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Chromosome architecture in an archaeal 
species naturally lacking structural 
maintenance of chromosomes proteins

Catherine Badel    1,3  & Stephen D. Bell    1,2 

Proteins in the structural maintenance of chromosomes (SMC) superfamily 
play key roles in chromosome organization and are ubiquitous across 
all domains of life. However, SMC proteins are notably absent in the 
Desulfurococcales of phylum Crenarchaeota. Intrigued by this observation, 
we performed chromosome conformation capture experiments in the 
model Desulfurococcales species Aeropyrum pernix. As in other archaea, 
we observe chromosomal interaction domains across the chromosome. 
The boundaries between chromosomal interaction domains show 
a dependence on transcription and translation for their definition. 
Importantly, however, we reveal an additional higher-order, bipartite 
organization of the chromosome—with a small high-gene-expression and 
self-interacting domain that is defined by transcriptional activity and loop 
structures. Viewing these data in the context of the distribution of SMC 
superfamily proteins in the Crenarchaeota, we suggest that the organization 
of the Aeropyrum genome represents an evolutionary antecedent of the 
compartmentalized architecture observed in the Sulfolobus lineage.

Chromosome architecture has been studied in all three domains of 
life1–3. A common finding across all studied organisms is that proteins 
belonging to the structural maintenance of chromosomes (SMC) super-
family play pivotal roles in sculpting chromosome conformation4. In 
particular, condensin is near universal with orthologues in all three 
domains of life5. Intriguingly, however, condensin is absent from the 
Crenarchaeota phylum of Archaea6. Our previous work with members 
of the crenarchaeal Sulfolobales has revealed that a lineage-specific 
SMC superfamily protein, termed coalescin (ClsN), plays a key role in 
structuring the chromosomes of these organisms7,8. Sulfolobus chro-
mosomes have a compartmentalized architecture with A and B domains 
marked by high and low gene expression, respectively. Elevated ClsN 
occupancy is causally linked to B compartment identity. In addition to 
compartmentalization, Sulfolobus chromosomes also possess smaller 
self-interacting domains similar in scale and behaviour to bacterial 
chromosomal interaction domains (CIDs). Given these similarities, 

we have adopted the CID nomenclature for these features of archaeal 
genomes. In Sulfolobus, CIDs are found in both A and B compartments 
and CID–CID boundaries are principally defined by locally high tran-
scription levels in both compartments. ClsN occupancy is elevated 
within CIDs in the B compartment. CIDs are also observed in members 
of the Euryarchaea9. In addition, studies in Haloferax revealed that dele-
tion of the gene encoding the SMC subunit of condensin had complex 
effects on chromosome architecture, including a reduction in DNA 
loops and a loss of CID boundaries across the genome9. Thus, in Archaea, 
as in Bacteria and Eukarya, SMC superfamily proteins play key roles 
in effecting chromosome architecture. It is therefore of considerable 
interest that organisms in the Desulfurococcales of phylum Crenar-
chaeota lack genes encoding SMC superfamily proteins (Extended 
Data Fig. 1), with the sole exception of the DNA-repair protein, RAD50. 
Spurred by this observation, we have investigated the chromosome 
architecture of the Desulfurococcales species Aeropyrum pernix K1.
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in addition to some longer-range interactions (Fig. 2a–e, Supplemen-
tary Fig. 3 and Extended Data Fig. 3). Despite analyses of transcript 
level and gene ontology, no individual distinctive feature could be 
identified at CID borders. Longer-range interactions were locally 
depleted, generating some striping in the contact matrix, at 13 loci 
around the chromosome (for example, at 0.41 Mbp) and at a broader 
region between ~0.9 Mbp and 1.2 Mbp. The Pearson correlation heat 
map, and principal component analysis, emphasizes these regions 
of depleted longer-range interactions (Fig. 2f,g). A previous study in 
Haloferax implicated local regions of AT-rich DNA in the generation 
of plaid-like patterns on 3C contact maps9. However, we could not 
detect any correlation between nucleotide composition and stripe 
anchor localization (Extended Data Fig. 4). Analysis of our RNA-seq 
data reveals that these regions depleted of long-range interaction 
possess significantly elevated transcription profiles (P < 2.22 × 10−16) 
compared with the rest of the chromosome (Fig. 2h,i). Accordingly, 
we will refer to these regions as ‘high-expression, insulated domains’ 
(HEIDs). The rest of the chromosome will be referred to as ROC. While 
A. pernix does not encode any candidate SMC proteins, it does encode 
a RAD50 orthologue. We performed chromatin immunoprecipitation 
followed by sequencing (ChIP–seq) with antisera that we generated 
against the recombinant protein and observed a significant enrichment 
(P < 2.22 × 10−16) of RAD50 within the HEID (Extended Data Fig. 5). In 
agreement with the elevated transcription in the HEID, genome wide, 
RAD50 showed a strongly positive (cor = 0.565) and highly significant 
(P = 2.4 × 10−281) correlation with transcriptional strength. This enrich-
ment of RAD50 at transcriptionally active loci may be related to the 
documented fragility of active genes in which double-strand breaks 
can be generated by the processing of R loops12. RAD50 is also slightly 
depleted away from the origin of replications (P = 2 × 10−15).

Results
Primary organization of the A. pernix K1 genome
The 1.669 Mbp genome of A. pernix K1 is a closed circle, and a previous 
candidate locus approach identified two replication origins in the A. 
pernix chromosome10. We performed marker frequency analyses (MFA) 
and confirmed that these two origins are active and that no additional 
origins exist in this species (Fig. 1a and Supplementary Fig. 1). We note 
that MFA performed in the stationary phase reveal a marker distribu-
tion similar to that of exponentially growing cells. The amplitude of 
the peaks corresponding to replication initiation is actually greater 
than that in exponentially growing cells. This striking observation is in 
agreement with previously published flow cytometry data that revealed 
an elevated G1- and early-S-phase population in stationary-phase A. 
pernix cells11. Examination of gene conservation reveals a significant 
(P < 6.6 × 10−5) enrichment of core genes in the vicinity of the origins, 
compared with accessory genes (Fig. 1b,c). We profiled transcription 
across the chromosome in exponentially growing and stationary-phase 
cells using RNA sequencing (RNA-seq; Fig. 1d,e, Supplementary Fig. 2 
and Extended Data Fig. 2). In exponentially growing cells, there was 
no significant correlation between distance to origins and transcrip-
tional strength (Fig. 1d,e). In stationary-phase cells, there is a modest 
but significant (P = 1.6 × 10−11) gradient of enrichment of more highly 
expressed genes near the origins (Extended Data Fig. 2).

Chromosome architecture of A. pernix
We performed chromosome conformation capture (3C) experiments 
on three biological replicates of exponentially growing A. pernix. The 
resulting contact maps, binned at 3 kb resolution, revealed 19 interac-
tion domains that appear, in scale and number, to be analogous to CIDs, 
along the primary diagonal (to be discussed in more detail below),  
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Fig. 1 | A. pernix primary chromosome organization. a, MFA in the exponential 
phase; the red line is a moving point average. b, Core gene localization along the 
chromosome, for core genomes determined with different datasets resulting in 
different stringency levels (see Supplementary Table 1 for a dataset description). 
Proviruses are also indicated in grey41, rRNA genes in blue and CRISPR loci in 
green. c, The distance to the nearest origin of replication of core and accessory 

genes, at the most stringent level (AAPD). A two-sided Wilcoxon test P value is 
indicated. d, Gene transcriptional level, expressed as RPKSP, in the exponential 
phase. e, Gene transcriptional level plotted in function of the distance to the 
nearest origin of replication, for the exponential phase. A two-sided Pearson 
correlation P value is indicated.
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Fig. 2 | A. pernix chromosome is organized into CIDs and a HEID with a higher 
transcriptional level. a, Contact score heat map generated at a bin size of 3 kb. 
b, Heat map of the distance-normalized contact score indicating the localization 
of the CIDs as black triangles. c, Directional preference score used to determine 
the CID boundaries. Positive and negative values of directional preference are 
in green and orange, respectively. d, Aggregate insulation score around CID 
boundaries. e, Aggregate heat map around CIDs. f, Pearson correlation heat map 
at a bin size of 3 kb. g, The compartment index (PC1) defines the ‘high-expression 
insulated domain’ (HEID) and the ROC; see text for the definition of these 

features. h, The gene transcriptional level (RPKSP) with the HEID highlighted 
in orange. i, Violin plot of the transcriptional level for the HEID and ROC genes. 
The P value of the two-sided Wilcoxon test is indicated, and the horizontal line 
represents the median. j, Number of genes in the HEID, expected from a random 
distribution of the domains along the chromosome (grey) and observed (black), 
for different gene groups. An empirical P value is indicated (Methods). k, The 
number of core genes in the HEID, expected from a random distribution of the 
domains along the chromosome (grey) and observed (black), for the various core 
genomes determined. An empirical P value is indicated (Methods).
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An analysis of the genes within the HEID reveals an enrichment for 
those falling within the top 10% of highly transcribed genes, including a 
significant enrichment (P = 0.001) of ribosomal protein genes (Fig. 2j).  
In addition, genes with low transcript abundance (constituting the 10% 
lowest expressed) were significantly (P = 0.002) depleted from the 
HEID. The HEID was also significantly enriched in core genes (Fig. 2k).

Next, we used the loop-detection software Chromosight13, to 
identify 171 loops in our contact matrices. As can be seen in Fig. 3a, 
many of the detected loops lie along diagonals with other loops, indi-
cating shared anchor points. Indeed, there is a significant enrichment 
of loops in clusters of at least six loops (Fig. 3b,c and Extended Data 
Fig. 6). Furthermore, we observe that loops frequently bridge loci of 
similar transcriptional levels (Fig. 3e). A total of 38 loops have both 
anchors within the HEID (Fig. 3d). Conversely, loops are also prefer-
entially anchored at low-transcription loci, potentially suggesting a 
common silencing mechanism for the two looped loci. In addition, 
we noted 19 loops emanating from the integrated provirus APSV1, 
raising the possibility of the provirus using physical proximity to sense 
the transcriptional status of the cell. Transcription of provirus genes 
could thus be regulated directly by the formation of hub-like struc-
tures—conceivably allowing co-regulation via shared transcription 
factors or facilitating RNA polymerase recruitment by benefiting from 
locally high concentrations of the enzyme. Intriguingly, one loop had 
anchors at APSV1 and a type I-A clustered regularly interspaced short 
palindromic repeats (CRISPR) array (Fig. 3c) that could indicate the 
involvement of physical proximity between the CRISPR array and the 
target DNA for CRISPR adaptation, maturation or interference, or for 
inhibition by the provirus. Other loops anchored at the CRISPR array 
could also be involved in the regulation of the CRISPR function. The 
loop score correlated significantly (cor = 0.398; P = 2.2 × 10−14) with the 
transcriptional strength of the anchor position (Fig. 3f).

Transcription, translation and CID strength
In archaea, transcription and translation are believed to be coupled  
processes14,15. Furthermore, treatment of the euryarchaeon Haloferax 
volcanii with the translation inhibitor anisomycin resulted in signifi-
cant global nucleoid compaction, as visualized using fluorescence 
microscopy16. To test the impact of transcription and translation on 
chromosome architecture in Aeropyrum, we treated cultures with the 
transcription inhibitor actinomycin D (ActD), in parallel with control 
cultures treated with the vehicle, DMSO, and with the translation 
inhibitor chloramphenicol, in parallel with control cultures treated 
with the vehicle, ethanol (Fig. 4 and Supplementary Fig. 4). ActD led to 
global transcription inhibition, with an absolute RNA level, measured 
by reads per kilobase of gene per spike-in (RPKSP), lower than that of 
the control condition (Fig. 4d, left). However, 91 of 1,753 genes were 
significantly induced (P < 0.01), including proviral hypothetical genes 
and genes coding for CRISPR proteins, transcription factors, transport-
ers and the chromatin protein Cren7 (log2 fold change (LFC) = 1.47). 
Upon chloramphenicol treatment, transcription was largely unper-
turbed with the notable exception of increased transcription of several 
translation-related genes (Fig. 4d, right). Considered with the growth 
retardation caused by the chloramphenicol treatment (Supplementary 
Fig. 4), translation was probably disrupted by the chloramphenicol 
treatment in A. pernix.

Upon transcription inhibition, long-range contacts decreased 
and short-range contacts increased (Fig. 4a, left, and Fig. 4b). Upon 
closer inspection of the contact matrix (Fig. 4e, left), we noticed that 
short-range contacts specifically increased within CIDs. Aggregate 
contact maps and average insulation scores over CIDs confirmed that 
CIDs were more insulated in the absence of transcription (Fig. 4e,f,  
left). Opposite trends were observed upon translation disruption (Fig. 4,  
right) with long-range contacts slightly increasing and short-range 
contacts decreasing (Fig. 4a, right, and Fig. 4c). CIDs were less insulated 
from one another upon chloramphenicol administration (Fig. 4e,f, 
right, and Fig. 4h). The changes in chromosome conformation were 
weaker upon chloramphenicol treatment than upon ActD treatment.

Transcriptional, domain and loop reconfiguration
Upon transcription inhibition, long-range contacts decreased overall 
but were also reconfigured over the chromosome (Fig. 4a, left). More 
specifically, changes in long-range contact depletions are evident in the 
Pearson correlation matrix (Fig. 5a,c). The HEID was disrupted upon ActD 
treatment, and principal component analyses revealed that a novel HEID′ 
was formed (Fig. 5b,d). The location of HEID′ correlated with the location 
of ActD-resistant transcription (Fig. 5d–f), and the RNA level and LFC 
were significantly higher in the HEID′ than in the ROC (Fig. 5g,h). More 
specifically, of the 91 genes that are significantly induced upon ActD 
treatment, 28 (31%) lay in the HEID′, 61 (67%) in the ROC and 2 over both 
the HEID′ and ROC. This is slightly biased towards the HEID′ compared 
with the proportion of all genes with 362 of 1,753 (21%) genes in the HEID′ 
and 1,368 of 1,753 (78%) in the ROC (two-sided Fisher test, P = 0.0116).

These data therefore support the hypothesis that gene expression 
actively structures the HEID. Correlating with the loss of the origi-
nal HEID on administration of ActD, we saw a loss of HEID-anchored 
loops (Fig. 5i,j). In addition, we observed the generation of novel loop 
structures within the new HEID′. We also noted one unanticipated 
feature of DMSO in the transcriptional induction of a number of loci 
(Extended Data Fig. 7). Notably, these loci include genes for tetrathi-
onate and polysulfide reductases both of which belong to the DMSO 
reductase family. Importantly, principal component analyses revealed 
the DMSO-induced loci to partition with, and thus increase, the HEID 
of untreated cells and this further correlated with the generation of 
novel loop structures at these loci. No effect of translation disruption 
was observed on the HEID and loops (Extended Data Fig. 8).

Discussion
In the crenarchaeon A. pernix, as in other Bacteria and Archaea studied 
so far2,3, the chromosome is locally organized in self-interacting CIDs. 
However, no explanation could be found for the localization of the 
CID borders, including the frequently observed presence of highly 
transcribed genes. Our inhibitor studies reveal that CID insulation was 
decreased by active transcription and increased by translation. Tran-
scription therefore favoured chromosome mixing, while translation 
impaired it. The opposite role of transcription on the CID admixture 
was observed in the euryarchaeon H. volcanii9, raising the possibility 
of diverging mechanisms of CID formation in Crenarchaeota and Eur-
yarchaeota. In the crenarchaeon A. pernix, highly expressed loci were 
aggregated in a HEID and insulated from the ROC. We emphasize that 
this is occurring in the absence of canonical SMC proteins. RAD50, 

Fig. 3 | Chromosomal loops formed between specific loci. a, Heat map of the 
distance-normalized contact score at a 3 kb resolution. Loop-type interactions 
identified by Chromosight13 are indicated by circles. b, Number of loop clusters 
and number of loops with one or both anchors in a cluster, expected from a 
random distribution of loops along the chromosome and observed. An empirical 
P value is indicated (Methods). c, Top, the loops are represented as a curve joining 
the two anchors on a circular chromosome representation, for various loop 
types. The curve colour represents the loop score. Bottom, aggregate contact 
maps showing average values of distance-normalized interaction scores around 

the loop anchors. d, Number of loops, expected from a random distribution of 
loops along the chromosome (grey) and observed (black), for different gene 
types found at one or both loop anchors. An empirical P value is indicated 
(Methods). e, Correlation between the local transcriptional level at the two 
anchor bins of the loops. A two-sided Pearson correlation P value and coefficient 
are indicated. f, Loop score plotted in function of the local transcriptional level 
at the loop anchor. A two-sided Pearson correlation P value and coefficient are 
indicated. Cor, correlation coefficient.
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the DNA-repair and sole SMC-related protein encoded by A. pernix, 
is probably not involved in the domain formation as it is enriched at 
transcriptionally active loci throughout the chromosome, not just 
restricted to HEID loci. Transcription reconfigurations led to changes 

in the aggregated loci according to their transcriptional activity, sup-
porting the hypothesis that transcription per se structures the HEID. 
Punctate contacts, or loops, were enriched in the HEID and were prob-
ably involved in the aggregation of the HEID.
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The HEID of the Aeropyrum chromosome possesses characteristics 
reminiscent of the Sulfolobus A compartment, including high transcrip-
tional activity and enrichment in ribosomal proteins and conserved 
genes17. Indeed, of the 142 HEID-associated genes in Aeropyrum that have 
clear orthologues in Sulfolobus acidocaldarius, 129 are found within the 

A compartment in Sulfolobus (Fig. 5k). However, contrary to Sulfolobus, 
A. pernix does not present a transcriptionally quiescent B compart-
ment, nor does it encode the SMC protein ClsN. These observations, 
along with the absence of chromosome compartmentalization from all 
other analysed Archaea3, lead us to propose the following evolutionary 
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history of chromosome compartmentalization in the Crenarchaeota. 
After the loss of the canonical SMC protein Condensin in an ancestor of 
all present-day Crenarchaeota, constraints on chromosome conforma-
tion were lowered, opening the possibility of transcription-mediated 
aggregation of chromosomal loci in a common ancestor of Aeropyrum 
and Sulfolobus. This aggregation leads to the formation of the HEID in 
Aeropyrum and of a HEID-like, proto-A compartment in the Sulfolobus 
ancestor. We suggest that the ancestor of Sulfolobus could have then 
acquired the clsN gene by capture of an extrachromosomal element, 
considering that genes for ClsN-related proteins have been identified 
in plasmids found in members of the haloarchaea and also in a subset 
of Asgard archaea18. It is notable that the clsN gene is encoded within 
60 kb of oriC2 in diverse members of the Sulfolobales such as Sac-
charolobus solfataricus P2, S. acidocaldarius DSM 639 and Sulfolobus 
islandicus REY 15A. The two replication origins in A. pernix correspond 
to the Orc1-1-dependent oriC1 and WhIP-dependent oriC3 of Sulfolobus 
species19. Thus, like clsN, the Orc1-3-dependent oriC2 appears to be a 
Sulfolobales-specific acquisition and is absent from Desulfurococca-
les. It is possible therefore that clsN was acquired along with the oriC2 
replication origin. After the clsN gene acquisition at the root of the 
Sulfolobales, the apparent antagonism between ClsN and transcription7 
would have led to its enrichment in transcriptionally repressed regions 
of the chromosome and, over evolutionary timescales, have resulted in 
the formation of the B compartment.

Finally, we return to the central observation that prompted our 
study—that canonical SMC-based condensin appears to have been 
lost at the root of the crenarchaeal lineage (Extended Data Fig. 1). In 
the majority of bacteria, the SMC–ScpAB condensin complex is a key 
component, along with parABS systems, in facilitating the concomi-
tant processes of chromosome replication and segregation20,21. This 
linkage between replication and segregation appears to be found also 
in the euryarchaeal species that have been investigated3,22. Like most 
bacteria, the euryarchaeal species encode SMC–ScpAB. In contrast, 
crenarchaea have a fundamentally distinct cell cycle logic, with DNA 
replication and chromosome segregation temporally separated by 
gap phases3. We therefore hypothesize that the loss of SMC–ScpAB 
and consequent uncoupling of replication and segregation may have 
been a key step in the evolution of the distinct cell cycle parameters 
observed in present-day crenarchaea. Further investigation of cell 
cycle parameters of diverse archaea will undoubtedly contribute to 
our understanding of the evolution of cell cycle logics in both archaeal 
and eukaryotic domains of life.

Methods
Strains, media and growth conditions
A. pernix K1 (DSM 11879)23 was obtained from the Leibniz Institute 
DSMZ-German Collection of Microorganisms and Cell Cultures and 
grown in homemade Bacto Marine Broth (Difco 2216), supplemented 
with 1 g l−1 of Na2S3O3·5H2O, at 90 °C with agitation. For the transcription 
inhibition, 60 ml cultures were grown to an optical density at 600 nm  
(OD600) of 0.3 and treated with 60 µl of 5 mg ml−1 ActD diluted in  
DMSO, 5 µg ml−1 final concentration, for 30 min. The control cultures 
were treated with 60 µl DMSO. For the translation inhibition, 60 ml cul-
tures were grown to OD600 = 0.3 and treated with 441 µl of 34 mg ml−1 
chloramphenicol diluted in ethanol, final concentration 250 µg ml−1, 

for 30 min. The control cultures were treated with 441 µl ethanol. For 
the RNA-seq spike-in normalization, S. acidocaldarius DSM 638 was 
grown in Brock’s media24 containing 0.2% sucrose and 0.1% tryptone, 
pH 3.2, at 78 °C, with shaking.

Gene groups in A. pernix genome
Several groups of A. pernix genes were defined based on the 
NC_000854.2 annotations and on Gene Ontology terms25,26. In details, 
the hypothetical gene group contained ‘hypothetical’ in the protein 
product description. The membrane gene group contained either of 
the following terms in the protein product description: intramembrane, 
permease, transporter, secretion system, channel, translocating, trans-
locase, flagellin, flagellar, pilus or pilin. The nucleic acid metabolism 
group contained DNA or RNA in the protein product description or 
belonged to the Gene Ontology term 0090304 (nucleic acid metabolic 
process). A total of 67 ribosomal protein genes were manually selected27.

3C-seq
3C-seq was adapted to A. pernix from refs. 8,28. Cells were grown to 
OD600 ~0.3–0.4 and fixed by incubating 40 ml of cell culture in 160 ml 
of 1× PBS–6% formaldehyde mixture, for 30 min at 25 °C with gentle shak-
ing. The reaction was quenched with 0.5 M glycine (final concentration) 
for 10 min at room temperature. Fixed cells were collected by centrifuga-
tion in protein low-bind tubes. Cells were washed twice with cold 1× PBS 
and stored at −80 °C. Cells were resuspended and diluted to OD600 = 4 
with cold 1× PBS. The suspension (400 µl) was centrifuged, resuspended 
in 50 µl 1× NEBuffer 2 and treated with 12.5 µl 20% SDS for 15 min at 65 °C, 
600 rpm. After a brief cooling on ice, chromosomal DNA was digested by 
mixing 42 µl of cell lysate with 25.8 µl 10× NEBuffer 2, 120 µl 10% Triton 
X-100, 97.2 µl H2O and 15 µl of 10 U µl−1 AluI (New England Biolabs (NEB)). 
The reaction was incubated for 3.5 h at 37 °C, 600 rpm, then centrifuged 
for 20 min at 21,000g and 4 °C. The pellet was resuspended in 890 µl H2O 
and incubated with 100 µl 10× T4 DNA ligase reaction buffer and 10 µl 
of 400 U µl−1 T4 DNA ligase (NEB) at 16 °C, 600 rpm, for 4 h. To reverse 
cross-links, the ligation reaction was then supplemented with 100 µl 10% 
SDS, 50 µl 0.5 M EDTA, pH = 8, and 10 µl of 10 mg ml−1 proteinase K, and 
incubated for 6 h at 65 °C and 6 h to 8 h at 37 °C. DNA was extracted twice 
with phenol:chloroform:isoamyl alcohol and precipitated with isopro-
panol in the presence of 50 mg glycogen. Purified DNA was resuspended 
in 40 µl 1× NEBuffer 2 containing 0.1 mg ml−1 RNase A and incubated for 
30 min at 37 °C. Ligation was confirmed by running 10 µl of purified 
DNA on an agarose gel. The purified DNA was then extracted again with 
phenol:chloroform:isoamyl alcohol, precipitated with ethanol and resus-
pended in 90 µl of 10 mM Tris, pH = 8. DNA was sheared with a Bioruptor 
(Diagenode) at low power for 40 to 50 cycles (30 s on, 30 s off), and 
55.5 µl of the sheared DNA was used to prepare libraries with the NEBNext 
Ultra DNA Library Prep Kit for Illumina and NEBNext Multiplex Oligos 
for Illumina (NEB), according to the manufacturer’s instructions with 
size selection for a 300–400 bp insert. DNA libraries were paired-end 
sequenced on the Illumina NextSeq platform at the Center for Genomics 
and Bioinformatics at Indiana University.

3C-seq contact maps
3C-seq reads were processed using HiC-Pro version 2.9.0 (ref. 29) as 
performed for Sulfolobus species7. To adapt HiC-Pro usage to a circular 

Fig. 5 | HEID and loop changes upon transcriptional reconfiguration (ActD 
treatment). a, Pearson correlation heat map for the DMSO-treated control.  
b, Compartment index (PC1) for the DMSO-treated control. c, Pearson 
correlation heat map for the ActD treatment. d, Compartment index (PC1) for the 
ActD treatment defining a different domain named HEID′ (orange). e, RNA levels 
(RPKSP) after ActD treatment. The HEID′ is highlighted in orange. f, RNA (PRKSP) 
LFC between the ActD and DMSO treatments. The HEID′ is highlighted in orange. 
g, Violin plot of the RNA level for the HEID′ and ROC genes. h, Violin plot of the 
RNA LFC for the HEID′ and ROC genes. i, Loops detected for the DMSO control 

and ActD treatments and their score. Various chromosomal structures are 
indicated as an outside ring: the HEID and HEID′ in orange, proviruses in grey and 
CRISPR loci in green. j, Aggregate heat map in DMSO and ActD conditions around 
the loop anchor, for various categories of loops. k, Venn diagram of A. pernix K1 
and Sulfolobus acidocaldarius DSM 639 genes and their chromosomal domain 
location with the HEID and A compartments highlighted in orange and red for 
A. pernix and S. acidocaldarius, respectively. For the violin plots, the P value of 
the two-sided Wilcoxon test is indicated and the horizontal line represents the 
median.
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genome, genomic coordinates were redefined to start at the first AluI 
restriction site in the genome that is 117 bp from the start of the anno-
tated genome in the public databases. All analyses were performed 
using this redefined coordinate system. Reads were mapped to this 
modified genome, and reads resulting from proximity ligation events 
were counted over 3 kb non-overlapping bins to generate the contact 
matrix. Intra-bin ligation events were discarded by assigning null val-
ues to the matrix diagonal. For the exponential-phase experiment, 
contact matrix counts were summed over three replicates. For the 
other experiments, contact matrix counts were summed over two 
replicates. The data were normalized using the iterative correction 
and eigenvector decomposition method (ICE correction30) with the 
MAX_ITER parameter of 500. The obtained contact score matrices were 
further normalized so that the sum of interaction scores was equal to 
1,000 for each row and column. Further analysis was performed with 
R studio build 351, using the tidyverse package, version 1.3.1 (ref. 31). 
Distance-normalized Pearson correlation matrices were obtained as 
described previously7. Contact score log2 fold difference (LFD) matrices 
were calculated as log2(nijA/nijB), where nij is the score of the ith row 
and jth column of the matrix for the condition A or B.

For some analyses, to conserve the information about the absolute 
number of contacts, normalization was performed using DNA abundance 
along the chromosome in the cell population as described previously32.

Aggregate contact maps
Average aggregate contact maps around loop anchors were determined 
as described previously8. For the CIDs, a CID length normalization step 
to 30 bins (average CID length in A. pernix) was included before per-
forming the averaging. In details, for each CID, the adequate matrix was 
extracted centred on the CID and including the same number of bins 
as the CID on each side. Linear extrapolation was then used to increase 
the reduced size of the matrix to 90 bins when necessary. The value was 
then averaged over all the length-normalized matrices for each position 
leading to an average matrix that was represented as a contact map.

Compartment index
The compartment index was calculated as described previously7, with-
out centreing the Pearson correlation values, using the R package HiTC, 
version 1.38 (ref. 33).

CID analysis
CID boundaries were defined according to the directional preference 
score as described previously8 using a distance of 60 kb. The insulation 
score was also calculated as described previously7. CID boundaries 
were explored visually to look for potential common features including 
gene orientation and transcriptional level. Different parameters were 
compared using violin plots and Wilcoxon tests between border bins 
and non-border bins, including RNA level, relative enrichment of GC 
basepairs and RAD50 enrichment and evidencing no statistical differ-
ences. Permutation tests were also performed on CID localization to 
test whether loop anchors or certain gene types were enriched at CID 
boundaries, evidencing no statistical difference. Note that the 3 kb 
resolution of the analysis might prevent determining a small distinctive 
feature of the CID boundaries.

Loop analysis
Loops were identified for each condition using Chromosight13 as 
previously described8, retaining all the loops detected with a score 
higher than 0.3. Note that the number of reads used in Chromosight 
influences the power of loop detection, explaining why less loops are 
detected after the ActD and chloramphenicol treatments (two repli-
cates pooled) compared with the exponential-phase sample (three 
replicates pooled). Loop clusters were called when there were five or 
more loops anchored in the same bin or six or more loops anchored in 
three consecutive bins.

Statistical analysis
Two-sided Wilcoxon tests were used to compare the distance to 
the origin of replication, the RNA level and the RAD50 enrichment 
of genes, and the GC richness of bins from the HEID′ and the ROC.  
A non-parametric test was chosen because the variables are not nor-
mally distributed. We assumed the independence and equal variance 
of the tested parameters between genes.

Permutation tests
Various randomized permutation tests were performed to test whether 
specific genomic parameters were not randomly distributed along the 
chromosome. For all cases, the permutation procedure was repeated 
1,000 times, and the expected value was determined as the mean value 
of all the repeats for the genomic parameter of interest. To compute an 
empirical P value, we divided the number of permutation procedures 
in which the simulated value was the same as the real observed value 
by the number of the repeats.

To determine whether genes are randomly distributed in the HEID, 
we randomly permuted the localization of the HEID segments, keep-
ing the same segment number and length as observed. The number of 
genes from various gene groups located in the HEID was counted. To 
determine whether loops were more clustered than randomly expected 
and whether loops were anchored at specific gene groups, we randomly 
permuted the localization of the loops, keeping the same loop number 
and length. A loop was considered anchored at a specific gene group 
if at least one of the group members was present in the anchor bin.

MFA–seq
MFA was performed using Illumina-based next-generation sequenc-
ing. DNA was extracted from exponentially growing cells and the 
stationary-phase population, according to a previous study23 with 
modifications. The culture (10 m) was centrifuged and resuspended in 
300 µl NET buffer (50 mM Tris, pH = 8, 100 mM EDTA, 150 mM NaCl). 
Cells were lysed by adding 220 µl lysis buffer (50 mM Tris, pH = 8, 
100 mM EDTA, 150 mM NaCl and 5% SDS), supplemented with 1 µl of 
10 mg ml−1 RNase A and incubated for 20 min at room temperature.  
The mixture was then supplemented with 5 µl of 10 mg ml−1 proteinase K  
and incubated for 30 min at 65 °C. DNA was extracted at least twice 
with phenol:chloroform:isoamyl alcohol and once with chloroform, 
precipitated with ethanol and resuspended in 200 µl of 10 mM Tris, 
pH = 8. DNA libraries were prepared with the Nextera XT DNA Library 
Preparation Kit and paired-end sequenced on the Illumina NextSeq 
platform at the Center for Genomics and Bioinformatics at Indiana 
University. Read counts for exponentially growing cells were grouped 
into 1 kb bins. Normalization was performed as in ref. 34 to account for 
GC biases in sequencing. For each condition, the GC bias was modelled 
using a linear regression fitting the data (Supplementary Fig. 1). For  
each bin i, the normalized read count ni,normalized was calculated as  
ni,normalized = ni,observed − (ni,theoretical − naverage), where ni,observed is the observed 
number of reads for the bin i, ni,theoretical is the theoretical read count  
for the bin i calculated from the linear regression and naverage is the  
average number of reads across all the bins.

RNA-seq
RNA extraction was adapted to A. pernix from ref. 35, and spike-in 
normalization was adapted from ref. 36 to compare between sam-
ples. A. pernix (Ape) culture (10 ml) was mixed with an appropriate 
volume of stationary-phase S. acidocaldarius (Sac) such that volume 
Sac = 0.01 × volume Ape × OD600 Ape/OD600 Sac. The culture mix-
ture was passed through a 0.45 µM nitrocellulose filter. The filter was 
then placed in a microcentrifuge tube containing 600 µl lysis buffer 
(100 mM sodium acetate, pH = 5.2, and 2% SDS) and 600 µl phenol, 
pH = 4.3. The tube was vortexed for 2 min and centrifuged for 2 min 
at 14,900g. The aqueous phase was then extracted at least one addi-
tional time with acid phenol. The nucleic acids were precipitated with 
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isopropanol, resuspended in 51 µl H2O and treated with DNase (Invit-
rogen, amplification grade) according to the manufacturer’s instruc-
tions. The extracted RNA was further precipitated with isopropanol 
and resuspended in 20 µl H2O. The purified RNA was then directly 
used to prepare strand-specific libraries with the NEBNext Ultra II 
Directional RNA Library Prep Kit for Illumina (NEB) according to the 
protocol for purified mRNA or ribosomal RNA (rRNA)-depleted RNA in 
the manufacturer’s manual. The libraries were paired-end sequenced 
on the Illumina NextSeq platform at the Center for Genomics and 
Bioinformatics at Indiana University.

RNA-level analysis
Reads were mapped to A. pernix (accession NC_000854.2) and  
S. acidocaldarius (NC_007181.1) using Bowtie 2, version 2.4.1, with 
default parameters37 and counted using SeqMonk version 1.48, either 
over non-overlapping 3 kb windows or over genes. The read count 
was identical whether reads were aligned in parallel or sequentially to 
both chromosomes, except for the genes coding for 16S and 23S rRNA. 
Bowtie2 optimization efforts to differentiate between Aeropyrum and 
Sulfolobus rRNA genes were unsuccessful. Those genes or the windows 
containing them were therefore removed from further analysis. For 
window analysis, the spike-in normalization parameter was the average 
raw window count of S. acidocaldarius and the normalized read count 
(reads per spike-in) for A. pernix was the raw window count divided by 
the spike-in normalization parameter. For the gene analysis, the spike-in 
normalization parameter was the read-per-kilobase value, averaged 
over all genes of S. acidocaldarius and the normalized read count RPKSP 
for A. pernix was the read-per-kilobase value divided by the spike-in 
normalization parameter. Results were then averaged over replicates.

Differential RNA levels were analysed using the R package DESeq2 
version 1.34 (ref. 38), using spike-in normalized RPKSP values. The raw 
LFC and adjusted P value were subsequently used.

ChIP–seq
ChIP–seq was adapted to A. pernix from ref. 39. Cells were grown to 
OD600 ~0.3. The culture (40 ml) was cross-linked with either 1% or 
2.5% formaldehyde for 20 min at room temperature. The reaction was 
quenched with 100 mM and 300 mM glycine, respectively, for 10 min 
at room temperature. Fixed cells were collected by centrifugation, 
washed with 20 ml cold 1× PBS and resuspended in TBS-TT (20 mM 
Tris, pH = 7.4, 150 mM NaCl, 0.1% Tween-20 and 0.1% Triton X-100). 
Chromatin was fragmented with a Bioruptor (Diagenode) at medium 
power for 25 cycles (30 s on, 30 s off), and the extract was clarified by 
centrifugation. Immunoprecipitation was then performed as described 
in ref. 7. After phenol:chloroform:isoamyl alcohol extraction and iso-
propanol precipitation, immuno-precipitated DNA was resuspended 
in 50 µl TE. A total of 50 µl of ChIP reactions and 100 pg of input DNA 
were used to prepare libraries with the NEBNext Ultra II Library Prep Kit 
(NEB) according to the manufacturer’s instruction. DNA libraries were 
paired-end sequenced on the Illumina NextSeq platform at the Center 
for Genomics and Bioinformatics at Indiana University.

Reads were mapped to the A. pernix genome using Bowtie 2,  
version 2.4.1, with default parameters37 and counted using SeqMonk, 
version 1.48, for 500 bp non-overlapping windows. ChIP–seq coverage 
was divided by input coverage after normalizing for the total number 
of reads mapped to the chromosome. Correlation between the two 
fixation methods was high, and the two methods were considered as 
replicates and their score averaged. Analyses were also performed with 
each individual replicate and yielded similar results.

Core genome analysis
The core genome was determined at four different taxonomic levels 
(Aeropyrum only (A), Aeropyrum and Acidolobus (AA), Aeropyrum, 
Acidolobus and Pyrodictiaceae (AAP), Aeropyrum, Acidolobus, Pyrodic-
tiaceae and the rest of the Desulfurococcaceae (AAPD); Supplementary 

Table 1) using Get_homologues for protein-coding genes40. Clustering 
was performed with both orthoMCL and COGtriangle with standard 
parameters. Core clusters were the ones with proteins in all genomes 
for both methods.

Venn diagram analysis
Orthologous protein-coding genes shared by A. pernix K1 and S. acido-
caldarius DSM 639 were determined using Get_homologues40 using the 
orthoMCL algorithm with standard parameters.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
All sequencing data have been submitted to the NCBI Sequence 
Read Archive (SRA). Submission ID: SUB13894161. BioProject ID: 
PRJNA1027590; http://www.ncbi.nlm.nih.gov/bioproject/1027590.

Code availability
No custom code was generated for this work.
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