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Simultaneous spatiotemporal 
transcriptomics and microscopy of 
Bacillus subtilis swarm development reveal 
cooperation across generations

Hannah Jeckel    1,2,6, Kazuki Nosho    1,6, Konstantin Neuhaus    1,2, 
Alasdair D. Hastewell3, Dominic J. Skinner    4, Dibya Saha    1, Niklas Netter    1, 
Nicole Paczia    5, Jörn Dunkel    3   & Knut Drescher    1 

Development of microbial communities is a complex multiscale 
phenomenon with wide-ranging biomedical and ecological implications. 
How biological and physical processes determine emergent spatial 
structures in microbial communities remains poorly understood due to 
a lack of simultaneous measurements of gene expression and cellular 
behaviour in space and time. Here we combined live-cell microscopy 
with a robotic arm for spatiotemporal sampling, which enabled us to 
simultaneously acquire phenotypic imaging data and spatiotemporal 
transcriptomes during Bacillus subtilis swarm development. Quantitative 
characterization of the spatiotemporal gene expression patterns revealed 
correlations with cellular and collective properties, and phenotypic 
subpopulations. By integrating these data with spatiotemporal metabolome 
measurements, we discovered a spatiotemporal cross-feeding mechanism 
fuelling swarm development: during their migration, earlier generations 
deposit metabolites which are consumed by later generations that swarm 
across the same location. These results highlight the importance of 
spatiotemporal effects during the emergence of phenotypic subpopulations 
and their interactions in bacterial communities.

Dynamically evolving microbial communities with spatial structure 
are ubiquitous in nature, from the intestinal microbiota in humans to 
soil-based biofilms and bacterial swarms expanding across moist sur-
faces1–5. Spatiotemporal patterns in microbial communities can emerge 
for the arrangement of genotypes, for phenotypic subpopulations of 
the same genotype and for emergent community properties, such as 
resource gradients, biophysical properties and stress tolerance6–10. 

Pattern formation in microbial communities and other multicellular 
systems is a complex multiscale process influenced by cellular growth, 
division, differentiation, motility as well as many types of chemical and 
physical cell–cell interactions. All these factors can change in space 
and time due to the varying resource availabilities within developing 
communities11,12. Even for the simplest microbial communities, such 
as single-species bacterial swarms, the number and spatiotemporal 
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emerge over time, eventually resulting in a three-dimensional (3D) 
biofilm in the swarm centre and a region of highly motile, collectively 
moving bacteria in the cell monolayer at the swarm front23–27.

To simultaneously acquire spatiotemporal information of gene 
expression, cellular behaviour and multicellular dynamics during 
swarm expansion, we extended our previously developed adaptive 
microscope23 with a custom-built robotic sampling arm (Fig. 1a and 
Extended Data Fig. 1). The adaptive microscope enables us to acquire 
brightfield movies at single-cell resolution at a set of locations with 
varying radial position (p), at each stage of the swarm expansion. The 
software-controlled microscope adaptively expands the set of posi-
tions where movies are acquired depending on the swarm expansion, 
using a live feedback loop between image acquisition, image analysis 
and the motorized microscope. Immediately after a movie of the 
microscopic cell dynamics at a particular space–time location was 
acquired, the sampling tip of the robotic arm picked up 103–105 cells 
from the swarm at the same location, without disrupting the agar 
surface (see Supplementary Movie 2 and Extended Data Figs. 2–4). 
Cells collected on the tip were suspended directly in the lysis buffer 
and immediately frozen in liquid nitrogen until RNA isolation. This 
sample collection method enabled the isolation of intact RNA from a 
very low number of Gram-positive cells (~pg of mRNA), as the thawing 
process initiates cell lysis, which minimizes the incubation time for 
cell lysis and helps to preserve the RNA integrity. After quality controls 
and processing of isolated RNA to minimize potential sample- 
to-sample bias, we performed RNA-seq measurements that resulted 
in high genome coverage (3,932 distinct genes out of 4,342 possible 
genes in the genome and the plasmid pBS32 passed our detection limit 
(>10 reads in ≥2 samples)). Cells were only sampled from one half of 
the circularly symmetric swarm, while microscopy imaging was per-
formed on both halves of the swarm. Microscopy observations showed 
that the reduction in cell density at the position from which cells were 
acquired recovered within ~15 min. Comparing the microscopy results 
of both halves of the swarm revealed that our sampling procedure did 
not alter the swarm development: both halves of the swarm expanded 
equally fast and the microscopic dynamics of positions imaged in both 
halves were indistinguishable (Extended Data Fig. 5 and Supplemen-
tary Figs. 1 and 2).

Spatiotemporal phenotypic and transcriptomic 
characterization of swarm development
Using our adaptive microscope with the robotic sampling arm 
described above, we then obtained microscopic and macroscopic 
imaging data and simultaneously acquired cells for transcriptome 
measurements at ~100 defined spatial and temporal locations from a 
single developing swarm. We performed these measurements for n = 3 
independent replicates of swarm development and found consistent 
results across the replicates. The spatiotemporal transcriptome and 

variability of the parameters influencing community development 
lead to a degree of complexity that makes it difficult to disentangle 
which intracellular processes and cellular interactions determine the 
emergent spatial structure of the community.

To understand how spatial structure arises during bacterial com-
munity development, multiscale spatiotemporal measurements of 
intracellular states, cellular phenotypes and multicellular structures 
are required. While advances in fluorescence microscopy and increas-
ingly accurate image analysis tools have made it possible to simultane-
ously track single cells and the overall community structure in space 
and time13–16, methodologies for spatiotemporal measurements of 
intracellular states, such as transcriptomes, proteomes or metabo-
lomes, are only beginning to emerge. Recently, fluorescence in situ 
hybridization techniques with sequential rounds of labelling and imag-
ing have enabled ~100 simultaneous transcript levels to be detected 
in fixed bacterial communities17, and spatial mass spectrometry and 
Raman spectroscopy have enabled metabolite measurements in com-
munities at single-cell resolution18–21. However, spatiotemporal omics 
methods for live measurements on developing communities are still 
lacking. Furthermore, suitable data analysis concepts are required for 
integrating different types of spatiotemporal data to connect the gene 
expression level to the cellular and multicellular phenotypes.

Using Bacillus subtilis swarm development as a model system for 
the emergence of spatial structure in multicellular communities, we 
developed an experimental platform for the measurement of spati-
otemporal transcriptomes from live communities with high genome 
coverage, and the simultaneous acquisition of microscopy-based 
measurements of cellular phenotypes, multicellular phenotypes and 
the whole swarm development. By integrating these different levels of 
biological and biophysical information, we systematically uncovered 
spatiotemporally varying processes and properties of the swarm, and 
we identified different metabolic subpopulations within the swarm. 
Spatiotemporal measurements of metabolites that are secreted and 
consumed by the different subpopulations led us to discover spati-
otemporal cross-feeding interactions within the swarm.

Results
Simultaneous live-cell imaging and robotic sampling during 
swarm development
Swarm development was monitored after inoculating B. subtilis NCIB 
3610 cells onto a soft agar LB plate, which was incubated at 30 °C in a 
humidified chamber on a microscope. After an initial lag phase, during 
which the cells differentiated into the characteristic hyperflagellated 
swarmer cell type22,23, the swarm expanded from a diameter of 1 mm to 
60 mm within ~6 h, as shown in Supplementary Movie 1. During swarm 
expansion, the swarm displayed circular symmetry at the macroscopic 
level (Supplementary Movie 1). At the microscopic level, spatially sepa-
rated subpopulations with different cell shapes and motility behaviour 

Fig. 1 | Spatiotemporal transcriptome measurements and microscopy-
based phenotyping during Bacillus subtilis swarm development. a, A 
custom-built sampling robot is connected to an adaptive microscope, which 
enabled the synchronization of image acquisition and sampling of bacterial 
cells for transcriptome analysis. The robot collected cells from defined spatial 
and temporal locations within the developing swarm using custom-developed 
sampling tips. For each spatiotemporal sampling location, a brightfield 
microscopy video was acquired, depicting the behaviour of cells before their 
removal from the surface. Created using BioRender.com. b, Spatiotemporal 
transcriptome results are summarized in kymograph heat maps, with each 
coloured tile corresponding to one sample; the colour of each tile in the heat 
map indicates the expression level of a particular gene, LRNA. The ‘range’ value 
corresponds to the dynamic range of gene expression, defined as the ratio 
between the highest and lowest colour bar value, which are the 5th and 95th 
percentiles of the gene expression values, taking all three replicates into 
account (additional replicates shown in Supplementary Figs. 3–7). Three 

spatiotemporal heat maps depicting the expression pattern of genes related 
to biofilm development are shown: degU, bslA, epsA. c, Genes associated with 
osmoprotection: gbsA, opuBB, proH. d, Sporulation-associated genes: spo0A, 
sigF, kinE. e, Spatiotemporal gene expression heat maps for motility (flhO, sigD) 
and surfactin production (srfAA). f, PBSX prophage genes: xepA, xylA, xtmA. 
Thousands of additional spatiotemporal gene expression heat maps are available 
in our online dataset explorer. Replicates of genes displayed in b–f and other 
relevant genes are shown in Supplementary Figs. 3–21. g–k, Spatiotemporal 
phenotype heat maps, analogous to the gene expression heat maps in b–f. g, 
Ratio of non-motile cells to all detected cells in the field of view. h, Local biomass 
density, the mean fraction of area covered by cells in a circle around each cell´s 
centroid, is highest for late timepoints in the centre of the swarm. i, Average size 
of a B. subtilis cell. j, Average bacterial cell speed in space and time during swarm 
development. k, Rafting cells can be observed predominantly close to the swarm 
front. Similar spatiotemporal phenotype maps are available for 10 additional 
properties listed in Supplementary Table 2.

http://www.nature.com/naturemicrobiology
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cellular dynamics data were visualized using heat maps, where each tile 
of a heat map corresponds to one spatiotemporal location for which a 
transcriptome (Fig. 1b–f) and microscopy video (Fig. 1g–k) were meas-
ured. Results from one biological replicate are shown in Fig. 1, and Sup-
plementary Figs. 3–7 summarize corresponding measurements for the 
other biological replicates, as well as expression heat maps for genes 

from the same functional categories as those in Fig. 1. Spatiotemporal 
gene expression heat maps for genes related to additional biologi-
cal processes that are relevant in biological communities are shown 
in Supplementary Figs. 8–21. A principal component analysis of the 
spatiotemporal transcriptome data revealed that the transcriptomes 
from different replicate experiments showed no systematic differences 
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and that the transcriptome changes during swarm expansion were 
gradual without strongly separated clusters (Extended Data Fig. 6). 
The entire set of spatiotemporal heat maps for gene expression and 
microscopy-based measurements are available in a curated online 
data browser (https://drescherlab.org/data/swarm-transcriptome/) 
and we provide additional data formats as described in the data avail-
ability statement.

Gene expression patterns change gradually in space and time 
and vary between different genes and processes
With our spatiotemporal transcriptome heat maps and the excel-
lent bioinformatic tools that are available for B. subtilis28,29, we first 
inspected the expression of genes that are expected to play an impor-
tant role in B. subtilis swarm development on the basis of previous 
studies22,30–33, such as genes important for biofilm formation (Fig. 1b), 
osmoregulation (Fig. 1c), sporulation (Fig. 1d) and motility (Fig. 1e). As 
expected, the occurrence of non-motile cells (Fig. 1g) closely correlates 
with the spatiotemporal expression pattern of the biofilm regulator 
degU. Furthermore, the expressions of the biofilm matrix genes epsA 
and bslA follow a hierarchy whereby the eps operon is expressed earlier 
than bslA during biofilm formation, which starts in the centre of the 
swarm already at the beginning of the swarm expansion phase and 
spreads outwards (Fig. 1b). We also observed strong spatiotemporal 
expression patterns for osmoregulatory genes: the heat maps for gbsA 
and opuBB indicate a highly increased production of the compatible 
solute glycine betaine in the late centre of the swarm (Fig. 1c), which 
coincides with the locations of high cell density (Fig. 1h). However, 
the spatiotemporal pattern of proH expression, which can be used 
as a reporter for osmotic stress34, implies that cells only experience 
weak osmotic stress in the late outer region of the swarm and not in 
the region where biofilms are formed (Fig. 1c). Sporulation genes are 
expressed primarily in the late centre of the swarm, which coincides 
with the region that displays biofilm formation (Fig. 1d), and small cell 
sizes (Fig. 1i). The spatiotemporal expression patterns of genes that are 
important for biofilm formation and sporulation are therefore roughly 
consistent with expectations.

Surprisingly, the spatiotemporal expression patterns of motility 
genes and surfactin production (Fig. 1e) only weakly correlate with 
the actual bacterial motility speed (Fig. 1j), indicating that additional 
factors beyond motility and surfactin gene expression are important 
for swarming. In previous work we showed that physical cell–cell inter-
actions influence the microscopic behaviour of cells23, leading to raft 
formation in dense and motile regions, which enhances the individual 
cell speed. In contrast, subpopulations of non-motile elongated cells 
or cell chains producing matrix components23,35 are present in some 
regions of the swarm (Fig. 1g), which can act as obstacles that slow 
down motile cells. These mechanisms of increasing or decreasing cell 
speed are independent of motility gene expression and may therefore 
contribute to the qualitative difference between cell speed and motility 
gene expression patterns. Post-transcriptional regulation of flagella 
production and flagella activity36 can potentially also contribute to 
the observed qualitative difference between motility phenotype and 
gene expression. Temporally resolved measurements of transcrip-
tomes during the lag phase (Supplementary Fig. 21), which precedes 
the swarm expansion phase shown in Fig. 1, revealed that for the sur-
factin synthesis operon, the largest regulation occurs during the lag 
phase. The lag phase transcriptomes also showed that the regulation 
of flagella assembly genes during swarm development mainly occurs 
in terms of an upregulation during the lag phase, followed by a spa-
tiotemporally varying downregulation during the expansion phase  
(Supplementary Fig. 21).

Beyond the genes that are intuitively expected to be involved in 
swarm development (motility, biofilm, sporulation and osmoregula-
tion genes, as described above), we noticed that many more genes 
gradually varied in space and time from the late centre to the front of 

the swarm, and we also observed that many genes did not display any 
spatiotemporal pattern. Furthermore, we noticed that several genes 
that were previously not implicated in swarm development, such as 
genes coding for the PBSX prophage, displayed a different spatiotem-
poral pattern (Fig. 1f): these genes were expressed at low levels in the 
late centre of the swarm and at low levels at the front of the swarm, but 
at high levels in the intermediate region. A similar spatiotemporal pat-
tern, with high expression in the intermediate region and low expres-
sion in the centre and at the front, was also displayed by genes that are 
important for fatty acid synthesis (fabD, fabHA, fabHB, Supplementary 
Fig. 9) and surfactin production (srfAA-AD, Supplementary Fig. 10). 
Similarly, some phenotypic patterns, such as the fraction of cells in 
co-moving groups of cells (termed rafts, Fig. 1k), and the biomass 
density fluctuations (Supplementary Fig. 2) also displayed a distinct 
behaviour in the intermediate region between the swarm centre and 
the swarm front. The spatiotemporal gene expression and phenotypic 
patterns are therefore not always simple patterns that vary monotoni-
cally from the late centre of the swarm to the front of the swarm, and 
a more comprehensive analysis of the 3 ×3,932 gene expression heat 
maps and 3 ×15 phenotypic heat maps is required to systematically 
identify spatiotemporal patterns and pathways.

Computational analysis identifies distinct spatiotemporal 
gene expression patterns
To systematically characterize the different types of spatiotemporal 
patterns in gene expression and phenotypes during swarm develop-
ment, we performed an unbiased analysis of the spatiotemporal data. 
For this, each spatiotemporal swarming dataset was represented by 
the coefficients ci of the orthogonal basis functions Pi (Fig. 2a), which 
were tailored for the specific spatiotemporal swarming domain. Using 
the coefficients ci for each spatiotemporal dataset, we comprehensively 
compared how strongly each gene varies in space and time during 
swarming (Fig. 2b). For the 572 genes that displayed a high degree of 
spatiotemporal variation during swarming, we computed the similar-
ity in their spatiotemporal expression patterns, which revealed 6 clus-
ters of genes with different spatiotemporal expression patterns (Fig. 
2c, inset shows the number of genes with a particular pattern). To 
illustrate the 6 different patterns, the pattern corresponding to the 
mean of all coefficients is shown in Fig. 2d. Interestingly, all 6 patterns 
vary in space and time, and not only in space or time.

Spatiotemporal phenotype patterns correlate with 
metabolism gene expression patterns
To reveal connections between our measurements of gene expression 
and microscopy-based phenotypic properties, we performed a 2D 
embedding using multidimensional scaling for the spatiotemporally 
expressed genes and the phenotypic properties (Fig. 2e,f). This analy-
sis shows that the biomass density and the abundance of non-motile 
cells in the swarm are closely related and are close to patterns 5 and 6, 
whereas motility-related phenotypic properties, such as the cell speed, 
the abundance of rafting cells and the cell size are close to patterns 1 
and 2 (Fig. 2). By looking at the gene functions of the 50 closest genes 
to the phenotypic properties in Fig. 2f, we found that metabolic genes 
are most closely associated with the spatiotemporal dynamics of the 
phenotypic properties (Fig. 2f right). This led us to investigate the 
spatiotemporal changes in metabolism during swarm development, 
with the aim of understanding how and why metabolic changes occur 
in space and time, and how they influence swarm development.

Different metabolic states emerge in different spatiotemporal 
regions of the swarm
As glucose and malate are the preferred carbon sources of B. subti-
lis37, we studied the spatiotemporal organization of glucose and 
malate utilization (Fig. 3). Glucose is only present at very low levels 
in LB38, and consequently we found that glucose uptake genes such 
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plot (right).
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as ptsG and ptsH have a weak spatiotemporal expression pattern and 
relatively low fold-change between minimum and maximum expres-
sion levels (Fig. 3 top right, additional replicates in Supplementary  
Fig. 11). In contrast, genes related to malate uptake and its utilization are 
strongly differentially regulated in space and time (Fig. 3 top left and 
Supplementary Fig. 12), which is consistent with our measurements of 
malate concentrations in LB, described further below and in Fig. 4. The 
malate transporter gene maeN is expressed 14-fold higher at the front 
compared with the swarm centre (Fig. 3 top left). Among genes coding 
malic enzymes that convert malate to pyruvate, maeA, ytsJ and mleA 
are highly expressed at the swarm front or in the intermediate region, 
although one malic enzyme-coding gene, malS, has an opposite pattern 
with a slightly higher expression at the late centre of the swarm (Fig. 3 
left). Our transcriptome data indicate that at the swarm front, where 
cells experience a microenvironment with unconsumed LB medium, 

malate is taken up and processed into pyruvate, coupled with gluco-
neogenesis and glycolysis reactions to obtain energy via substrate-level 
phosphorylation despite the presence of oxygen (Supplementary Fig. 
13). Previous measurements in liquid culture conditions with malate as 
the sole carbon source and in the presence of oxygen have shown that 
following malate uptake, excess pyruvate is secreted37.

In contrast to malate uptake, genes involved in the tricarboxylic 
acid (TCA) cycle mostly show a stronger expression at the late swarm 
centre (Fig. 3 bottom and Supplementary Fig. 14). For example, citZ, 
which is often the rate-limiting gene of the TCA cycle39,40, displays a 
38-fold higher expression in the swarm centre compared with the 
swarm front (Fig. 3). These data indicate that cells at the swarm centre 
perform different metabolism than the cells at the swarm front: cells at 
the swarm centre produce energy mainly by running the TCA cycle and 
aerobic respiration (Supplementary Fig. 15). Interestingly, we noticed 
that the genes involved in pyruvate uptake, particularly the transporter 
pftAB41,42, and to a lower degree also the two-component system lytST 
are upregulated in the swarm centre (Fig. 3 right and Supplementary 
Fig. 16), similar to the TCA cycle genes. On the basis of this observation, 
and the speculation that pyruvate is probably secreted at the swarm 
front after malate uptake and utilization, we hypothesized that the fol-
lowing spatiotemporal metabolic interaction could take place within 
the developing swarm: cells at the swarm front rapidly consume malate 
and probably secrete pyruvate and other fermentation metabolites 
(Supplementary Fig. 17); these secreted metabolites would remain in 
the agar across which the swarm expands, and the next generation of 
cells that moves across the same location in the agar can potentially 
use these metabolites to fuel the TCA cycle.

Spatiotemporal metabolome measurements reveal 
spatiotemporal cross-feeding
To directly test this hypothesis, we performed additional experiments 
to measure the spatiotemporal concentration of extracellular metabo-
lites in the agar beneath the developing swarm. For these experiments, 
swarms were grown for different durations (10 timepoints) before care-
fully removing all cells from the agar surface and extracting metabolites 
from a small amount of agar from up to 3 different spatial positions (Fig. 
4a,b) for n = 4 independent replicate experiments. After a metabolite 
extraction process (see Methods), metabolites were measured with 
a targeted approach via mass spectrometry. The results for several 
metabolites are shown in Fig. 4c–e, and measurements for additional 
compounds are shown in Extended Data Fig. 7.

The extracellular metabolite concentration time series at the 
three different spatial positions within the swarm revealed that some 
carbon sources are consumed until they are depleted, as the cells 
move across the spatial locations: initially the cells consume succinate 
(Fig. 4c), then malate (Fig. 4d) and several amino acids (see Extended 
Data Fig. 8 for amino acid measurements, and Supplementary Fig. 18 
for amino acid uptake and synthesis gene expression). The extracel-
lular pyruvate concentration, however, displays a different pattern. 
Initially, there is a very low concentration of pyruvate present in the 
agar before it is colonized. At very early times during swarm expan-
sion, cells at the swarm front (which is very close to the swarm centre 
at these times) secrete pyruvate, which builds up at the swarm centre 
until it is consumed again at later times (Fig. 4e). The same pattern of 
pyruvate secretion followed by consumption then occurs with a time 
shift of ~2 h at the other spatial positions, which are separated from each 
other by 10 mm (Fig. 4e). The timepoint at which the concentration of 
pyruvate starts to decline coincides with the depletion of malate and 
succinate, indicating that pyruvate is only consumed once the other 
nutrients are becoming scarce. A similar pattern of metabolite secre-
tion followed by consumption, with a 2-h time shift at different spatial 
locations, also occurs for fumarate (Extended Data Fig. 7). Diffusion 
of pyruvate or fumarate over the 10 mm distance between sampling 
positions can be estimated to take ~7 h (significantly longer than the 
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observed 2-h time shift for the concentration profiles), and there is 
a pattern of diverging concentrations around t = 5 h, indicating that 
diffusion cannot be the dominant mechanism for determining the 
pyruvate and fumarate concentration dynamics. Instead, secretion 
and consumption of these metabolites are plausible explanations for 
causing the concentration dynamics.

Taken together, these extracellular metabolite measurements 
confirm our hypothesis for a spatiotemporally organized cross-feeding 
of pyruvate: cells at the swarm front consume malate, succinate and 
other potential preferred carbon sources, and secrete pyruvate. The 
secreted pyruvate is then utilized by cells that move over the same 
location in the agar at a later time, when malate and other preferred 
carbon sources are depleted. It is worth noting that the cells that secrete 
pyruvate are not the same cells that will consume pyruvate later; due 
to the movement of the swarm front, highly motile cells close to the 
front continue to move outwards as they leave pyruvate behind and 
the population of cells that feed on pyruvate are a mixture of cells that 
did not move with the swarm front and cells that migrated from more 
central regions of the swarm. The dynamic spatial structure of both the 
swarm community and its environment therefore plays a crucial role 
for the cross-feeding observed in this system, making it a truly spati-
otemporal multicellular phenomenon, which is distinct from temporal 
pyruvate cross-feeding in liquid cultures41–43. A similar spatiotemporal 
cross-feeding interaction also occurs for fumarate (Extended Data  

Fig. 7). At the locations where pyruvate and fumarate are consumed, 
the spatiotemporal transcriptome data indicate that genes involved 
in the TCA cycle and respiration are upregulated (Supplementary  
Figs. 14 and 15), suggesting that the cells at these locations generate 
energy via oxidative phosphorylation.

Discussion and Conclusions
Our analysis revealed all spatiotemporally regulated genes in Bacillus 
subtilis swarm development. We identified three major regions of the 
swarm with qualitatively different gene expression profiles and phe-
notypes: the region just behind the swarm front, the late swarm centre, 
and the intermediate spatiotemporal region between the front and the 
late swarm centre. At the swarm front, cells consume their preferred 
carbon sources, which are succinate and then malate in LB medium. At 
the swarm front, the cells also secrete pyruvate and fumarate, which are 
left in the agar across which the cells migrate. Our microscopy videos 
show that although the cells at the very edge of the swarm front are usu-
ally stuck or non-motile, the cells directly behind the leading edge are 
highly motile and frequently form rafts. Further inwards, motile cells 
coexist with non-motile elongated cells. In this intermediate region, 
biofilm matrix genes are beginning to be expressed, surfactin and fatty 
acids are synthesized, and the PBSX prophage is induced. In the late 
swarm centre, the preferred carbon sources have been depleted and 
cells consume pyruvate and fumarate, which were left behind in the 
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were removed from the swarming plate before extracting a small piece of agar 
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the agar and measured using mass spectrometry. Created using BioRender.com. 
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acquired for a longer period of time. c,d, Extracellular malate and succinate 
concentrations in the agar decreased to zero with increasing time, indicating that 
these compounds were consumed by the cells and eventually depleted. Colours 
indicate the 3 different sampling positions as described in a. e, The concentration 
of pyruvate increased over time before decreasing again, indicating that this 
metabolite was deposited by cells growing in malate- and succinate-rich medium, 
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agar by the preceding generations. As described previously22,23, cells 
in the late swarm centre form long threads that are present in mul-
tiple layers, resulting in a 3D biofilm. In previous work it was shown 
that these threads are cell chains22. Cell chain formation is associated 
with a low expression of the autolysin gene lytF44, which is consistent 
with the low expression levels of lytF we observed in the biofilm region 
(Supplementary Fig. 16). Between the gaps in the biofilm, a few short 
and motile cells are present. The three major regions of the swarm 
with distinct physiology and cellular behaviour display gradual transi-
tions between each other and no sharp boundaries. We therefore do 
not expect that higher spatiotemporal resolution of transcriptomes 
would reveal further distinct regions of major consequence for the 
swarm development.

However, it is possible that phenotypic subpopulations that coex-
ist within the same spatiotemporal locations23,35 are important for 
driving the swarm expansion. For example, in the late swarm centre, 
the long cell chains coexist with small motile cells, which are not dis-
tinguished by our transcriptome measurements. Furthermore, there 
are probably phenotypic differences of coexisting cells within the 3D 
biofilm due to resource gradients6,45–47. Similarly, in the intermediate 
region, long non-motile cells that sometimes form stationary clusters 
coexist with highly motile cells, yet again our transcriptome measure-
ments do not distinguish these subpopulations. Potentially, these 
subpopulations can be distinguished by single-cell RNA-seq techniques 
that have emerged for bacteria, albeit with low genome coverage in 
their current versions17,43,48,49.

In summary, we reported simultaneous measurements of densely 
sampled spatiotemporal transcriptomes and microscopy-based bio-
physical properties in a developing microbial community. Comparing 
gene expression patterns and phenotype patterns, we observed a 
surprising disconnection between motility gene expression and cell 
speed, indicating the substantial influence of mechanisms beyond 
transcriptional regulation. By combining our spatiotemporal gene 
expression dataset with spatiotemporal metabolite measurements, 
we further discovered a spatiotemporally organized cross-feeding of 
pyruvate and fumarate, which are secreted by cells at the swarm front 
that perform substrate-level phosphorylation for energy generation. 
The secreted pyruvate and fumarate are left behind in the agar across 
which the cells migrate and are then consumed by a later generation of 
cells to run the TCA cycle. Due to the widespread conservation of the 
metabolic pathways involved in this spatiotemporal cross-feeding pro-
cess, we expect this process to be ubiquitous for expanding microbial 
communities. More generally, the multilevel spatiotemporal datasets 
made available through this study provide the basis for the develop-
ment of detailed spatiotemporal models that will connect gene expres-
sion, cellular phenotypes and biophysical dynamics within bacterial 
communities.

Methods
Swarming assay
All experiments were performed with a naturally competent deriva-
tive of the undomesticated B. subtilis NCIB 3610 strain, carrying the 
comIQ12L allele50. Bacterial cultures for swarm inoculation were grown 
in Luria-Broth (LB) medium (Carl Roth, X968.3) for 16 h at 37 °C with 
shaking at 220 r.p.m. Swarming plates containing 9 ml of 0.5% Bacto 
agar (BD, 214010) in LB in 9 cm Petri dishes were dried for 10 min with 
an open lid at room temperature and then kept upside down at 37 °C 
for an additional 10–30 min before inoculation. Cells were transferred 
onto the swarming plate by dipping a sampling tip (see description of 
robotic sampling tips below) into the overnight culture and then lightly 
touching the surface of the swarming plate with this tip. This procedure 
resulted in a culture spot of diameter ~1 mm containing 3,000–5,000 
cells on the agar surface.

After inoculation, the swarming plate was moved into a humidity 
chamber whose bottom was a microscope stage insert. This humidity 

chamber contained water-filled basins to ensure high humidity. The 
humidity chamber and large parts of the inverted microscope (Nikon 
Ti-E) were enclosed by a microscope incubator (Okolab). During the 
swarming assay, the temperature inside the Okolab enclosure was kept 
constant at 30 °C. The humidity chamber containing the agar plate 
and the stage insert was mounted on a motorized xy stage (Applied 
Scientific Instrumentation). Brightfield images were acquired using 
a ×16 water-immersion objective with numerical aperture 0.8 and an 
Andor Zyla 4.2PLUS sCMOS camera at 100 fps.

Robotic sampling of cells for transcriptome measurements 
and imaging of cells during swarm development
We performed automated sampling of cells from the developing 
swarm using a custom-built robotic setup, which consisted of several 
motorized linear or rotational stages that collectively formed a robotic 
sampling arm, as schematically illustrated in Extended Data Fig. 1. All 
stages within the robotic sampling arm were controlled by the same 
Matlab algorithm that also controlled the motorized microscope xy 
stage, microscope camera and microscope focus to ensure that the 
robotic sampling arm is synchronized with the microscope movement 
and imaging.

One robotic sampling cycle consists of the following processes: 
Stages 1, 2 and 3.4 (stage numbers are defined in Extended Data Fig. 1) 
were translated such that a sampling tip was picked up from the tip box 
onto the tip holder attached to stage 3.4. Using rotational stage 3.3 and 
stage 1, the tip was then transported to the xy stage of the microscope 
where the swarming plate is located. The sampling tip was moved into 
the humidity-controlled incubation enclosure on the microscope xy 
stage (within which the swarming plate is located) through a hole in 
the cover of the enclosure, which can be opened and closed by stage 
4. The sampling tip was then brought into the correct xy position for 
picking up cells using stages 1, 3.1 and 3.4, lowered onto the sample 
and brought in contact with the swarm surface by movement of stage 
3.2, using live image analysis of the microscope camera’s field of view. 
After establishing contact with the swarm surface, the tip was kept at 
the surface for ~20 s before reversing the movement to retrieve the 
sampling tip. The duration for which the tip was in contact with the 
swarm surface was adapted according to the sampling position, with 
less contact time for dense regions. Control experiments using count-
ing of colony forming units have shown that the sampling tip after 
this maneuver contains 10³–105 cells. Finally, by moving stage 3.5, the 
tip was moved to the sample box and ejected into a 1.5 ml Eppendorf 
tube containing 50 µl of lysis buffer (40 U µl−1 Ready-lyse lysozyme 
(Lucigen, R1804M), 0.04 U µl−1 SUPERase in RNase Inhibitor (Thermo 
Fisher, AM2694), 10 mM Tris, adjusted to pH 8.0 with HCl (Thermo 
Fisher, 15568025), 1 mM EDTA (Thermo Fisher, AM9261)). The 50 µl of 
lysis buffer covered the cell-containing part of the tip. The Eppendorf 
tube was immediately manually collected, closed and snap-frozen 
in liquid nitrogen, followed by storage at −80 °C until RNA isolation. 
The Eppendorf tube containing the lysis buffer was kept on ice until 
a few minutes before being inserted into the sample ejection box on 
the robot. To maintain the low temperature of the lysis buffer dur-
ing the time that it spends in the warm environment surrounding 
the microscope, Eppendorf tubes were kept in an ice-cold aluminum 
block, which was surrounded by isolation material. The aluminum 
block contains slots for up to six Eppendorf tubes and the aluminum 
block was exchanged every 5–8 min with an identical copy previously 
resting on ice. These steps to ensure a constant low temperature of the 
lysis buffer were necessary to retain the enzyme activity and minimize 
transcriptome changes and RNA degradation.

Manufacturing of the sampling tips for the robotic arm: We 
designed custom sampling tips to avoid scratches in the agar surface 
during the sampling procedure, which would alter the swarm devel-
opment. These sampling tips consisted of a standard Eppendorf 10 µl 
pipette tip dipped into polydimethylsiloxane (PDMS, SYLGARD 184, 
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Dow Corning) to produce a drop at the tip edge. To ensure reproducible 
PDMS drop sizes on the tip, custom holders for dipping 48 pipette tips 
simultaneously into a levelled bath of liquid PDMS were designed. The 
PDMS on the tips was then cured at 50 °C for 24 h. The cured sampling 
tips were then sterilized by dipping the tips into 70% ethanol, followed 
by drying at room temperature in the closed tip rack for 2 h. The steri-
lized sampling tips were used within 24 h.

Robotic sampling procedure in space and time: After the inocula-
tion of the swarming plate as described in the section ‘Swarming assay’, 
growth of the cells was monitored by brightfield imaging until the 
end of the lag phase was reached. Once the swarm started expanding, 
robotic sampling was initiated. For the whole duration of the swarm 
expansion, until a final swarm diameter of 6 cm was reached, sets of 
spatially separated samples were acquired in 15–20-min intervals. 
For each set of spatially separated samples, a line was drawn from the 
centre of the swarm to the outer edge of the swarm, and samples were 
collected from up to 9 regularly spaced positions along this line (the 
exact number of sampled positions depends on the diameter of the 
swarm at any given time, and the spacing between sampling positions 
was at least 1 mm). The time for each sample to be acquired by the robot 
was ~30 s. To avoid sampling the same spot within the swarm too many 
times and therefore causing disruption to this area of the swarm, the 
innermost sample was chosen with a distance of 1.5 mm to the point of 
inoculation, and the angle between the x axis of the microscope stage 
and the line at which samples were taken was adapted by 30° after 
each run such that a sampling line with the same angle was only used 
for every 8th set of spatially separated samples. Using this procedure, 
samples were acquired from only half of the swarm area, whereas the 
other half of the swarm was untouched by the sampling tip. Immedi-
ately before and after sampling, an overview image of the sampling 
area was taken to document the impact of the sampling process on the 
swarm (Extended Data Fig. 4). These images were also used to estimate 
the number of cells extracted.

In addition to acquiring brightfield microscopy videos from the 
sampling location before sampling, we also acquired videos at spatial 
locations between the sampling locations. Furthermore, as control 
experiments, microscopy videos were acquired at corresponding 
spatial locations on the half of the swarm area that was untouched by 
the robotic sampling tip to determine whether the half of the swarm 
from which samples were acquired for transcriptome measurements 
developed differently from the half of the swarm that was untouched 
by the sampling tip.

Sampling of cells during the lag phase for transcriptome 
measurements before swarm expansion
As the number of bacterial cells present on the agar surface during 
the lag phase is low and cell density plays an important role for the 
differentiation of cells during this period (for example, surfactin secre-
tion, which is necessary to exit the lag phase, is controlled by quorum 
sensing), it was not possible to continuously acquire samples from the 
same swarm during the lag phase. Instead, several swarm plates were 
inoculated and incubated at the same time, and any given plate was only 
used for sampling once. To achieve a high reproducibility of lag phase 
development across the different plates, swarms were inoculated on 
single-well plates using the Echo 525 Acoustic liquid handler (Beckman 
Coulter, 001-10080) using an inoculation volume of 50 nl.

To collect cells from these plates, a small volume of lysis buffer 
previously kept on ice (3–4 µl) was pipetted onto the swarm surface 
and immediately retrieved by pipetting back up. This process of 
up-and-down pipetting was repeated 3 times to increase the number 
of collected cells. To increase the number of collected cells further, the 
process was repeated for several swarm colonies, and samples from the 
same timepoint were pooled in a final volume of 50 µl of lysis buffer, 
which was then immediately snap-frozen in liquid nitrogen, followed 
by storage at −80 °C until RNA isolation.

RNA isolation and sequencing
Our experiments yielded two types of sample, which were snap-frozen 
in liquid nitrogen and then stored at −80 °C until RNA isolation. Sample 
type A: cells from the spatiotemporal sampling experiments during the 
swarm expansion phase, for which the cells are located on a sampling 
tip submerged in 50 µl of lysis buffer within an Eppendorf tube. Sample 
type B: cells from the temporal sampling experiments during the lag 
phase, for which the cells were directly collected in 50 µl of lysis buffer 
within an Eppendorf tube. In both cases, samples were thawed at room 
temperature, followed by incubation at room temperature for 5 min, 
interrupted every 1 min by vortexing to ensure complete lysis of cells. 
Then, the tip was removed and total RNA was extracted from this lysate 
using the hot SDS/hot phenol method51 with some modifications as fol-
lows. To the lysate, we added 6 µl of 1 M sodium acetate (pH 5.5, Sigma, 
S7899) and 62.5 µl of Roti-Aqua-Phenol (Carl Roth, A980) and incubated 
the mixture at 65 °C for 8 min. The whole mixture was transferred to a 
phase lock gel tube (VWR, 733-2478), followed by the addition of 62.5 µl 
chloroform (Sigma, C2432). The mixture was centrifuged at 21,130 × g 
for 15 min at 12 °C. The aqueous phase (~65–70 µl) was transferred to a 
new 0.2 ml PCR tube. RNA in the solution was purified by adding 120 µl 
of Agencourt RNAClean XP kit (Beckman Coulter, A63987). Samples 
were then treated with TURBO DNase (Thermo Fisher, AM2238) and 
the total RNA quality was analysed with a TapeStation 4150 (Agilent, 
G2992AA). According to the TapeStation results, several RNA samples 
with relatively high concentrations were diluted to ensure that a con-
sistent amount of RNA was used for further processing to minimize 
sample-to-sample bias. For ribosomal RNA (rRNA) depletion in the 
total RNA, we used the ‘do-it-yourself’ method52 with reduced reaction 
volume, followed by purification of rRNA-depleted RNA using Agen-
court RNAClean XP kit (Beckman Coulter, A63987). Sequencing library 
preparation was performed using NEBNext Ultra II Directional RNA 
Library Prep with sample purification beads (NEB, E7765S). Sequencing 
for swarming cells was carried out at the Max Planck Genome Centre 
(Cologne, Germany) using an Illumina HiSeq 3000 with 150 bp single 
reads (aiming for >5 M reads per library). Sequencing for lag-phase cells 
before swarm expansion was carried out at the Basel Genomics Facility 
(Basel, Switzerland) using an Illumina NovaSeq 6000 with 101-bp single 
reads (aiming for >5 M reads per library).

Extracellular metabolite measurements during swarm 
development
To measure extracellular metabolites in the agar underneath the cells, 
swarms were allowed to develop to the desired diameter. Then, cells 
were removed from the agar by gently scratching the surface with a 
razor blade. At specific radii, a biopsy of the agar was acquired (the 
full depth of the agar) to acquire ~20 mg of agar, which was placed in 
an Eppendorf tube. Samples were weighed using a fine scale, and the 
appropriate amount of metabolite extraction solution (10 µl mg−1) 
containing 50% TE buffer (10 mM Tris, adjusted to pH 7.0 with HCl 
(Thermo Fisher, AM9850G), 1 mM EDTA (Thermo Fisher, AM9261)) and 
50% methanol was added. Eppendorf tubes were then kept shaking at 
4 °C for 2 h and afterwards centrifuged at 4 °C for 10 min at 21,130 × g. 
The liquid phase was then filtered using a 0.22 µm filter (regenerated 
cellulose, 4 mm diameter, Phenomenex, AF0-3203-52) and stored at 
−20 °C until further processing by mass spectrometry. In addition to 
the dilution of the samples by 1:10 resulting from adding the extraction 
solution, the extracts were diluted further by 1:20 for amino acid meas-
urements to optimize the detection by the instruments. For organic 
acids, the extracts were used without further dilution.

Amino acids. Quantitative determination of amino acids was per-
formed using HRES LC–MS. The chromatographic separation was 
performed on an Agilent Infinity II 1260 HPLC system using a ZicHILIC 
SeQuant column (150 × 2.1 mm, 5 μm particle size, 100 Å pore size) 
connected to a ZicHILIC guard column (20 × 2.1 mm, 5 μm particle size) 
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(Merck KgAA). We used a constant flow rate of 0.3 ml min−1, with mobile 
phase A being 0.1% formic acid in a 99:1 mixture of water:acetonitrile 
(Honeywell) and phase B being 0.1% formic acid in a 99:1 mixture of 
acetonitrile:water (Honeywell) at 25 °C. The injection volume was 
1 µl. The profile of the mobile phase consisted of the following steps 
and linear gradients: 0–8 min from 80% to 60% B; 8–10 min from 60% 
to 10% B; 10–12 min constant at 10% B; 12–12.1 min from 10% to 80% B; 
12.1–14 min constant at 80% B. An Agilent 6470A mass spectrometer 
was used in positive mode with an electrospray ionization source and 
the following conditions: ESI spray voltage 4,500 V, nozzle voltage 
1,500 V, sheath gas 400 °C at 12 l min−1, nebulizer pressure 30 psig and 
drying gas 250 °C at 11 l min−1. Compounds were identified on the basis 
of their mass transition and retention time compared to standards. 
Chromatograms were integrated using MassHunter software (Agilent). 
Absolute concentrations were calculated on the basis of an external 
calibration curve prepared in the sample matrix. To mimic the sample 
matrix, an aliquot of freshly prepared agar was treated similar to the 
extraction performed on samples for exometabolome determination. 
Mass transitions, collision energies, cell accelerator voltages and dwell 
times were optimized using chemically pure standards. Parameter set-
tings of all targets are given in Supplementary Table 1.

Organic acids. Quantitative determination of organic acids was per-
formed using LC–MS/MS. The chromatographic separation was per-
formed on an Agilent Infinity II 1290 HPLC system using a Kinetex EVO 
C18 column (150 × 2.1 mm, 3 μm particle size, 100 Å pore size, Phenom-
enex) connected to a guard column of similar specificity (20 × 2.1 mm, 
3 μm particle size, Phenomoenex). We used a constant flow rate of 
0.2 ml min−1, with mobile phase A being 0.1% formic acid in water and 
phase B being 0.1% formic acid in methanol (Honeywell) at 25 °C. The 
injection volume was 0.5 µl. The profile of the mobile phase consisted 
of the following steps and linear gradients: 0–2.5 min constant at 0% B; 
2.5–6 min from 0% to 100% B; 6–8 min constant at 100% B; 8–8.1 min 
from 100% to 0% B; 8.1–12 min constant at 0% B. An Agilent 6495 ion 
funnel mass spectrometer was used in negative mode with an electro-
spray ionization source and the following conditions: ESI spray voltage 
2,000 V, nozzle voltage 500 V, sheath gas 260 °C at 10 l min−1, nebulizer 
pressure 35 psig and drying gas 100 °C at 13 l min−1. Compounds were 
identified on the basis of their mass transition and retention time com-
pared to standards. Chromatograms were integrated using MassHunter 
software (Agilent). Absolute concentrations were calculated on the 
basis of an external calibration curve prepared in the sample matrix. 
To mimic the sample matrix, an aliquot of freshly prepared agar was 
treated similar to the extraction performed for exometabolome deter-
mination. Mass transitions, collision energies, cell accelerator voltages 
and dwell times were optimized using chemically pure standards. 
Parameter settings of all targets are given in Supplementary Table 1.

Transcriptome data analysis
For each of the FASTQ files from the 284 samples of the swarm expan-
sion phase (3 replicates: replicate 1 contained 96 samples, replicate 2 
contained 92 samples, replicate 3 contained 96 samples), we performed 
read trimming using Trimmomatic (v.0.39)53 and mapped the trimmed 
reads to the B. subtilis NCIB 3610 reference genome and plasmid (NCBI 
accession number: NZ_CP020102 and NZ_CP020103) using HISAT2 
(v.2.2.1)54 in single-end mode. Reads mapped to all functional genes 
were counted using featureCounts (v.2.0.1)55 with fractional counting 
for multimapping and multi-overlapping reads (−OM−−fraction) in a 
strand-specific manner (−s 2). Any short transcripts such as small RNA 
or transfer RNA should not be detected because the above-described 
RNA purification steps using RNAClean XP kit can only retain tran-
scripts bigger than 200 nt. Reads that were mapped to protein-coding 
sequences, non-coding RNAs, transfer-messenger RNA, signal recogni-
tion particle RNA and ribonuclease P RNA (in total 4,342 genes) were 
used for downstream analyses.

Raw read counts of the expansion phase samples were loaded 
into R and filtered by keeping all genes for which there were at least 
2 samples with a read count of at least 10, leaving 3,932 genes out of 
4,342 genes. After further removing samples with total read counts of 
<106 mapped to those genes, there were 278 samples left: 95 samples 
in replicate 1, 92 samples in replicate 2, and 91 samples in replicate 3, 
which were analysed further. We then generated a DGEList object 
containing all 278 transcriptomes and applied the TMM normalization 
method implemented in edgeR (v.3.26.8)56,57 for samples pooled from 
all three experiments, using the calcNormFactors function to enable 
sample-to-sample comparison of the data. All subsequent analysis was 
then performed with normalized log2 values.

For Supplementary Fig. 21, we performed the same processing 
for the FASTQ files of the 33 lag phase samples and then performed 
the normalization using both the 278 expansion phase and 33 lag 
phase samples, following the same criteria. This resulted in a final 
dataset comprising 4,083 genes across 311 samples. The normaliza-
tion in Supplementary Fig. 21 therefore differs from that used for all  
other figures.

Spectral representation of spatiotemporal gene expression
The transcriptome measurements and the microscopy-based measure-
ment of phenotypic properties were sampled at a set of radial space–
time points {rl=== (tl,pl) }

L
l=1, where tl is the time and pl is the radial position 

from the centre of the swarm at which the sample was acquired. For 
each gene, we have a sample vector gn with length L, where the l th entry 
is the gene expression at the point rlll. Similarly, for each phenotypic 
property, we have a sample vector Φn with length L.

To form a spectral representation across the three replicates, we 
fit a common domain to the three replicates. Experimentally, the radial 
position of the boundary bl of the swarm at each time tl was determined 
automatically by detecting the presence and location of bacteria in the 
microscopy field of view and moving the microscope stage until the 
field of view was split between colonized agar containing bacteria and 
uncolonized agar in approximately equal proportions. We simultane-
ously fitted a boundary of the form b (t) = b0 exp (t/τ) to all replicates 
by first minimizing the loss function,

L (τ,b(1)0 ,b(2)0 ,b(3)0 ) =
3
∑
k=1

L(k)

∑
l=1

(b(k)i − b(k)0 exp (t(k)l /τ))
2

(1)

where superscript (n) denotes the index of the three different replicates. 
This exponential fit approximates the experimental data very well 
(Extended Data Fig. 9a).

To obtain non-dimensional data, we rescaled data as follows. Let 
r  be the index corresponding to the largest b(k)0 ; we defined the time 
shift t(r)s = t(r)0  and scaled the initial value b0 = b(r)0 exp (t(r)s /τ). The other 
time shifts are given by

t(k)s = τ [log (b(r)0 ) − log (b(k)0 )] + t(r)s . (2)

We then non-dimensionalized the data ( ̃• variables) using 
̃tl = (tl − t

(k)
s ) /τ  and p̃l = pl/b0. The domain boundary is then given by 

0 ≤ ̃t ≤ T  and 0 ≤ ̃r ≤ exp ( ̃t) where T  is maximum non-dimensional time 
present in all three replicates. Data points that lay outside the domain 
after rescaling were not used in the spectral representation. The 
non-dimensionalized domain and how the individual sampling data 
points are distributed within this domain are shown in Extended Data 
Fig. 9b.

We built a domain-specific orthogonal polynomial basis Pm ( ̃t, p̃)
M
m=0 

by applying Gram–Schmidt orthogonalization58 to the monomial set,

{1, ̃t, p̃, ̃t2, ̃tp̃, p̃2,…}, (3)

under the inner product
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⟨f, g⟩ = ∫
T

0
d ̃t∫

exp( ̃t)

0
d ̃re− ̃tfg. (4)

The space–time dependence of each gene was compressed by 
expanding each sample vector,

gn =
M
∑
m=0

cm,nPm (5)

where Pm is the length L vector formed by evaluating Pm ( ̃t, p̃) at each 
non-dimensional space–time point ( ̃tl, p̃l). The coefficients were fitted 
using least squares on the matrix equation,

gn = [ P0 P1 ⋯ PM ]

⎡
⎢
⎢
⎢
⎢
⎢
⎣

c0,n
c1,n
⋮

cM,n

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(6)

for each gene and property.
To combine information from all replicates, we fitted a single coef-

ficient vector for the replicates by stacking the least square problems 
on top of each other to form a single linear regression problem,

⎡
⎢
⎢
⎢
⎢
⎣

g(((1)))n

g(((2)))n

g(((3)))n

⎤
⎥
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎢
⎣

P(1)0 P(1)1 ⋯ P(1)M

P(2)0 P(2)1 ⋯ P(2)M

P(3)0 P(3)1 ⋯ P(3)M

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

̄c0,n
̄c1,n
⋮

̄cM,n

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (7)

from which a smooth average spatiotemporal gene expression was 
formed,

ḡn( ̃t, p̃) =
M
∑
m=0

̄cm,nPm( ̃t, p̃). (8)

The same procedure was also used to produce average properties 
Φ̄n.

Spatiotemporal pattern identification
The coefficients cm,n for the basis functions Pm encode information 
about the spatiotemporal expression pattern of the genes and pheno-
typic properties, which allowed us to cluster genes on the basis of their 
spatiotemporal expression pattern using the spectral coefficients cm,n 
directly. With the clustering analysis, we intended to identify the under-
lying patterns independent of global shifts and scaling. Therefore, we 
defined coefficients with the mean subtracted and scaled by the stand-
ard deviation,

km,n =
cm,n − δn,0μn/p0

σn
(9)

where σn is the standard deviation of the expression of gene n, μn is the 
mean of the expression of gene n, δn,m is the Kronecker delta that is 0 
when n ≠ m and 1 when n = m, and p0 is constant since it is a degree 0 
polynomial. Note that under this rescaling, km,0 is no longer an inde-
pendent parameter since it is fully determined by the means of the 
higher-order polynomials and their respective coefficients. Using these 
rescaled coefficients km,n, we defined a score for how strongly patterned 
a gene expression profile is. A spatiotemporally patterned expression 
profile should have two components:

The pattern should vary smoothly so that the pattern should be 
well approximated by the spectral representation, which means that 
the scaled representation error

ℰn =
‖
‖‖‖
gnnn − μn
σn

−
M
∑
m=0

km,nPm

‖
‖‖‖

2

(10)

should be small.
The pattern should not just be constant, meaning that the higher 

coefficients should be important, which also means that the pattern 
score

𝒫𝒫n =
M
∑
m=1

k2m,n (11)

should be large.
We therefore defined a space–time ranking,

ℛn =
𝒫𝒫n
ℰn

(12)

which is large when a gene expression has a strong spatiotemporal 
pattern, and low when there is no spatiotemporal pattern. For identify-
ing different types of spatiotemporal pattern on the basis of the spec-
tral coefficients cm,n, we kept only those genes with a high ranking ℛn. 
We defined the cut-off for which genes were designated as displaying 
a spatiotemporal pattern by ordering the genes by their ranking (small-
est to largest) and then finding the largest integer Nc such that,

∑Nc
n=1ℛn

∑N
n=1ℛn

≤ 0.5. (13)

For the genes that displayed a spatiotemporal pattern on the basis 
of the above criterion, we calculated the cosine similarity between the 
coefficients,

dnp =
∑M
m=1 km,nkm,p

√√
√

M
∑
m=1

k2m,n
√√
√

M
∑
m=1

k2m,p

. (14)

We used cosine distances since we needed a metric that is inde-
pendent of a global scaling to the expression level. The distance matrix 
D = (dnp) was then separated into clusters using the k-medoids algo-
rithm59 to produce k distinct patterns. The choice of the number of 
clusters was based on a plot of the total cost versus number of clusters 
and choosing a value in the elbow of the curve (Extended Data Fig. 10). 
From each cluster, we chose the highest ranked gene as the most rep-
resentative spatiotemporal pattern.

Image analysis
To perform single-cell segmentation on the brightfield microscopy 
images of the swarm, we used Stardist60. Bacterial movement fields 
were calculated using the Horn–Schunck optical flow method61, applied 
to consecutive images of a video. From the segmentation and bacterial 
movement fields, all phenotypic properties listed in Supplementary 
Table 2 were calculated. For properties calculated for each individual 
cell, median values were used across one image field of view, and mean 
values across all 48 frames in a video were used for visualization in heat 
maps. The following paragraphs describe the definitions of emergent 
property parameters.

Nematic order. The nematic order parameter S (𝜗𝜗) for two cells with a 
relative angle 𝜗𝜗 was quantified as

S (𝜗𝜗) = 1.5 ⋅ cos (𝜗𝜗)2 − 0.5. (15)

The local nematic order parameter for a specific cell in a swarm 
was then defined as the mean of the nematic order parameter of the 
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cell with each of its neighbours within a centroid–centroid distance 
of ≤10 µm.

Non-motile clusters. Non-motile cells were identified by threshold-
ing of the bacterial movement field with a cut-off of 8 µm s−1 and by 
hierarchical clustering based on centroid–centroid distance with a 
cut-off of 2 µm. Only clusters with 10 or more cells were considered.

Rafts. The neighbourhood of each cell was defined as all cells within a 
centroid–centroid distance of 30 µm to the cell under investigation. 
To quantify rafting behaviour, we counted the number of motile cells 
(speed of 10 µm s−1 or more) in this neighbourhood that share the same 
orientation as the cell under investigation up to a tolerance of 15°. This 
number was then divided by the total number of cells in the neighbour-
hood. This ratio, called the ‘local rafting ratio’, was calculated for each 
cell and used as a measure for local rafting activity.

Density fluctuations. To calculate density fluctuations, the image 
was split into sub-images of size 120 × 120 pixels (~48 × 48 µm2) and 
for each sub-image, the density was calculated as the fraction of the 
area covered by cells to the entire area. For the density fluctuations in 
space, the standard deviation between the local densities in sub-images 
was calculated for each timepoint. The final value was taken to be the 
mean across all timepoints.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Transcriptome spatiotemporal heat maps and heat maps of 
microscopy-based measurements are available in a curated 
dataset explorer at https://drescherlab.org /data/swarm- 
transcriptome/. Transcriptome data that were used to gener-
ate the heat maps are also available at the National Center for 
Biotechnology Information Gene Expression Omnibus under 
the accession number GSE224332 (https://www.ncbi.nlm.nih. 
gov/geo/query/acc.cgi?acc=GSE224332). Files for viewing a 3D 
CAD model of the robotic sampling system are available on Zenodo 
(https://doi.org/10.5281/zenodo.8229225) and can be viewed with 
the AutoDesk Inventor software. Coefficients of the spectral repre-
sentation of each gene and image-analysis-based physical property 
as well as pattern identification and multidimensional scaling coordi-
nates used in Fig. 2 are available on Zenodo (https://doi.org/10.5281/
zenodo.8355669). Metabolomics data are also available on Zenodo 
(https://doi.org/10.5281/zenodo.8348257). Raw imaging data (1.9 
terabyte in size) are available from the corresponding authors upon 
reasonable request, if infrastructure for transferring and storing these 
data are available.

Code availability
Source code of the Matlab scripts used to measure swarm properties by 
image analysis and R scripts used to normalize transcriptome data are 
available in a GitHub repository at https://github.com/knutdrescher/
swarm-transcriptome.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Overview of the robotic setup that was constructed 
to automatically extract cells with high spatiotemporal accuracy from the 
swarm. (a), Photograph of the assembled robot, positioned on the right-hand 
side of the microscope objective. The inset photograph shows the robotic arm 
and sampling tip directly above the objective while it picks up cells from the 
swarm inside the Petri dish. The long horizontal stage in the central area of the 
main photograph (stage #1 in panel d) moves the robot back and forth between 
the sampling tips (bottom right), the petri dish containing the swarm placed on 
the microscope objective (left, outside of the image field of view, but shown in 
the inset photograph) and back to the sample ejection area (Eppendorf tubes 
within a cooled box in the central bottom part of the image, see also panel d for a 
schematic overview of the whole setup). Protective lids, which are placed on the 
tip box and sample ejection box were removed for the photograph to better show 
all components. The inset photograph also shows a transparent acrylic cover on 
top of the enclosure containing swarm to keep humidity high, with an opening 
for the sampling tip that is covered by a removable plastic plate (grey plate visible 
in the inset photograph), operated by a robotic stage (stage 4 in panel d). (b), 3D 
rendering of the robot, using approximately the same viewing angle as in panel 
a, with the protective lids on the tip box and sample ejection box removed to 

better show the components. The 3D rendering files can be downloaded from 
the Zenodo repository (DOI: 10.5281/zenodo.8229225), in a format that can be 
viewed in the AutoDesk Inventor software; for convenience, the 3D rendering 
can be viewed online with full control of the viewing angle: https://gmail3493581.
autodesk360.com/g/shares/SHd38bfQT1fb47330c99c60340a060ffa874. (c), 
Top view of the 3D rendering, showing all components including protective 
lids. Robotic stages are labelled consistent with numeric labels in panel d. 
(d), Schematic top view of the robotic setup, including the XY stage of the 
microscope. The robotic stages #1, #2, #4 refer to an individual stage, while 
#3 refers to a group of stages described further in panels e and f. (e), Detailed 
3D rendering view and photograph of the group of stages labelled #3 in panel 
d. This group of stages consists of several linear stages (stages 3.1, 3.2, 3.4, 3.5) 
and one rotational stage (stage 3.3). Attached to stage 3.4 is a tip holder (grey), 
which mimics the shape of the bottom part of a pipette, such that pipette tips 
can be picked up. Stage 3.5 mimics the ejection mechanism of a pipette, enabling 
automatic tip ejection. (f ), Schematic side views of the group of stages labelled 
#3 in panels d and e. How these stages are operated to perform sampling from the 
swarm is described in the Methods section.
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Extended Data Fig. 2 | Sampling cells from the swarm using different 
methods. B. subtilis cells were collected from a swarm using a pipette tip and 
inoculated in 100 µL liquid LB medium prior to plating on fresh LB plates as seen 
in panels a, b, d. (a), Cell extraction failed when using an unmodified commercial 
pipette tip to touch the surface of the swarm carefully without damaging the 
agar plate. (b), When a sufficient number of cells was extracted by touching the 

swarm with an unmodified tip, the surface of the agar was scratched as can be 
seen in panel (c). (d), Using a modified tip, with a cured PDMS drop at the end, 
a large number of cells are acquired from the swarm, even when the surface is 
only carefully touched to not disrupt the agar surface. Inset: Tips are modified 
by dipping them into PDMS prior to incubation at 50 °C overnight in order to 
produce a small drop of cured PDMS.
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Extended Data Fig. 3 | Guiding the tip of the robotic sampling arm by a 
distance-dependent light pattern and a feedback loop between image 
acquisition, live image analysis, and robotic arm control. To sample cells 
from the bacterial swarm, a sampling tip mounted on the robotic sampling arm 
is moved to the microscope as described in the Methods section and brought 
into position such that the tip is within the field of view of the microscope, 
approximately 1 mm above the swarming plate. At this point, a light pattern 
caused by the refraction of light through the PDMS drop at the end of the 
sampling tip can be observed through the camera. The shape of this pattern 
changes depending on the distance between the tip and the swarm surface and 
can therefore be used to guide the tip towards a careful pickup of cells. Images 
in panels a-d show different light patterns as viewed from the camera. Insets in 
each panel depict a binarization of the light patterns, obtained by thresholding, 
which was used for steering the robotic arm. The distances between the tip and 
agar surface are: (a), 100 µm, (b), 50 µm, (c), 1 µm, (d), 0 µm. The robotic arm 

is moved stepwise towards the agar surface, correcting the step size after each 
movement. Step sizes are chosen to be 50 µm, 30 µm, 20 µm, 10 µm, 2 µm or 
1 µm, depending on the correlation of the current binarized image with two 
reference images representing the distances 100 µm and 1 µm. Step sizes are 
chosen several times smaller than the estimated distance to the surface to ensure 
that the tip will under no circumstances penetrate the agar further than 1 µm, 
which could lead to disruption of the agar surface and a disruption of the further 
swarm development. During the sampling process, the current image obtained 
from the microscope camera is displayed in a graphical user interface that allows 
manual intervention such as stopping the movement of the sampling tip as an 
additional layer of security. Upon making contact with the surface, the z-position 
of the point of contact is saved and used as a reference for future z-positioning of 
the sampling tip. The tip is then moved upwards and out of the humidity chamber 
before ejecting the sampling tip into an Eppendorf tube.
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Extended Data Fig. 4 | Microscopy images of bacterial swarm before and after 
sampling. To ensure that the sampling process was successfully completed, 
meaning that cells have been removed without damaging the agar, images 
are acquired before (left) and after (right) sampling at the same position. This 

data can also be used to estimate the number of bacterial cells which has been 
collected during sampling. (a) and (b) show two different example location of 
sampling.
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Extended Data Fig. 5 | Spatiotemporal measurement of the “global biomass 
density” parameter during swarm development. Heatmap showing the 
spatiotemporal measurement results for the parameter “global biomass density” 
(see definition in Supplementary Table S2), based on microscopy and image 
analysis. The top half of the diagram represents the area of the swarm where 
both imaging and sampling of cells for transcriptome measurements took 

place, whereas the bottom half of the diagram represents the area where only 
imaging occurred. A comparison of these areas reveals that there is no significant 
difference in biomass density between the area from which cells are samples (top 
part) and the area where images are taken, but no sampling is performed (bottom 
part).
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Extended Data Fig. 6 | Low-dimensional representation of transcriptome 
data. (a), (b), Applying principal component analysis to all transcriptomes of all 
biological replicates reveals that samples from different replicates (indicated by 
different symbols) are consistent with each other - each data point corresponds 
to one transcriptome. Furthermore, all samples and all replicates show the 
same trend when coloured by the sampling time (a) or normalized position (b), 
which is defined by dividing the sample position by the current swarm radius. 
These observations show that the gene expression profiles are consistent across 
all replicates. Both the sampling time and normalized position correlate with 
principal component 1 (but with a stronger correlation for the normalized 

position). (c), A spatiotemporal heatmap in which principal component 1 (PC 1, 
from panels a, b) is colour-coded shows that PC 1 gradually decreases from the 
swarm front towards the late swarm centre. (d), A spatiotemporal heatmap in 
which t-SNE 1 is colour-coded shows that t-SNE 1 depends on space and time in the 
swarm, similar to PC 1, implying that both dimensionality reduction techniques 
identify consistent gene expression patterns. Taken together, the results 
presented in (a)-(d) show consistency across independent biological replicates 
and indicate that while the position of a sample has a strong influence on its gene 
expression profile, the sampling time also plays an important role and needs to 
be taken into account.
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Extended Data Fig. 7 | Measurements of organic acid concentrations in the 
agar underneath the swarm. Measurements for the compounds glycolate, 
glyoxylate, lactate, citrate and fumarate in the agar underneath the swarm, 
analogous to Fig. 4. Colours represent three different positions, analogous to 
Fig. 4. The measurement for each acquired sample is represented by a dot, lines 

correspond to the mean, and shaded regions indicate standard deviations. Means 
and standard deviations were calculated using n = 4 biologically independent 
samples in all cases except for the last timepoint, where n = 3 biologically 
independent samples were used.
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Extended Data Fig. 8 | Measurements of amino acid concentrations in the 
agar underneath the swarm. The Concentration over time was measured for 
several amino acids. The three different colours correspond to three different 
positions in the swarm, analogous to Fig. 4. Glycine was measured, but could 
not be detected in any sample. The measurement for each acquired sample is 

represented by a dot, and lines correspond to the mean, and shaded regions 
indicate standard deviations. Means and standard deviations were calculated 
using n = 4 biologically independent samples in all cases except for the last 
timepoint, where n = 3 biologically independent samples were used.
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Extended Data Fig. 9 | An exponential fit approximates the boundary of 
swarm expansion and can be used to define a common spatiotemporal 
domain for all replicates. (a), An exponential function is fitted to the space-
time location of boundary points (indicated in purple colour) for each data set. 

Space-time coordinates are then rescaled as described in the Methods section, 
and the rescaled space-time coordinates are shown in their common non-
dimensionalized domain in panel (b).
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Extended Data Fig. 10 | Minimum clustering cost as a function of 
cluster number, used for the identification of the number of different 
spatiotemporal gene expression patterns. With an increasing number of 

clusters, the minimum clustering cost decreases, with an initially sharp decline 
that levels off for high cluster numbers. Highlighted in red is the location of 6 
clusters, the number which was chosen for further analyses in Fig. 2.
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