Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Arbuscular mycorrhizal fungi heterokaryons have two nuclear populations with distinct roles in host–plant interactions

An Author Correction to this article was published on 21 November 2023

This article has been updated

Abstract

Arbuscular mycorrhizal fungi (AMF) are prominent root symbionts that can carry thousands of nuclei deriving from two parental strains in a large syncytium. These co-existing genomes can also vary in abundance with changing environmental conditions. Here we assemble the nuclear genomes of all four publicly available AMF heterokaryons using PacBio high-fidelity and Hi-C sequencing. We find that the two co-existing genomes of these strains are phylogenetically related but differ in structure, content and epigenetics. We confirm that AMF heterokaryon genomes vary in relative abundance across conditions and show this can lead to nucleus-specific differences in expression during interactions with plants. Population analyses also reveal signatures of genetic exchange indicative of past events of sexual reproduction in these strains. This work uncovers the origin and contribution of two nuclear genomes in AMF heterokaryons and opens avenues for the improvement and environmental application of these strains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The 32 phased parental chromosomes of the AMF heterokaryotic strain A4.
Fig. 2: Phylogenetic tree constructed with 65 R. irregularis strains.
Fig. 3: Population analyses of R. irregularis.
Fig. 4: Collinearity and variation between co-existing genomes.
Fig. 5: Relative nuclear abundance and expression.

Similar content being viewed by others

Data availability

All genome and RNA-seq data and reads newly obtained are available in GenBank under the BioProject PRJNA922099. All genome assemblies, annotations and data used to generate analyses and figures are available at https://zenodo.org/record/8292462.

Code availability

All codes used in this study are available at https://zenodo.org/record/8292462.

Change history

References

  1. Spatafora, J. W. et al. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108, 1028–1046 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Martin, F. M., Uroz, S. & Barker, D. G. Ancestral alliances: plant mutualistic symbioses with fungi and bacteria. Science 356, eaad4501 (2017).

    Article  PubMed  Google Scholar 

  3. van der Heijden, M. G. A. et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396, 69–72 (1998).

    Article  Google Scholar 

  4. Kokkoris, V., Stefani, F., Dalpé, Y., Dettman, J. & Corradi, N. Nuclear dynamics in the arbuscular mycorrhizal fungi. Trends Plant Sci. 25, 765–778 (2020).

    Article  PubMed  CAS  Google Scholar 

  5. Redecker, D., Kodner, R. & Graham, L. E. Glomalean fungi from the Ordovician. Science 289, 1920–1921 (2000).

    Article  PubMed  CAS  Google Scholar 

  6. Rich, M. K. et al. Lipid exchanges drove the evolution of mutualism during plant terrestrialization. Science 372, 864–868 (2021).

    Article  PubMed  CAS  Google Scholar 

  7. Kaiser, V. B. & Charlesworth, B. The effects of deleterious mutations on evolution in non-recombining genomes. Trends Genet. 25, 9–12 (2009).

    Article  PubMed  CAS  Google Scholar 

  8. Kuhn, G., Hijri, M. & Sanders, I. R. Evidence for the evolution of multiple genomes in arbuscular mycorrhizal fungi. Nature 414, 745–748 (2001).

    Article  PubMed  CAS  Google Scholar 

  9. Corradi, N. & Brachmann, A. Fungal Mating in the Most Widespread Plant Symbionts? Trends Plant Sci. 22, 175–183 (2017).

  10. Tisserant, E. et al. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc. Natl Acad. Sci. USA 110, 20117–20122 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Halary, S. et al. Conserved meiotic machinery in Glomus spp., a putatively ancient asexual fungal lineage. Genome Biol. Evol. 3, 950–958 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ropars, J. et al. Evidence for the sexual origin of heterokaryosis in arbuscular mycorrhizal fungi. Nat. Microbiol. 1, 16033 (2016).

    Article  PubMed  CAS  Google Scholar 

  13. Chen, E. C. H. et al. Single nucleus sequencing reveals evidence of inter-nucleus recombination in arbuscular mycorrhizal fungi. eLife 7, 1–17 (2018).

    Article  Google Scholar 

  14. Heitman, J. Sex in Fungi: Molecular Determination and Evolutionary Implications. (ASM Press, 2007).

  15. Kokkoris, V. et al. Host identity influences nuclear dynamics in arbuscular mycorrhizal fungi. Curr. Biol. 31, 1531–1538.e6 (2021).

    Article  PubMed  CAS  Google Scholar 

  16. Fraser, J. A. & Heitman, J. Fungal mating-type loci. Curr. Biol. 13, R792–R795 (2003).

    Article  PubMed  CAS  Google Scholar 

  17. Jinks, J. L. Heterokaryosis: a system of adaptation in wild fungi. Proc. R. Soc. Lond. Ser. B 140, 83–99 (1952).

    Article  CAS  Google Scholar 

  18. Davis, R. H. Adaptation in pantothenate-requiring Neurospora. II. Nuclear competition during adaptation. Am. J. Bot. 47, 648–654 (1960).

    Article  Google Scholar 

  19. Serghi, E. U. et al. Homo- and dikaryons of the arbuscular mycorrhizal fungus Rhizophagus irregularis differ in life history strategy. Front. Plant Sci. 12, 715377 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ehinger, M., Koch, A. M. & Sanders, I. R. Changes in arbuscular mycorrhizal fungal phenotypes and genotypes in response to plant species identity and phosphorus concentration. N. Phytol. 184, 412–423 (2009).

    Article  CAS  Google Scholar 

  21. Cornell, C. et al. The arbuscular mycorrhizal fungus Rhizophagus irregularis harmonizes nuclear dynamics in the presence of distinct abiotic factors. Fungal Genet. Biol. 158, 103639 (2022).

    Article  PubMed  CAS  Google Scholar 

  22. Meunier, C., Darolti, I., Reimegård, J., Mank, J. E. & Johannesson, H. Nuclear-specific gene expression in heterokaryons of the filamentous ascomycete Neurospora tetrasperma. Proc. Biol. Sci. 289, 20220971 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Gehrmann, T. et al. Nucleus-specific expression in the multinuclear mushroom-forming fungus Agaricus bisporus reveals different nuclear regulatory programs. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1721381115 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. James, T. Y., Stenlid, J., Olson, Å. & Johannesson, H. Evolutionary significance of imbalanced nuclear ratios within heterokaryons of the basidiomycete fungus Heterobasidion parviporum. Evolution 62, 2279–2296 (2008).

    Article  PubMed  CAS  Google Scholar 

  25. Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18, 170–175 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Duan, H. et al. Physical separation of haplotypes in dikaryons allows benchmarking of phasing accuracy in Nanopore and HiFi assemblies with Hi-C data. Genome Biol. 23, 84 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Sperschneider, J. et al. Extensive somatic nuclear exchanges shape global populations of the wheat leaf rust pathogen Puccinia triticina. bioRxiv 2022.11.28.518271 (2022) https://doi.org/10.1101/2022.11.28.518271

  28. Liang, J. et al. Haplotype-phased and chromosome-level genome assembly of Puccinia polysora, a giga-scale fungal pathogen causing southern corn rust. Mol. Ecol. Resour. https://doi.org/10.1111/1755-0998.13739 (2022).

    Article  PubMed  Google Scholar 

  29. Yildirir, G. et al. Long reads and Hi-C sequencing illuminate the two-compartment genome of the model arbuscular mycorrhizal symbiont Rhizophagus irregularis. New Phytol. 233, 1097–1107 (2022).

  30. Manley, B. F. et al. A highly contiguous genome assembly reveals sources of genomic novelty in the symbiotic fungus Rhizophagus irregularis. G3 13, (2023).

  31. Torres, D. E., Reckard, A. T., Klocko, A. D. & Seidl, M. F. Nuclear genome organization in fungi: from gene folding to Rabl chromosomes. FEMS Microbiol. Rev. 47, fuad021 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Teulet, A. et al. A pathogen effector FOLD diversified in symbiotic fungi. New Phytol. 239, 1127–1139 (2023).

  33. Savary, R. et al. A population genomics approach shows widespread geographical distribution of cryptic genomic forms of the symbiotic fungus Rhizophagus irregularis. ISME J. 12, 17–30 (2018).

  34. Shakya, M. et al. Standardized phylogenetic and molecular evolutionary analysis applied to species across the microbial tree of life. Sci. Rep. 10, 1723 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Kjærbølling, I. et al. A comparative genomics study of 23 Aspergillus species from section Flavi. Nat. Commun. 11, 1106 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Nygren, K. et al. A comprehensive phylogeny of Neurospora reveals a link between reproductive mode and molecular evolution in fungi. Mol. Phylogenet. Evol. 59, 649–663 (2011).

    Article  PubMed  Google Scholar 

  37. Chen, E. C. H. et al. High intraspecific genome diversity in the model arbuscular mycorrhizal symbiont Rhizophagus irregularis. N. Phytol. 220, 1161–1171 (2018).

    Article  CAS  Google Scholar 

  38. Jansa, J., Mozafar, A., Banke, S., McDonald, B. A. & Frossard, E. Intra- and intersporal diversity of ITS rDNA sequences in Glomus intraradices assessed by cloning and sequencing, and by SSCP analysis. Mycol. Res. 106, 670–681 (2002).

    Article  CAS  Google Scholar 

  39. Dallaire, A. et al. Transcriptional activity and epigenetic regulation of transposable elements in the symbiotic fungus Rhizophagus irregularis. Genome Res. 31, 2290–2302 (2021).

  40. Pawlowska, T. E. & Taylor, J. W. Organization of genetic variation in individuals of arbuscular mycorrhizal fungi. Nature 427, 733–737 (2004).

    Article  PubMed  CAS  Google Scholar 

  41. Hiltunen, M., Grudzinska-Sterno, M., Wallerman, O., Ryberg, M. & Johannesson, H. Maintenance of high genome integrity over vegetative growth in the fairy-ring mushroom Marasmius oreades. Curr. Biol. 29, 2758–2765.e6 (2019).

    Article  PubMed  CAS  Google Scholar 

  42. Li, F. et al. Emergence of the Ug99 lineage of the wheat stem rust pathogen through somatic hybridisation. Nat. Commun. https://doi.org/10.1038/s41467-019-12927-7 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Strassert, J. F. H. & Monaghan, M. T. Phylogenomic insights into the early diversification of fungi. Curr. Biol. 32, 3628–3635.e3 (2022).

    Article  PubMed  CAS  Google Scholar 

  44. Galindo, L. J., López-García, P., Torruella, G., Karpov, S. & Moreira, D. Phylogenomics of a new fungal phylum reveals multiple waves of reductive evolution across Holomycota. Nat. Commun. 12, 4973 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Corradi, N., Hijri, M., Fumagalli, L. & Sanders, I. R. Arbuscular mycorrhizal fungi (Glomeromycota) harbour ancient fungal tubulin genes that resemble those of the chytrids (Chytridiomycota). Fungal Genet. Biol. 41, 1037–1045 (2004).

    Article  PubMed  CAS  Google Scholar 

  46. Schwessinger, B. & McDonald, M. C. High quality DNA from fungi for long read sequencing for example PacBio, Nanopore MinION v3. protocols.io https://doi.org/10.17504/protocols.io.jxxcppn (2017).

  47. Torabi, S., Varshney, K., Villaécija-Aguilar, J. A., Keymer, A. & Gutjahr, C. Controlled assays for phenotyping the effects of strigolactone-like molecules on arbuscular mycorrhiza development. Methods Mol. Biol. 2309, 157–177 (2021).

    Article  PubMed  CAS  Google Scholar 

  48. Vierheilig, H., Coughlan, A. P., Wyss, U. & Piche, Y. Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl. Environ. Microbiol. 64, 5004–5007 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Zhang, Y., Park, C., Bennett, C., Thornton, M. & Kim, D. Rapid and accurate alignment of nucleotide conversion sequencing reads with HISAT-3N. Genome Res. 31, 1290–1295 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

  53. Cheng, H. et al. Haplotype-resolved assembly of diploid genomes without parental data. Nat. Biotechnol. 40, 1332–1335 (2022).

    Article  PubMed  CAS  Google Scholar 

  54. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods https://doi.org/10.1038/nmeth.3176 (2014).

  55. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. mapping_pipeline. GitHub https://github.com/ArimaGenomics/mapping_pipeline/blob/master/01_mapping_arima.sh (2019).

  57. Ghurye, J., Pop, M., Koren, S., Bickhart, D. & Chin, C.-S. Scaffolding of long read assemblies using long range contact information. BMC Genomics 18, 527 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16, 259 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Flynn, J. M. et al. RepeatModeler2 for automated genomic discovery of transposable element families. Proc. Natl Acad. Sci. USA 117, 9451–9457 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. https://zenodo.org/record/2604804#.YPm336iSnIU

  61. Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics https://doi.org/10.1093/bioinformatics/btv351 (2015).

  62. Finn, R. D. et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44, D279–D285 (2016).

    Article  PubMed  CAS  Google Scholar 

  63. Petersen, T. N., Brunak, S., von Heijne, G. & Nielsen, H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8, 785–786 (2011).

    Article  PubMed  CAS  Google Scholar 

  64. Chen, Y., Yu, P., Luo, J. & Jiang, Y. Secreted protein prediction system combining CJ-SPHMM, TMHMM, and PSORT. Mamm. Genome 14, 859–865 (2003).

    Article  PubMed  CAS  Google Scholar 

  65. Sperschneider, J. & Dodds, P. N. EffectorP 3.0: prediction of apoplastic and cytoplasmic effectors in fungi and Oomycetes. Mol. Plant. Microbe Interact. 35, 146–156 (2022).

    Article  PubMed  CAS  Google Scholar 

  66. Marçais, G. et al. MUMmer4: a fast and versatile genome alignment system. PLoS Comput. Biol. https://doi.org/10.1371/journal.pcbi.1005944 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Cabanettes, F. & Klopp, C. D-GENIES: dot plot large genomes in an interactive, efficient and simple way. PeerJ 6, e4958 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Li, L., Stoeckert, C. J. & Roos, D. S. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 13, 2178–2189 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Marcet-Houben, M. & Gabaldón, T. EvolClust: automated inference of evolutionary conserved gene clusters in eukaryotes. Bioinformatics 36, 1265–1266 (2020).

  70. Gel, B. & Serra, E. karyoploteR: an R/Bioconductor package to plot customizable genomes displaying arbitrary data. Bioinformatics 33, 3088–3090 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Hao, Z. et al. RIdeogram: drawing SVG graphics to visualize and map genome-wide data on the idiograms. PeerJ Comput. Sci. https://doi.org/10.7717/peerj-cs.251 (2020).

  72. Ye, J. et al. WEGO: a web tool for plotting GO annotations. Nucleic Acids Res. 34, W293–W297 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. https://doi.org/10.1093/nar/gky1085 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Wolff, J. et al. Galaxy HiCExplorer 3: a web server for reproducible Hi-C, capture Hi-C and single-cell Hi-C data analysis, quality control and visualization. Nucleic Acids Res. 48, W177–W184 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. jasmine. GitHub. https://github.com/PacificBiosciences/jasmine (2023).

  77. pbmm2. GitHub. https://github.com/PacificBiosciences/pbmm2 (2017).

  78. pb-CpG-tools. GitHub. https://github.com/PacificBiosciences/pb-CpG-tools (2022).

  79. FastQC. Babraham Bioinformatics. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).

  80. Schmieder, R., Lim, Y. W., Rohwer, F. & Edwards, R. TagCleaner: identification and removal of tag sequences from genomic and metagenomic datasets. BMC Bioinform. 11, 341 (2010).

    Article  Google Scholar 

  81. Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: an analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Skotte, L., Korneliussen, T. S. & Albrechtsen, A. Estimating individual admixture proportions from next generation sequencing data. Genetics 195, 693–702 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Garrison, E. & Marth, G. Haplotype-based variant detection from short-read sequencing. Preprint at arXiv https://doi.org/10.48550/arXiv.1207.3907 (2012).

  86. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Oliveira for helping some RNA-seq confirmatory mapping analyses, and P.-M. Delaux, T. James, A. MacLean and V. Kokkoris for their helpful comments on an earlier version of this manuscript, and five anonymous referees for constructive comments. Our research is funded by the Discovery programme of the Natural Sciences and Engineering Research Council (RGPIN2020-05643), a Discovery Accelerator Supplements Program (RGPAS-2020-00033). N.C. is a University of Ottawa Research Chair in Microbial Genomics. J.S. was supported by an Australian Research Council (ARC) Discovery Early Career Researcher Award (DE190100066). Research in the C.G. lab was funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant ‘RECEIVE’, no. 759731).

Author information

Authors and Affiliations

Authors

Contributions

J.S., G.Y., Y.S.R. and C.G. conducted investigations and acquired resources. A.M.N., M.C.M., E.C.H.C., W.B., E.S., M.V.-L., W.I. and E.K.B. conducted investigations and provided intellectual input. N.C. conceptualized and supervised the project, wrote the paper and performed visualizations with help from J.S. and G.Y.

Corresponding author

Correspondence to Nicolas Corradi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Michael F. Seidl, Antonio Di Pietro and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 The phased parental chromosomes of the AMF heterokaryotic strain A5.

(a) The karyoplots represent the chromosomes of the haplotypes, represented in blue and brown. The A/B compartments are shown in darker and lighter color, respectively. (b) The histograms of allele frequency distribution are based on bi-allelic SNPs filtered based on the relative genome coverage of each haplotype to exclude contaminants and are overlapped by density curves (black). The X and Y axes represent the SNP frequency (ratio) and density, respectively. Analyses are based 1-1 aligned regions (excluding repetitive regions), representing between 64,331,134 to 69,274,838 bp of each haplotype. (c) Hi-C contact maps showing the compartmentalization in chromosomes. In these heat maps, genome coordinates are represented on both axes. These bright squares highlight increased contact frequency within and between chromosomes and are further analyzed to group them into A/B compartments.

Extended Data Fig. 2 The phased parental chromosomes of the AMF heterokaryotic strain G1.

(a) The karyoplots represent the chromosomes of the haplotypes, represented in blue and brown. The A/B compartments are shown in darker and lighter color, respectively. (b) The histograms of allele frequency distribution are based on bi-allelic SNPs filtered based on the relative genome coverage of each haplotype to exclude contaminants and are overlapped by density curves (black). The X and Y axes represent the SNP frequency (ratio) and density, respectively. Analyses are based 1-1 aligned regions (excluding repetitive regions), representing between 64,331,134 to 69,274,838 bp of each haplotype. (c) Hi-C contact maps showing the compartmentalization in chromosomes. In these heat maps, genome coordinates are represented on both axes. These bright squares highlight increased contact frequency within and between chromosomes and are further analyzed to group them into A/B compartments.

Extended Data Fig. 3 The phased parental chromosomes of the AMF heterokaryotic strain SL1.

(a) The karyoplots represent the chromosomes of the haplotypes, represented in blue and brown. The A/B compartments are shown in darker and lighter color, respectively. (b) The histograms of allele frequency distribution are based on bi-allelic SNPs filtered based on the relative genome coverage of each haplotype to exclude contaminants and are overlapped by density curves (black). The X and Y axes represent the SNP frequency (ratio) and density, respectively. Analyses are based 1-1 aligned regions (excluding repetitive regions), representing between 64,331,134 to 69,274,838 bp of each haplotype. (c) Hi-C contact maps showing the compartmentalization in chromosomes. In these heat maps, genome coordinates are represented on both axes. These bright squares highlight increased contact frequency within and between chromosomes and are further analyzed to group them into A/B compartments.

Extended Data Fig. 4 Percentage of Hi-C contacts that link within and between nuclear-separated haplotypes for all AMF heterokaryons.

The assemblies have a strong dikaryotic Hi-C phasing signal, with over 90% of inter-chromosomal (trans) contacts occurring within the nucleus. The chromosomes are fully phased, with only weak Hi-C trans contact to the other nucleus in some regions. The plots represent the inter- and intra-chromosomal Hi-C contacts of heterokaryon strains A4, A5, G1 and SL1 (from top to bottom), for each haplotype they contain (left to right). The bars represent the percentage of Hi-C contacts while the colors indicate the identity of the contact.

Extended Data Fig. 5 A/B compartments of heterokaryotic strains show difference in gene and repeat concentrations and overall gene expression levels.

P-value of two-tailed t test is 2.22e-16 for all plots. n for Compartment A = 34687 10 kb fragments, for Compartment B, n = 48734. ab) Boxplots illustrating the difference in gene (Gene/10 kb) and repeat densities (Repeat/10 kb) respectively between A/B compartments of all heterokaryotic genomes analyzed in this study. n for Compartment A = 40468 10 kb fragments, for Compartment B, n = 57260. c) Boxplots showing gene expression level (logTPM + 1) of A/B compartments of all heterokaryotic genomes. n for Compartment A = 35754 10 kb fragments, for Compartment B, n = 33826.d). Collinearity scores, measured by the gene order conservation of blocks of 5 genes (Orthoscore) between haplotypes, is significantly higher in the gene rich A-compartment in all AMF heterokaryons. n for Compartment A = 16501 fragments, for Compartment B, n = 11322.The third quartile (edge of box), first quartile (edge of box), median (middle black line), outliers (dots) and range of data (whiskers) are shown. Compartment A is shown in red and Compartment B is shown in blue color. Asterisks indicate a statistically significant difference determined by two-tailed t-test: * = P < 0.05; ** = P < 0.01; *** = P < 0.001; **** = P < 0.0001. TPM; Transcript per million.

Extended Data Fig. 6 Relative abundance of GO-Terms for genes specific to each haplotype in all AMF heterokaryons.

Data based on genes differentially expressed with a significance level of at least Padj<0.01 (P-values produced using Wald test and are adjusted by Benjamini and Hochberg method). Barplots represent the ratio of genes belonging to each haplotype for each GO-term. Dashed line indicates equal number of genes, ratio = 1.

Extended Data Fig. 7 Examples of structural variation among co-existing genomes in AMF heterokaryons.

D-Genies dot plots show overall synteny and reveal few structural variations between coexisting haplotypes in heterokaryotic strains. Both haplotypes from the same strains are located in x- and y-axes. The aligned regions are represented as dots, and the colors represent identity. The diagonal lines represent synteny between two haplotypes. Breaks indicate rearrangement events.

Extended Data Fig. 8 Differences in 5mC methylation between co-existing genome in AMF heterokaryons.

(a) Violin-plots illustrating the relative density and differences in the degree of methylation among haplotypes. (b) Boxplots illustrating the difference in repeat 5mC methylation (left) and gene 5mC methylation (right) between A/B compartments in A4 and A5. The third quartile (edge of box), first quartile (edge of box), median (middle black line), outliers (dots) and range of data (whiskers) are shown. Two-tailed t test p-values for A4 MAT1 are 6e-13 and 0.0021 for repeats and genes, respectively. n = 8837 repeats and n = 10563 genes in A compartment, n = 13451 repeats and n = 9594 genes in B compartment. For A4 MAT2, p-values are 8.9e-07 and 2e-05 for repeats and genes, respectively. n = 8904 repeats and n = 10597 genes in A compartment, n = 13336 repeats and n = 9450 genes in B compartment. P-values for A5 MAT3 are 1.9e-10 and 0.35 for repeats and genes, respectively. n = 8251 repeats and n = 9350 genes in A compartment, n = 11367 repeats and n = 8009 genes in B compartment. For A5 MAT6, p-values are 1.1e-14 and 0.0002 for repeats and genes, respectively. n = 8389 repeats and n = 9447 genes in A compartment, n = 11676 repeats and n = 8112 genes in B compartment. (c) Boxplots illustrating the difference in methylation frequency between haplotypes in A4, A5 and G1(left), and the percentage of methylation per base within and among haplotypes in A4, A5 and G1(right).

Extended Data Fig. 9 Principal component analyses (PCA) of RNA-seq datasets.

We used clustering and PCA analysis from the package DESeq2 to infer the similarity expression among replicates and conditions in all AMF heterokaryons and lineages. The analyses shows both low inter-replicate variance and significant differences in expression among conditions.

Extended Data Fig. 10 Genome specific Go-term enrichment comparisons for 1-1 orthologues.

GoTerm enrichment comparisons of 1-1 orthologues between haplotype specific genes upregulated in brachypodium vs lotus and chicory vs carrot comparisons in each strain. Brachypodium vs lotus comparisons are shown in the upper plots, whereas chicory vs carrot comparisons are shown in lower plots. Each bar represents percentage of upregulated genes for the same GoTerm in each haplotype. Only GoTerms shared among all haplotype-specific upregulated genes are shown to highlight the respective functional contribution of each haplotype across hosts and strains. Data based on genes differentially expressed with a significance level of at least Padj < 0.01 (P-values produced using Wald test and are adjusted by Benjamini and Hochberg method).

Supplementary information

Reporting Summary

Supplementary Table 1

List and location of secreted proteins and candidate effectors present on each co-existing genomes in AMF heterokaryons.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sperschneider, J., Yildirir, G., Rizzi, Y.S. et al. Arbuscular mycorrhizal fungi heterokaryons have two nuclear populations with distinct roles in host–plant interactions. Nat Microbiol 8, 2142–2153 (2023). https://doi.org/10.1038/s41564-023-01495-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-023-01495-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing