individual variants are associated with drug resistance 
in some GWAS datasets of C. albicans and C. glabrata. a,b, Manhattan plots 
showing the Fisher p value (one-sided) of the genotype–phenotype association 
for each variant (including SNPs, INDELs, CNVs and SVs) along the genomes of C. 
albicans (a) and C. glabrata (b). The x axis represents the genomic position of 
each variant, with chromosomes separated by vertical lines (where ‘MT’ is the 
mitochondrial chromosome). Each subplot represents one species / drug for 
which we performed GWAS. The drugs analysed are fluconazole (FLC), 
posaconazole (POS), voriconazole (VRC), and micafungin (MIF). Red points 
indicate variants that passed all the GWAS high-confidence filters (see Methods 
and Supplementary Fig. 4b). Note that, to maximize the computational efficiency 
we only tested associations for a subset of relevant variants: those with nGt,Pt ≥ 2, 

nGnt,Pnt ≥ 1 and an odds ratio (of the genotype-vs-phenotype transition table) ≥ 1 
(see Methods). For all the other variants we set a p = 1, which explains why i) there 
are many dots with -log p=0 and ii) the variant density varies across datasets. In 
addition, the title of each subplot shows the number of such significant variants 
(N), and p(N) represents the empirical probability of observing N or more variants 
under a null model of no association (see Methods). This p(N) is relevant because 
it reflects how well our filtering strategy addresses the multiple testing burden. 
For instance, we consider that a p(N) < 0.05 suggests that this burden is minimal 
(see Methods). Note that we use the fisher p value because it is appropriate for 
such a visualization, although it was not always used for the definition of 
significant hits.
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Extended Data Fig. 6 | Individual variants are associated with drug resistance in some GWAS datasets of C. auris. Equivalent to Extended Data Fig. 5, but for 
C.auris datasets. The drugs analysed are fluconazole (FLC), itraconazole (ITR), posaconazole (POS), voriconazole (VRC), anidulafungin (ANI), micafungin (MIF) and 
amphotericin B (AMB).

http://www.nature.com/naturemicrobiology


Nature Microbiology

Analysis https://doi.org/10.1038/s41564-023-01547-z

Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Variants associated with drug resistance are linked to 
each other. a–c, Presence/absence pattern of all SNPs significantly associated 
with resistance (red points in Extended Data Figs. 5, 6) across strains for three 
example GWAS datasets. These figures show how sets of linked SNPs segregate 
together with resistance transitions, which was essential to understand the role 
of recombination in the spread of resistance (see Results and Discussion). Each 
column represents a genomic position (only biallelic positions are shown) with 
one of these SNPs, and the grey vertical lines separate variants from different 
chromosomes. If a strain has a filled box for a given position/variant it means that 

the variant transition is correlated to a resistance transition in that strain or one 
of the ancestors. If a strain has an empty box it means that it has the variant, but 
it is not related to a resistance transition in that strain. The box colours of each 
column are to ease visualization of where each SNP is in each strain, and they do 
not reflect any distinct information. The ‘/’ indicates SNPs that are heterozygous 
and found in duplicated regions. The circles of each node represent resistance 
(red), susceptibility (blue) or uncertain susceptibility (grey), according to 
ancestral state reconstruction. The nodes with a support <70 have non-filled 
circles. In c we only show a clade of the tree with the significant SNPs.
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Extended Data Fig. 8 | Genotype-phenotype correlation in PDR1 for the C. 
glabrata–fluconazole GWAS. Representation of PDR1 variants (those associated 
with resistance) and susceptibility measurements for the C. glabrata/fluconazole 
(FLC) dataset, shown as in Fig. 5c. The strain tree is split across two boxes to 
ease visualization. This plot exemplifies the complexity of GWAS signals for 
these phenotypes, as some PDR1 variants are associated to a gain of resistance 

(the missense substitutions mis|p.280|L/F and mis|p.378|I/T), while others 
are correlated to its loss (the premature termination codon PTC|p.888|S/*, 
the duplication affecting the 3’ UTR and substitutions mis|p.928|N/T and 
mis|p.932|Y/N). The colour scale shows the fluconazole MIC for each of these 
strains. Check the legend of Fig. 5c for further clarification about the other 
elements in this plot.
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Extended Data Fig. 9 | Genotype-phenotype correlation for echinocandin 
GWAS. a, Representation of relevant variants and resistance phenotypes for 
the C. glabrata/micafungin (MIF) dataset, shown as in Extended Data Fig. 8. The 
left and middle plots show FKS1/FKS2 variants, which are not associated with 
resistance. The right plot refers to the top hit in this dataset: a G993S variant in 

NET1. b, The same as in a, but for the C. auris/anidulafungin (ANI) dataset. The 
upper plot shows FKS1 variants, and the lower plot refers to the top hit in this 
dataset: small variants and an SV (rearrangement in the transcript that does not 
break the gene) in B9J08_003526 (ortholog of C. albicans’ MUC1).
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Extended Data Fig. 10 | Confirmation of high-confidence GWAS hits with 
an independent dataset. To validate the GWAS results we tested whether we 
could find similar signatures of genotype–phenotype convergence in datasets 
published between June 2020 and June 2023, which were not used in the 
GWAS analysis. We could find sufficient data to do this (with at least five sharp 
resistance transitions) for five species–drug combinations (each of the panels 
of this figure). The number in parenthesis shows the number of phenotype 
transitions. The drugs analysed are fluconazole (FLC), itraconazole (ITR), 
posaconazole (POS), voriconazole (VRC) and amphotericin B (AMB). For each 
gene with a high-confidence hit in the GWAS (Supplementary Table 3), we ran a 
genotype–phenotype association testing for an array of parameters and types 
of groupings equivalent to those used in the GWAS analysis (see Methods). The 

small insets in the lower-right corner of the plot show the number of genes with 
high-confidence GWAS hits (n) that also had some degree of convergence (at 
least two nodes in the tree with both genotype and phenotype transitions, see 
Methods) in the new independent datasets (x). Each of the points represents 
the −log[p(X2)] and convergence level (ε) for the best hit related to a given gene in 
the new dataset, which indicates the significance and strength of the genotype–
phenotype associations. This p(X2) is an empirical p value coming from a one-
sided test, with no correction (see Methods). The colours represent whether the 
gene belongs to an OG that was found in one (grey) or more (red) GWAS datasets. 
The symbols represent whether the GWAS hits came from domain, gene or no 
grouping. We also show the gene names for all genes that belong to an OG found 
in more than one GWAS dataset.
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