Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Life history strategies of soil bacterial communities across global terrestrial biomes

Matters Arising to this article was published on 13 May 2024

Abstract

The life history strategies of soil microbes determine their metabolic potential and their response to environmental changes. Yet these strategies remain poorly understood. Here we use shotgun metagenomes from terrestrial biomes to characterize overarching covariations of the genomic traits that capture dominant life history strategies in bacterial communities. The emerging patterns show a triangle of life history strategies shaped by two trait dimensions, supporting previous theoretical and isolate-based studies. The first dimension ranges from streamlined genomes with simple metabolisms to larger genomes and expanded metabolic capacities. As metabolic capacities expand, bacterial communities increasingly differentiate along a second dimension that reflects a trade-off between increasing capacities for environmental responsiveness or for nutrient recycling. Random forest analyses show that soil pH, C:N ratio and precipitation patterns together drive the dominant life history strategy of soil bacterial communities and their biogeographic distribution. Our findings provide a trait-based framework to compare life history strategies of soil bacteria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global trait dimensions of soil bacteria metagenomes.
Fig. 2: The global life history strategies of soil bacterial communities.
Fig. 3: Hypothesized role of C, R and S traits in shaping the life history strategy observed at the community level and associated environmental gradients.
Fig. 4: Environmental control and global-scale projection of bacterial communities’ coordinates along MCOA dimensions 1 and 2.

Similar content being viewed by others

Data availability

The five CAT databases used to build the trait dimensions and the associated environmental variables are available on the Figshare repository at https://doi.org/10.6084/m9.figshare.22620025. All the original sequences are available in the European Bioinformatics Institute Sequence Read Archive database: soil metagenomes, accession numbers PRJEB18701 (ERP020652); 16S metabarcoding sequences, accession numbers PRJEB19856 (ERP021922).

Code availability

Access to the code used in the analyses done for this research is available by request to the corresponding author.

References

  1. Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Delgado-Baquerizo, M. et al. A global atlas of the dominant bacteria found in soil. Science 359, 320–325 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Crowther, T. W. et al. The global soil community and its influence on biogeochemistry. Science 365, eaav0550 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Wieder, W. R., Bonan, G. B. & Allison, S. D. Global soil carbon projections are improved by modelling microbial processes. Nat. Clim. Change 3, 909–912 (2013).

    Article  CAS  Google Scholar 

  6. Diaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).

    Article  PubMed  Google Scholar 

  7. Grime, J. P. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 111, 1169–1194 (1977).

    Article  Google Scholar 

  8. Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).

    Article  PubMed  Google Scholar 

  9. Southwood, T. R. Habitat, the templet for ecological strategies? J. Anim. Ecol. 46, 337–365 (1977).

    Article  Google Scholar 

  10. Reich, P. B. et al. The evolution of plant functional variation: traits, spectra, and strategies. Int. J. Plant Sci. 164, S143–S164 (2003).

    Article  Google Scholar 

  11. Krause, S. et al. Trait-based approaches for understanding microbial biodiversity and ecosystem functioning. Front. Microbiol. 5, 251 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Malik, A. A. et al. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. ISME J. https://doi.org/10.1038/s41396-019-0510-0 (2019).

  13. Madin, J. S. et al. A synthesis of bacterial and archaeal phenotypic trait data. Sci. Data 7, 170 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Westoby, M. et al. Trait dimensions in bacteria and archaea compared to vascular plants. Ecol. Lett. 24, 1487–1504 (2021).

    Article  PubMed  Google Scholar 

  15. Steen, A. D. et al. High proportions of bacteria and archaea across most biomes remain uncultured. ISME J. 13, 3126–3130 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Martiny, A. C. High proportions of bacteria are culturable across major biomes. ISME J. 13, 2125–2128 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Martiny, A. C. The ‘1% culturability paradigm’ needs to be carefully defined. ISME J. 14, 10–11 (2020).

    Article  PubMed  Google Scholar 

  18. Fierer, N., Barberán, A. & Laughlin, D. C. Seeing the forest for the genes: using metagenomics to infer the aggregated traits of microbial communities. Front. Microbiol. 5, 614 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Garnier, E. et al. Plant functional markers capture ecosystem properties during secondary succession. Ecology 85, 2630–2637 (2004).

    Article  Google Scholar 

  20. Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007).

    Article  Google Scholar 

  21. Fierer, N. et al. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J. 6, 1007–1017 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Sorensen, J. W., Dunivin, T. K., Tobin, T. C. & Shade, A. Ecological selection for small microbial genomes along a temperate-to-thermal soil gradient. Nat. Microbiol. 4, 55–61 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Grime, J. P. & Pierce, S. The Evolutionary Strategies That Shape Ecosystems (John Wiley & Sons, 2012).

  24. Liu, H. et al. Warmer and drier ecosystems select for smaller bacterial genomes in global soils. iMeta https://doi.org/10.1002/imt2.70 (2023).

  25. Simonsen, A. K. Environmental stress leads to genome streamlining in a widely distributed species of soil bacteria. ISME J. 16, 423–434 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chuckran, P. F. et al. Edaphic controls on genome size and GC content of bacteria in soil microbial communities. Soil Biol. Biochem. 178, 108935 (2023).

    Article  CAS  Google Scholar 

  27. Guieysse, B. & Wuertz, S. Metabolically versatile large-genome prokaryotes. Curr. Opin. Biotechnol. 23, 467–473 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Konstantinidis, K. T. & Tiedje, J. M. Trends between gene content and genome size in prokaryotic species with larger genomes. Proc. Natl Acad. Sci. USA 101, 3160–3165 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Paul, C. et al. Bacterial spores, from ecology to biotechnology. Adv. Appl. Microbiol. 106, 79–111 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Singh, S., Datta, S., Narayanan, K. B. & Rajnish, K. N. Bacterial exo-polysaccharides in biofilms: role in antimicrobial resistance and treatments. J. Genet. Eng. Biotechnol. 19, 140 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sinsabaugh, R. L. & Follstad Shah, J. J. Ecoenzymatic stoichiometry and ecological theory. Annu. Rev. Ecol. Evol. Syst. 43, 313–343 (2012).

    Article  Google Scholar 

  32. Buckeridge, K. M. et al. Environmental and microbial controls on microbial necromass recycling, an important precursor for soil carbon stabilization. Commun. Earth Environ. 1, 36 (2020).

    Article  Google Scholar 

  33. Zheng, Q. et al. Growth explains microbial carbon use efficiency across soils differing in land use and geology. Soil Biol. Biochem. 128, 45–55 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Gao, Y. & Wu, M. Free-living bacterial communities are mostly dominated by oligotrophs. Preprint at bioRxiv https://doi.org/10.1101/350348 (2018).

  35. Li, J. et al. Predictive genomic traits for bacterial growth in culture versus actual growth in soil. ISME J. 13, 2162–2172 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Quince, C., Walker, A. W., Simpson, J. T., Loman, N. J. & Segata, N. Shotgun metagenomics, from sampling to analysis. Nat. Biotechnol. 35, 833–844 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Lobb, B., Tremblay, B. J.-M., Moreno-Hagelsieb, G. & Doxey, A. C. An assessment of genome annotation coverage across the bacterial tree of life. Microb. Genom. 6, e000341 (2020).

  38. Coelho, L. P. et al. Towards the biogeography of prokaryotic genes. Nature 601, 252–256 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Martiny, J. B., Jones, S. E., Lennon, J. T. & Martiny, A. C. Microbiomes in light of traits: a phylogenetic perspective. Science 350, aac9323 (2015).

    Article  PubMed  Google Scholar 

  40. Allison, S. D. & Martiny, J. B. Resistance, resilience, and redundancy in microbial communities. Proc. Natl Acad. Sci. USA 105, 11512–11519 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jones, D. L., Cooledge, E. C., Hoyle, F. C., Griffiths, R. I. & Murphy, D. V. pH and exchangeable aluminum are major regulators of microbial energy flow and carbon use efficiency in soil microbial communities. Soil Biol. Biochem. 138, 107584 (2019).

  42. Fernández-Calviño, D. & Bååth, E. Growth response of the bacterial community to pH in soils differing in pH. FEMS Microbiol. Ecol. 73, 149–156 (2010).

    PubMed  Google Scholar 

  43. Auger, C. et al. Metabolic reengineering invoked by microbial systems to decontaminate aluminum: implications for bioremediation technologies. Biotechnol. Adv. 31, 266–273 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Bruelheide, H. et al. Global trait–environment relationships of plant communities. Nat. Ecol. Evol. 2, 1906–1917 (2018).

    Article  PubMed  Google Scholar 

  45. Tedersoo, L. et al. Regional-scale in-depth analysis of soil fungal diversity reveals strong pH and plant species effects in Northern Europe. Front. Microbiol. 11, 1953 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bagousse-Pinguet, Y. L. et al. Testing the environmental filtering concept in global drylands. J. Ecol. 105, 1058–1069 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lauber, C. L., Hamady, M., Knight, R. & Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75, 5111–5120 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Meyer, F. et al. The metagenomics RAST server–a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9, 386 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen, I.-M. A. et al. IMG/M v. 5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res. 47, D666–D677 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M. & Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490–D495 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Nguyen, L. T. et al. Responses of the soil microbial community to nitrogen fertilizer regimes and historical exposure to extreme weather events: flooding or prolonged-drought. Soil Biol. Biochem. 118, 227–236 (2018).

    Article  CAS  Google Scholar 

  53. Berlemont, R. & Martiny, A. C. Genomic potential for polysaccharide deconstruction in bacteria. Appl. Environ. Microbiol. 81, 1513–1519 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  54. López-Mondéjar, R. et al. Metagenomics and stable isotope probing reveal the complementary contribution of fungal and bacterial communities in the recycling of dead biomass in forest soil. Soil Biol. Biochem. 148, 107875 (2020).

    Article  Google Scholar 

  55. Nayfach, S. & Pollard, K. S. Toward accurate and quantitative comparative metagenomics. Cell 166, 1103–1116 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chávez, J., Devos, D. P. & Merino, E. Complementary tendencies in the use of regulatory elements (transcription factors, sigma factors, and riboswitches) in bacteria and archaea. J. Bacteriol. 203, 413–20 (2020).

    Article  Google Scholar 

  57. Cania, B. et al. Site-specific conditions change the response of bacterial producers of soil structure-stabilizing agents such as exopolysaccharides and lipopolysaccharides to tillage intensity. Front. Microbiol. 11, 568 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Finn, D., Yu, J. & Penton, C. R. Soil quality shapes the composition of microbial community stress response and core cell metabolism functional genes. Appl. Soil Ecol. 148, 103483 (2020).

    Article  Google Scholar 

  59. Sharma, M. P. et al. Deciphering the role of trehalose in tripartite symbiosis among rhizobia, arbuscular mycorrhizal fungi, and legumes for enhancing abiotic stress tolerance in crop plants. Front. Microbiol 11, 509919 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Yaakop, A. S. et al. Characterization of the mechanism of prolonged adaptation to osmotic stress of Jeotgalibacillus malaysiensis via genome and transcriptome sequencing analyses. Sci. Rep. 6, 33660 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wargo, M. J. Homeostasis and catabolism of choline and glycine betaine: lessons from Pseudomonas aeruginosa. Appl. Environ. Microbiol. 79, 2112–2120 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Boch, J., Kempf, B., Schmid, R. & Bremer, E. Synthesis of the osmoprotectant glycine betaine in Bacillus subtilis: characterization of the gbsAB genes. J. Bacteriol. 178, 5121–5129 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nayfach, S. & Pollard, K. S. Average genome size estimation improves comparative metagenomics and sheds light on the functional ecology of the human microbiome. Genome Biol. 16, 51 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Pereira-Flores, E., Glöckner, F. O. & Fernandez-Guerra, A. Fast and accurate average genome size and 16S rRNA gene average copy number computation in metagenomic data. BMC Bioinformatics 20, 453 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Chessel, D. & Hanafi, M. Analyses de la co-inertie de K nuages de points. Rev. Stat. Appl. 44, 35–60 (1996).

    Google Scholar 

  66. Piton, G. et al. Using proxies of microbial community-weighted means traits to explain the cascading effect of management intensity, soil and plant traits on ecosystem resilience in mountain grasslands. J. Ecol. 108, 876–893 (2020).

    Article  CAS  Google Scholar 

  67. Meng, C., Kuster, B., Culhane, A. C. & Gholami, A. M. A multivariate approach to the integration of multi-omics datasets. BMC Bioinformatics 15, 162 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Dray, S., Dufour, A. B. & Chessel, D. The ade4 package-II: two-table and K-table methods. R News 7, 47–52 (2007).

    Google Scholar 

  69. Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).

    Article  Google Scholar 

  70. Genuer, R., Poggi, J.-M. & Tuleau-Malot, C. VSURF: an R package for variable selection using random forests. R J. 7, 19–33 (2015).

    Article  Google Scholar 

  71. Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. https://doi.org/10.18637/jss.v028.i05 (2008).

  72. Poggio, L. et al. SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty. Soil 7, 217–240 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Tedersoo and P. Bork who conceived and supervised the acquisition of the global dataset used in this study with M. Bahram and F. Hildebrand; all their collaborators who contributed to this global data acquisition effort; A. Larkin and L. Ustick for guidance in the bioinformatic analysis conducted in this study. G.P., S.D.A., J.B.H.M., K.K.T. and A.C.M. were supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research grants DE-SC0016410 and DE-SC0020382. F.H. was supported by the European Research Council H2020 StG (erc-stg-948219, EPYC) and by the Biotechnology and Biological Sciences research Council (BBSrC) Institute Strategic Program (ISP) Food Microbiome and Health BB/X011054/1 and its constituent project BBS/E/F/000PR13631; Earlham DECODE ISP BBX011089/1 and its constituent work package BBS/E/ER/230002A.

Author information

Authors and Affiliations

Authors

Contributions

Data collection was designed and supervised by M.B. Initial bioinformatics analysis to obtain functional genes abundance tables (eggNOG, KEGG, SEED, CAZy) was designed and performed by F.H. The idea of this new analysis was conceived by G.P. with inputs from A.C.M., S.D.A, J.B.H.M. and K.K.T. New quantification of genomic traits, Unifrac and data analyses were performed by G.P. Writing of the first draft and subsequent editing was performed by G.P. with inputs from all co-authors.

Corresponding author

Correspondence to Gabin Piton.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Tess Brewer, Kate Buckeridge and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1

Stress plot representing the % of variation of the global dataset captured by each dimension of the MCOA.

Extended Data Fig. 2 Variable contributions to the third trait dimension of the multiple co-inertia analysis (MCOA).

The MCOA summarizes in a common structure the information shared by 5 community aggregated trait (CAT) databases (Genomic trait, CAZy, eggNOG, SEED and KEGG). Only the most important variables with significant correlation (p < 0.001) with each dimension are reported in this figure.

Extended Data Fig. 3 Correlations between average genome size (a,b) or average rrn gene copy number (c,d) and the coordinates along dimensions 1 and 2 of the MCOA.

The P value indicates the significance of the regression slope obtained using a t-test. Shade represents the estimated 95% confidence interval. Color gradients follow MCOA dimensions and match with Figs. 1 and 3 in the main text.

Extended Data Fig. 4 Correlations between MCOA dimensions (MCOA1 and MCOA2) and mapping coverages on the 3 general databases (eggNOG, KEGG, SEED) used in this study.

The P value indicates the significance of the regression slope obtained using a t-test.

Extended Data Fig. 5 Environmental drivers of the bacterial community trait dimensions.

Environmental variable importances are represented as the mean decrease in mean square error (%MSE) and R squared in random forest models predicting MCOA Dimension 1 (a) and 2 (b). Bar colours indicate which end of the dimension (Figs. 1 and 3) is positively correlated with the variable.

Extended Data Fig. 6 Correlations between local trait dimension observations and global spatial prediction.

Correlations between local observations of bacterial community positions along the first and second trait dimensions from the MCOA (Figs. 12) and the predicted value of the global map cell (Fig. 4) corresponding to where the local observations have been done. Dashed line represents a 1:1 correlation. The P value indicates the significance of the regression slope obtained using a t-test. Shade represents the estimated 95% confidence interval. Color gradients follow MCOA dimension and match with Figs. 1,2 and 4 in the main text.

Extended Data Fig. 7 Correlation between phylogenetic distance (Unifrac metric) and functional distance (Euclidian distance in MCOA space using coordinates of the two principal dimensions).

Correlation for all samples (a) and restricted to samples with average genome size below (b) and above (c) its median value in the dataset. The P value indicates the significance of the regression slope obtained using a t-test.

Extended Data Fig. 8 Dataset distribution and environmental coverage.

a. Sample localisations and associated biomes b, c. Comparison between global range of environmental variables from the Atlas of the Biosphere (b) and the environmental coverage of dataset (n = 128) used in this study (c). Boxplot elements: Center line=median; box limits=upper and lower quartiles; whiskers = 1.5x interquartile range; points=outliers. World map was done with rnaturalearth R package (https://github.com/ropensci/rnaturalearth).

Extended Data Fig. 9 Environmental coverage comparison between the database used in this study from Barham et al.2 and databases from the main metagenomes repositories (MG-RAST and IMG:M).

N corresponds to the number of metagenomes available in each database. MAT=Mean Annual Temperature, AP=Annual Precipitation. Boxplot elements: Center line=median; box limits=upper and lower quartiles; whiskers = 1.5× interquartile range; points=outliers.

Extended Data Table 1 Life history traits used in this study

Supplementary information

Reporting Summary

Supplementary Table 1

List of substrate specificity of glycoside hydrolases (GHs) and auxiliary activities (AA) enzymes from the CAZy database.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piton, G., Allison, S.D., Bahram, M. et al. Life history strategies of soil bacterial communities across global terrestrial biomes. Nat Microbiol 8, 2093–2102 (2023). https://doi.org/10.1038/s41564-023-01465-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-023-01465-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing