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Single-cell massively-parallel multiplexed 
microbial sequencing (M3-seq) identifies 
rare bacterial populations and profiles phage 
infection
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Bacterial populations are highly adaptive. They can respond to stress 
and survive in shifting environments. How the behaviours of individual 
bacteria vary during stress, however, is poorly understood. To identify and 
characterize rare bacterial subpopulations, technologies for single-cell 
transcriptional profiling have been developed. Existing approaches 
show some degree of limitation, for example, in terms of number of 
cells or transcripts that can be profiled. Due in part to these limitations, 
few conditions have been studied with these tools. Here we develop 
massively-parallel, multiplexed, microbial sequencing (M3-seq)—a 
single-cell RNA-sequencing platform for bacteria that pairs combinatorial 
cell indexing with post hoc rRNA depletion. We show that M3-seq can profile 
bacterial cells from different species under a range of conditions in single 
experiments. We then apply M3-seq to hundreds of thousands of cells, 
revealing rare populations and insights into bet-hedging associated with 
stress responses and characterizing phage infection.

Bacteria have a remarkable ability to adapt to diverse and changing 
environments. One strategy that allows populations to flourish in the 
face of unpredictable environmental stressors is specialization of 
individual cells. These specializations can manifest as morphological 
changes (for example, sporulation in Gram-positive organisms)1 or 
visually indistinguishable but functionally distinct states (for exam-
ple, rare antibiotic-resistant ‘persister’ phenotypes in Staphylococcus 
aureus and Escherichia coli)2–4. A promising approach to study such 
specializations is to measure how single cells orchestrate gene expres-
sion. For mammalian cells, such measurements have been enabled by 
single-cell RNA sequencing (scRNA-seq)5–7. Despite pioneering efforts 
to develop similar tools for bacteria, current technologies for studying 
microbes lag behind.

Existing bacterial scRNA-seq methods include MATQ-seq8, 
PETRI-seq9, microSPLiT10, par-SeqFISH11 and ProBac-seq12 (Fig. 1a and 
Extended Data Table 1). Each of these methods uses a different strategy 
to index cells and their transcripts, and each has benefits and draw-
backs13. MATQ-seq isolates single cells into separate wells of multiwell 
plates and performs individual indexing reactions to generate sequenc-
ing libraries14. This ‘indexing’ scheme is inherently limited in scale. 
By contrast, each of the remaining methods allows single-cell gene 
expression to be profiled across pools of cells in single experiments, 
with multiplexed transcript detection enabled by in situ probe hybridi-
zation (SeqFISH and ProBac-seq) or split-pool combinatorial index-
ing7 (PETRI-seq, microSPLiT). These methods have established the 
field of single-cell transcriptomics in bacteria, but drawbacks remain. 
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~96 round-one indices, our calculations suggest that hundreds of 
thousands of cells can be loaded in a single run of the droplet system 
with <1% collision rate.

Next, we verified that even though bacterial cells are surrounded 
by thick cell walls and contain very few mRNA molecules, we could 
generate single-cell transcriptomes using our approach. Briefly, after 
growing both B. subtilis 168 and E. coli MG1655 separately to exponen-
tial and stationary phase, we fixed, washed and permeabilized the cells 
with lysozyme9,10. We then combined the cells at equal cell numbers, 
performed combinatorial indexing using 96 round-one indices and 
loaded 100,000 cells into droplets for round-two indexing (1 channel 
of a Single Cell ATAC chip). We refer to this experiment as eBW1 (Sup-
plementary Tables 1 and 3). Given our previous loading calculations, 
we would expect 15.7% of all cell-containing droplets in this experiment 
to yield an index collision without round-one indexing. Similar to these 
expectations, our data revealed a 13.9% collision rate (fraction of cells 
with <85% of UMIs assigned to one species) between B. subtilis and  
E. coli cells when only BC2 indices were used to discriminate cells 
(Extended Data Fig. 2d). To account for within-species collisions that 
would otherwise be identified as single E. coli or B. subtilis cells, we  
scale this collision rate by a factor of 1

2pq
, where p is the fraction of  

E. coli cells in the dataset and q is the fraction of B. subtilis cells in the  
dataset, such that p + q = 1. Using this scaling factor gives a total 28.7% 
collision rate when also accounting for within-species collisions. 
Encouragingly, using both BC1 and BC2 indices dramatically decreased 
this rate to 0.7% (1.5% when accounting for within-species collisions) 
(Extended Data Fig. 2e). In addition, pseudobulk libraries generated 
from these data have profiles similar to that of bulk RNA-seq (Extended 
Data Fig. 2f).

As has been previously observed with other bacterial combi-
natorial indexing methods9,10, most reads in our pilot experiment 
aligned to rRNAs (Extended Data Fig. 2g–j). Of roughly 1,000–2,000 
reads per cell in exponential-phase E. coli, 90–97% of the reads aligned 
to rRNA, while the rest aligned to other RNA species (for example, 
mRNA, transfer (t)RNAs, small(s)RNAs and 5’ or 3’ untranslated regions 
(UTRs)). Technically, higher coverage of the latter set of RNAs could 
be achieved by sequencing to greater depth, but we sought a more 
cost-effective solution removing rRNA sequences before sequenc-
ing. When developing this solution, we noted that depletion of rRNA 
in situ can decrease mRNA capture efficiency10 and thus focused on 
depleting rRNAs after amplification (Fig. 1b and Extended Data Fig. 1a). 
Specifically, after testing two approaches for depleting ribosomal 
sequences from bulk libraries (Extended Data Fig. 3a–c), we chose 
an RNase H-based approach17–19 to complete our pipeline (Extended 
Data Fig. 1b). Our full M3-seq pipeline is as follows: After two rounds 
of indexing (performed as described above), cDNA libraries are tran-
scribed to single-stranded RNA. rRNA sequences within the library are 

Hybridization-based approaches rely on pre-designed species- and 
gene-specific probes, thus limiting unbiased discovery, while combina-
torial indexing platforms have an abundance of signal from ribosomal 
(r)RNA, which can compromise messenger (m)RNA detection. Given 
these considerations, here we develop massively-parallel, multiplexed, 
microbial sequencing (M3-seq), a method for scRNA-seq in bacteria 
that combines plate-based, in situ indexing with droplet-based index-
ing and post hoc rRNA depletion. In parallel to our study, another 
droplet-based, scRNA-seq method, called BacDrop15, was reported. This 
method performs rRNA depletion in situ15, while M3-seq performs rRNA 
depletion after library amplification, thus reducing the risk of losing 
unamplified, non-rRNA transcripts and potentially increasing sensi-
tivity. M3-seq enables massively parallel gene expression profiling of 
single bacterial cells across many samples at transcriptome-scale with 
sensitive mRNA capture. By applying M3-seq to hundreds of thousands 
of cells, we revealed independent phage induction programmes in 
Bacillus subtilis, a bet-hedging subpopulation of E. coli and the detailed 
heterogeneity of phage infection.

Results
M3-seq captures rRNA-depleted single-cell transcriptomes
We designed M3-seq with two rounds of cell indexing (Fig. 1b and 
Extended Data Fig.  1). The first of these indexing rounds uses 
in situ reverse transcription with random priming to tag transcript 
sequences with one cell index (BC1) and a unique molecular identifier 
(UMI). This indexing step, which we refer to as ‘round-one indexing’, 
occurs in multiple reactions, each performed on a separate pool of 
fixed, permeabilized bacterial cells. After this step, cells are mixed 
and then separated again into droplets using a commercially avail-
able kit (Chromium Next GEM Single Cell ATAC, 10X Genomics). In 
these droplets, we perform ‘round-two indexing’, wherein a second 
cell index (BC2) is ligated onto cell-associated, BC1-indexed comple-
mentary (c)DNA molecules. While neither BC1 nor BC2 are necessarily 
unique, together these sequences create a combinatorial index that 
serves as a distinct marker for individual cells. Conceptually, this 
indexing scheme is identical to scifi-RNA-seq16, which has enabled 
sequencing of >100,000 mammalian cells in a single run. However, 
because bacteria are considerably different from mammalian cells 
(for example, smaller, thick cell walls), we first performed a series 
of pilot experiments. First, to verify that we could load single-cell 
suspensions of bacterial cells into droplets at rates appropriate 
for combinatorial indexing, we loaded different numbers of Sytox 
Green-stained E. coli into droplets and calculated the distribution of 
cells within resulting droplets by imaging (Extended Data Fig. 2a,b). 
We then calculated the rates at which cells with the same round-one 
index would be expected to acquire an identical round-two index 
(Extended Data Fig. 2c). We call such events ‘index collisions’. With 

Fig. 1 | Development of M3-seq platform for single-cell RNA-sequencing with 
post hoc rRNA depletion. a, scRNA-seq methods previously established for 
bacteria with reported number of cells (ranging from 100 cells per experiment 
to 300,000 cells per experiment), conditions (ranging from 1 condition per 
experiment to 20 conditions per experiment) and mRNA genes per cell (ranging 
from 29 genes per cell to 371 genes per cell). Numbers in each category were 
selected by taking maximum reported values. Numbers also found in Extended 
Data Table 1. b, Schematic of M3-seq experimental workflow. Indexing:  
(i) RNA molecules are reverse transcribed in situ with indexed primers such 
that cells in each reaction (that is, separate plate wells) are marked with distinct 
sequences. Primers allow for random priming. (ii) Cells are then collected, 
mixed and distributed into droplets for a second round of indexing via ligation 
with barcoded oligos. Sequencing library preparation: Cells are collected again 
and lysed to release single-strand cDNAs. (iii) Second-strand synthesis is then 
performed in bulk reactions and resulting cDNA molecules are fragmented with 
Tn5 transposase, amplified via PCR to add a T7 promoter and converted to RNA 
using T7 RNA polymerase. (iv) To deplete ribosomal sequences, the amplified 

RNA library is hybridized to complementary DNA probes (Supplementary 
Table 3), and annealed sequences are cleaved by RNase H. Finally, remaining 
sequences are reverse transcribed back to DNA, sequencing adaptors are added 
and data are collected by sequencing. c, Percentages of mRNA sequences in  
B. subtilis and E. coli single-cell libraries prepared with and without rRNA depletion. 
Data from undepleted libraries come from eBW1 and data from depleted libraries 
come from eBW3. d, M3-seq analysis of a mixture of B. subtilis and E. coli wherein 
each point corresponds to a single ‘cell’ (that is, unique combination of plate and 
droplet barcodes). Species assignments were made as described in Methods. 
e, UMIs per cell (after species assignment) observed in exponential-phase cells 
across two experiments, eBW2 and eBW3 (515 ± 245 and 953 ± 310 median UMIs 
with absolute deviation for B. subtilis, respectively; 211 ± 85 and 100 ± 47 median 
UMIs with absolute deviation for E. coli MG1655, respectively; 266 ± 100 UMIs 
with for E. coli Nissle in eBW3). N = 1,336, 533, 84, 1,944, 1,659 cells, respectively. 
Boxplot limits are as defined in Methods. f, Median genes detected per B. subtilis 
or E. coli cell as a function of the number of total reads per cell across three 
experiments: eBW1, eBW2 and eBW3.
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then hybridized to rRNA-specific DNA probes and digested with RNase 
H, which specifically cleaves RNA in RNA:DNA hybrids. The resulting 
rRNA-depleted libraries are then reverse transcribed back into cDNA 
for sequencing. Encouragingly, putting these steps together enabled 
recovery of single-cell transcriptomes with an 11–27-fold increase 
in reads aligning to mRNA (Fig. 1c), a 15–20-fold increase in tRNA 
(Extended Data Fig. 3d), an 8–21-fold increase in sRNAs (Extended 
Data Fig. 3e) and a 5–20-fold increase in 5’ and 3’ UTRs (Extended Data 
Fig. 3f,g) compared with undepleted libraries obtained in eBW1. In 
addition, the mRNA content of our rRNA-depleted bulk libraries was 

similar to libraries that had not been depleted (r = 0.94) (Extended Data 
Fig. 3b) and the frequency of individual indices was similar before and 
after depletion (Extended Data Fig. 3c), implying that the depletion 
process does not meaningfully change library composition.

To evaluate the full M3-seq pipeline in terms of UMI capture, 
single-cell resolution and information captured across different 
conditions, we next performed two large experiments (Supplemen-
tary Tables 1 and 3): one in which we evaluated B. subtilis 168 and  
E. coli MG1655 (eBW2) and one in which we evaluated these species 
alongside a non-domesticated strain of E. coli (Nissle 1917, eBW3).  
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In these experiments, we grew bacteria to exponential (optical density 
(OD) = 0.3) and early stationary phases (OD = 2.5, 2.8 and 2.6) with and 
without antibiotic treatments. After in-plate, round-one indexing, we 
pooled cells from each condition and loaded them into droplets (Sup-
plementary Table 2). Consistent with our previous experiments, we 
observed a low index collision rate among cells loaded into droplets 
(Fig. 1d, Extended Data Fig. 3h–k), although collision rates for these 
particular libraries were variable across the different treatments and 
moderately higher than observed in our previous experiments (1.7%–
13% collision rate, 3.6%–32% corrected) (Extended Data Fig. 2e, 3h-k).

After identifying single cells using combined round-one and 
round-two indices, we discriminated samples by round-one indices 
and identified species using the aligned mRNA transcripts. Across 
two independent experiments (eBW2, eBW3), we recovered 515 and 
984 median UMIs per exponential-phase B. subtilis cell (298 and 371 
median genes per cell, 0.145 and 0.237 mean UMIs per gene), 211 and 
100 median UMIs per exponential-phase E. coli MG1655 cell (151 and 
72 median genes per cell, 0.0654 and 0.0374 UMIs per gene) and 266 
median UMIs per exponential-phase Nissle cell (175 median genes 
per cell), respectively (Fig. 1e and Extended Data Fig. 3l). Compared 
to other studies that applied scRNA-seq to bacteria, this represents 
roughly the same number of UMIs per cell9,10,12 and UMIs per gene for 
E. coli9,12 but twice as many UMIs per cell10,12 and UMIs per gene for B. 
subtilis12. We found that biological replicates of E. coli MG1655, B. sub-
tilis 168, and E. coli Nissle after 6 hours of drug treatment had similar 
compositions (Extended Data Fig. 4a–c) and correlated biological 
signal between replicates (Pearson correlation of (r = 0.94, 0.79, 0.92) 
(Extended Data Fig. 4d–f) and that pseudobulk profiles recapitulated 
information from RNA-seq (r = 0.85) (Extended Data Fig. 4g). Criti-
cally, data from these experiments also revealed that M3-seq libraries 
require ~15-fold fewer reads per cell to detect the same number of genes 
as undepleted libraries (Fig. 1f). M3-seq thus provides biologically 
meaningful, rRNA-depleted transcriptomes at single-cell resolution.

M3-seq reveals an acid-tolerant E. coli subpopulation
The transition from exponential phase to early stationary phase repre-
sents a shift from rapid growth to slow growth as nutrients are depleted 
from the environment. Across the three bacterial strains in our eBW3 
experiment, the transcriptomes from our single-cell data successfully 
distinguished stationary phase cells from those growing exponentially; 
that is, labelling groups of cells obtained with unsupervised cluster-
ing separated growth-stage-specific ‘round-one’ indices (Extended 
Data Fig. 5a–c). Gene ontology (GO) analysis of genes differentially 
expressed between those cells also showed clear enrichment for 
biological processes associated with one growth stage or the other 

(Extended Data Fig. 5d–f). As would be expected from dampened 
transcriptional output during slowed growth, stationary phase cells 
had substantially fewer UMIs per cell than did exponential-phase cells, 
with a median of 30 UMIs per cell for B. subtilis and E. coli MG1655 and 
39 UMIs per cell for Nissle.

In addition to differences between cells collected at different 
growth stages, we observed striking transcriptional heterogeneity 
‘within’ populations of E. coli in early stationary phase cells (Fig. 2a and 
Extended Data Fig. 6a). A closer examination of cells from this growth 
stage revealed a cluster of cells overexpressing genes involved in intra-
cellular pH elevation and glutamate catabolism (Fig. 2b and Extended 
Data Fig. 6b). The most strongly expressed genes in these clusters were 
gadA and gadB (Fig. 2c,d and Extended Data Fig. 6c,d). These genes 
are well conserved among enteric bacteria and are known to encode 
glutamate decarboxylases that de-acidify the cellular cytoplasm by 
consuming a proton during decarboxylation of glutamate to GABA 
(γ-aminobutyric acid) (Extended Data Fig. 6e)20–22. While previous 
studies have shown that these genes are expressed in stationary-phase 
E. coli using bulk measurements23,24 and heterogeneous expression has 
been observed in other conditions25,26, heterogeneous expression of 
gadA and gadB during the transition into stationary phase has not been 
previously reported. Before exploring these subpopulations further, 
we confirmed that total UMIs per cell for these particular subpopula-
tions were not obviously different from the whole population (Fig. 2a,e 
and Extended Data Fig. 6a,f) and that neither cluster was substantially 
enriched for any particular round-one index (Fig. 2f and Extended Data 
Fig. 6g), which could indicate a technical artefact. We then moved on to 
experimental validation. Transforming E. coli MG1655 with a plasmid 
encoding a GFP variant (GFPmut2) controlled by the gadB promoter 
(PgadB-gfp) and imaging after growth in the same condition used for 
single-cell sequencing (Fig. 2g, inset) revealed 14.2% of cells expressing 
high levels of GFP controlled by the gadB promoter, which is compara-
ble to 9.8% of cells from M3-seq experiments in early stationary phase 
E. coli with at least one transcript of gadA or gadB (Fig. 2g).

Our finding that gad genes are heterogeneously expressed in early 
stationary phase presented an opportunity to investigate the function 
of heterogeneous gene expression during a biologically important 
process. We first confirmed a functional role for the gad genes in our 
cells by asking whether E. coli MG1655 lacking gadABC can survive acid 
stress applied during early stationary phase (Extended Data Fig. 6h). 
Data from this experiment, which measured the number of viable 
cells by counting colony-forming units (c.f.u.s) with and without acid 
stress revealed that acid tolerance in the triple deletion strain was 
strongly impaired relative to wildtype. However, given the experimen-
tal design, these data could not link surviving cells to any pre-existing 

Fig. 2 | M3-seq reveals an acid-tolerant, bet-hedging subpopulation of E. coli 
in early stationary phase. a, Uniform Manifold Approximation and Projection 
(UMAP) of E. coli MG1655 transcriptomes from cells at early stationary phase 
(OD = 2.8). Colours indicate clusters of transcriptionally similar cells. b, GO-term  
enrichment of select biological processes calculated with marker genes 
identified for cluster 2 in a. Marker gene identification and GO-term analyses 
were performed as described in Methods. c, Same as a but with colour gradient 
indicating expression of gadABC genes (in normalized UMI counts). d, Zero-
centred and normalized expression of marker genes for each cluster identified 
in a. Marker genes were determined as described in Methods. e, Same as a but 
with colour gradient indicating number of UMIs captured in each cell. f, Boxplot 
of normalized cluster percentage for each BC1 barcode in each cluster. The 
normalized cluster percentage and boxplot limits were determined as described 
in Methods. g, Normalized fluorescence distribution of early stationary phase 
E. coli transformed with PgadB-gfp. Inset is a representative composite image 
with phase and GFP channels overlaid. The gad+ percentage was determined 
as described in Methods (N = 3 biological replicates, 5,034, 1,219 and 2,171 cells 
analysed, respectively). Scale bar, 5 μm. h, Schematic of acid-stress recovery 
assay. Tubes are adapted from BioRender.com. i, Representative composite 
images of E. coli expressing PgadB-gfp during recovery phase of acid-stress 

recovery assay depicted in h. Arrows indicate cells that divided during the 
recovery period. Scale bar, 5 μm. j, Distributions of fluorescence intensity of 
E. coli expressing PgadB-gfp before and after acid-stress recovery assay. Orange 
depicts measurements from cells before acid treatment (1,833 cells) and green 
depicts measurements from cells at t = 0 that ultimately divided over the course 
of recovery (that is, survived acid treatment, N = 38 cells). Inset is a representative 
composite overlay of the cells 180 min after the start of recovery from the 
same experiment as in i. Arrows indicate cells that divided during the recovery 
period. Scale bar, 5 μm. P = 2.99 × 10−156 from independent, two-sided t-test. 
k, Growth curves of E. coli MG1655 transformed with gfp or gadBC transgene 
(overexpression plasmids) and grown with or without 10 μM of IPTG (dashed 
curves) for 1,000 min. Curves indicate mean values and the shaded regions the 
95% confidence interval of 3 technical replicates. l, Representative composite 
images of a mixed population of E. coli MG1655 transformed with gfp or gadBC 
transgene grown on an LB-agarose pad with 100 μM of IPTG. m, Single-cell 
growth rates of E. coli MG1655 transformed with gfp or gadBC transgene after 
transgene induction. Growth rates were computed as described in Methods 
from 539 and 112 observations, respectively, within a single set of videos (N = 1). 
P = 1.06 × 10−230 from independent, two-sided t-test. Boxplot limits are as defined 
in Methods.
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subpopulation. We therefore next deployed our PgadB-gfp reporter 
strain to monitor how cells with varying levels of gadB expression 
recover from acid treatment (Fig. 2h,i). First, we grew the reporter 
strain to early stationary phase and, using imaging, confirmed that a 
subpopulation of the cells expressed GFP. Next, we exposed the whole 
population of cells to acid stress (pH 3.0) and after 1 h, transferred an 
aliquot of the stressed cells to a fresh LB-agarose pad (t = 0). We then 
imaged the cells for 8 h. Quantification of GFP intensity as a proxy for 
gadB expression across individual cells in pre- and post-treatment 
images revealed that the population of viable cells, which were those 
that could not be stained by propidium iodide and divided at least once 
during the recovery period, were those expressing high levels of GFP 
at the beginning of the recovery (Fig. 2j). This observation suggests 
that the subpopulation of cells expressing high levels of gadB-driven 
GFP before acid exposure are the ones that subsequently survived 
acid treatment. Further supporting this possibility, imaging of early 
stationary PgadB-gfp reporter cells during strong acid stress found that 
rather than increasing in response to acid treatment, GFP fluorescence 
intensity steadily decreased in bacterial cells, probably due to reporter 
denaturation; however, cells that had high levels of GFP fluorescence 
at the beginning survived longer (Extended Data Fig. 6i and Supple-
mentary Video 2). Together, these observations suggest that under 
sudden strong acid stress, early stationary phase E. coli do not induce 
a new gad+ subpopulation to tolerate acid stress, but instead tolerate 
stress by relying on an existing subpopulation of gad+ cells.

A reason for having only a subpopulation of cells expressing the 
gad genes during early stationary phase would be if there is a cost 
to expressing these genes. Using an overexpression system27,28, we 
observed a reduction in final cell density at the bulk level and a growth 
defect at the single-cell level (P < 2 × 10−230, Fig. 2k–m and Extended Data 
Fig. 6j,k). Furthermore, time-lapse microscopy of PgadB-gfp reporter 
cells during entry to stationary phase revealed asynchronous activa-
tion of gadB-driven GFP (Extended Data Fig. 6l,m) and a growth defect 
of GFP-high cells (gad+ cells) compared with GFP-low cells (gad− cells, 
P < 0.0004, Extended Data Fig. 6n). Paired with our functional charac-
terization of the gadB-expressing subpopulation, these data suggest 
a model wherein E. coli can preemptively activate the gad genes to 
protect against future strong acid stresses (for example, such as would 
be experienced when passing through acidic environments such as 
the stomach), but because gad expression causes decreased growth 
overall, activation is limited to a subpopulation in case the acid stress 
does not materialize.

Bacteriostatic antibiotics cause transcriptional variability
How bacteria respond to antibiotic treatment is an important question. 
However, the large number of bacterial species and types of antibiotics,  
combined with variability of response within populations, makes this 
a difficult question to approach systematically. Combinatorial index-
ing provides a straightforward way to evaluate gene expression across 
many samples (that is, separate round-one indices can mark many 
cultures) and given the single-cell resolution of our platform, we rea-
soned that M3-seq could prove beneficial in this space. We therefore 
deployed M3-seq to evaluate bacterial cultures treated with each of 
eight antibiotics: two DNA-damaging agents (nalidixic acid, cipro-
floxacin), two inhibitors of cell wall synthesis (cycloserine, cefazolin) 
and four ribosomal inhibitors (chloramphenicol, erythromycin, tet-
racycline, gentamycin) (Fig. 3a, and Supplementary Tables 1 and 3). 
In this experiment (eBW4), cultures were grown to early exponential 
phase (OD = 0.3), treated with 2× the minimum inhibitory concentra-
tion of each drug for 90 min and subjected to M3-seq across 2 lanes of 
a Single Cell ATAC chip. Altogether, we report data for 20 conditions 
across 229,671 cells (Supplementary Table 2) from which we make 
two systems-level observations: (1) indicative of successful profiling, 
select genes with known associations to antibiotic-induced stresses 
had higher expression in expected cultures (Extended Data Fig. 7a,b) 

and (2) hierarchical clustering of correlations between pseudobulk 
expression profiles grouped drugs with the same mechanism of action. 
These results suggest that M3-seq is a promising tool for systematic 
analysis (Fig. 3b,c).

A closer examination of individual samples at the single-cell 
level (Extended Data Fig.  7c,d) revealed that tetracycline- and 
chloramphenicol-treated E. coli had a large number of transcriptional 
states (14 and 8 clusters, respectively) (Extended Data Fig. 7c and Sup-
plementary Table 4). Unlike bactericidal drugs, such bacteriostatic 
agents do not have readily measurable single-cell persistence and tole-
rance phenotypes3,29–31, hence relatively little is known about hetero-
geneity in response to these drugs. Exploring the combined data from 
these two conditions identified several rare clusters that contained 
cells from both samples and expressed genes encoding mobile genetic 
elements (MGEs) (Fig. 3d–f, Extended Data Fig. 8a–d and Supplemen-
tary Table 4). Such rare cell populations may help cultures tolerate 
and escape the bacteriostatic state through subtle mechanisms (for 
example, activating genes implicated in cold shock, such as ydfK). From 
a technical perspective, these samples provided the largest number of 
transcriptomes from our experiment and high median UMIs per cell 
(Extended Data Fig. 7c)32. This high sampling undoubtedly enabled 
sensitive detection of rare populations but made direct comparison 
to other conditions difficult. Nevertheless, the large number of cells 
(79,804 from the two conditions combined) and high median UMIs 
(55 and 65 for tetracycline- and chloramphenicol-treated samples, 
respectively) within these populations provided an opportunity to 
evaluate requirements of scale and mRNA capture.

To better understand how the ability to detect rare subpopulations 
increases with the number of cells sequenced and UMIs captured, we 
first needed a metric capable of capturing transcriptional variability  
in the data. We found in our data that certain principal components 
had ‘heavy tails’, that is, outliers that strongly deviated from the 
mean loading for that principal component. These outlier cells were 
assigned as members of unique subpopulations in our clustering 
analysis (Extended Data Fig. 8e–h). We therefore reasoned that we 
could assess detection of rare cell subpopulations by computing the 
kurtosis (a measure of how heavy the tails of a distribution are) for 
each principal component (Extended Data Fig. 8i–k)33. Performing 
this analysis on random subsets of the data showed that the kurtosis 
of the top principal components (ranked by kurtosis) decreased when 
the data were downsampled (Fig. 3g,h). Correspondingly, a cluster 
containing the rare cell populations expressing insI-2 was undetect-
able when clustering (Louvian with default parameters) downsampled 
data, with no ability to detect at lower cell numbers and UMI capture 
rates, including those relevant to other samples from this experiment, 
as well as previous studies (~1,000–5,000 cells, 7–49 UMIs per cell). 
This population nevertheless became apparent above our downsam-
pling of 7,500 cells and 56 UMIs per cell. Notably, the kurtosis of the 
‘heaviest’-tailed principal components monotonically increased with 
increasing cell numbers up to the number of cells in our experiment 
(79,804 cells) and the number of median mRNA transcripts captured 
(56 UMIs), suggesting that sequencing even more cells with deeper 
mRNA coverage could potentially identify even rarer subpopulations. 
Our combined analysis thus illustrates the need for scRNA-seq analysis 
to be performed at massive scale in bacteria and shows how M3-seq 
can enable such efforts.

DNA-damaging antibiotics induce prophages in B. subtilis
A second observation from our antibiotic study was that B. subtilis 
cells treated with DNA-damaging antibiotics (ciprofloxacin and nali-
dixic acid) exhibited a variety of transcriptional states (Fig. 4a,b and 
Extended Data Fig. 7d). Clustering the data and identifying marker 
genes associated with each cluster revealed that clusters 5, 6 and 7 had 
distinct sets of strongly co-expressed genes belonging to the PBSX or 
SPβ prophages (Fig. 4b–g). These prophages (PBSX and SPβ) are known 
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was used to uniquely mark antibiotic-treated and untreated cultures. Plate 
and tubes are adapted from BioRender.com. b, Heat map depicts Pearson 
correlations of pseudobulk transcriptomes from E. coli MG1655 prepared as 
in a, which were computed using genes with average expression greater than 
the median average expression of all genes. Coloured text indicates antibiotics 
of similar mechanisms of action. c, Same as b but for B. subtilis 168. d, UMAP 
of E. coli MG1655 transcriptomes from cells treated with the bacteriostatic 
antibiotics tetracycline and chloramphenicol. Colours indicate drug treatment. 
e, Same as d but with colours indicating clusters of transcriptionally similar 
cells. Percentage of cells in each cluster is denoted. f, Same as d but with colour 
gradient indicating the normalized UMI count of MGEs. Clusters 8, 12, 13 
and 16 were enriched for MGE expression. g, Cell rarefaction analyses using 
M3-seq data. Curves indicate kurtosis of 15 principal components computed 
from tetracycline- and chloramphenicol-treated E. coli MG1655 cells, with 

individual curves corresponding to calculations from the total population 
of cells (79,804) or downsampled populations thereof (down to 1,000 cells). 
The 15 principal components included were those with the highest kurtosis for 
each downsampling. Inset UMAPs were computed from each downsampled 
data matrix. Within the embeddings, magenta indicates members of cluster 
16 (indicated in f), which can only be distinguished for >7,500–10,000 cells. 
Notably, the top row of embeddings (2,500–10,000 cells) represents the scale 
of experiments from previous studies, while the bottom row represents the 
scale enabled by M3-seq. h, UMI rarefaction experiments using M3-seq data. 
Curves indicate kurtosis of 15 principal components computed from 79,804 
tetracycline- and chloramphenicol-treated E. coli MG1655 cells, with individual 
curves corresponding to data subsampled for UMIs per cell (7 to 56 median 
UMIs). The 15 principal components included were those with the highest 
kurtosis for each subsampling of UMIs. Inset UMAPs were computed from each 
subsampled data matrix. Within the embeddings, magenta indicates members 
of cluster 16 (indicated in f), which can only be distinguished at the highest UMI 
detection efficiency.
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to be induced by conditions that induce the SOS response such as DNA 
damage34, and both previous single-cell studies and our data have found 
that the PBSX prophage is induced in a small fraction of exponentially 
growing B. subtilis10, cluster 6 in exponential-phase B. subtilis (Extended 
Data Fig. 7d and Supplementary Table 4).

The heterogeneity of prophage induction we found in our 
single-cell data provided the opportunity to address an outstand-
ing question: At the level of individual cells, is prophage induction 
stochastic or determined by some common perturbation (that is, 
degree of damage) or cross-talk (that is, co-repression)? Suggestive of 
stochastic induction, our analysis separated prophage-expressing cells 
into three groups: one dominated by PBSX-expressing cells (cluster 5) 
and two dominated by SPβ-expressing cells (clusters 6 and 7) (Fig. 4g 
and Supplementary Table 4). Further, on a per cell basis, comparison 
of PBSX and SPβ transcript percentages showed no obvious correlation 
(Fig. 4h) and rates of co-induction across cells, which we determined 
by thresholding, closely matched an assumption of independence 
(2.44% observed, 2.47% expected) (Fig. 4i). Therefore, we found no 
evidence for cross-repression or for a model wherein individual cells 
with the greatest damage had the greatest likelihood of inducing both 
prophages. Validation of prophage induction using single-molecule flu-
orescent in situ hybridization (smFISH) and using fluorescent reporter 
fusions on ciprofloxacin-treated cells, which we performed with probes 
against or reporter fusions for the most strongly expressed PBSX and 
SPβ genes, further supported this conclusion (8.2% cells inducing PBSX, 
4.3% cells inducing SPβ) (Fig. 4j,k).

Single-cell profiling of phage-infected bacteria
After observing gene expression from prophages, we reasoned that 
M3-seq could also be useful for studying active phage infection. Previ-
ous studies have evaluated transcriptional responses to phage with bulk 
measurements35,36, but variability of phage adsorption and infection 
from cell to cell limits interpretation of these data37–39; that is, bulk 
measurements can miss effects present only in rare populations or 
give the false impression that strong effects are homogeneous across 
a population. To address this limitation, we characterized gene expres-
sion in individual E. coli cells after infection with λ phage as part of 
eBW4. Briefly, we infected exponential phase E. coli MG1655 (grown 
to OD = 0.3) with λ phage at a multiplicity of infection (MOI) of ~100 
(Extended Data Fig. 9a,b). We sampled the cultures at 30 and 90 min 
post infection, performed M3-seq and aligned the sequencing reads 
to a combined E. coli and λ genome. Comparing pseudobulk profiles 
from infected cells to those from exponential phase demonstrated an 
upregulation of λ genes, similar to previously reported data (Extended 
Data Fig. 9c)35. However, the single-cell transcriptomes formed four 
distinct clusters, with only one cluster (3) demonstrating high levels 
of λ gene expression (Fig. 5a–e).

During lysis, λ overtakes the host transcriptional machinery 
to express high levels of the late-stage genes required to produce 

functional virions. Indicative of lytic infection, cluster 3 revealed par-
ticularly high levels of late-stage λ genes (that is, H, A, B, E, J, K) (Fig. 5d, 
Extended Data Fig. 9d and Supplementary Table 4). By contrast, the 
most highly expressed genes in the remaining clusters (1, 2 and 4) were 
from E. coli and these non-lytic cells had similar levels of host UMIs as 
lytic cells (57 median UMIs for non-lytic cells, 55 median UMIs for lytic 
cells) (Fig. 5e, Extended Data Fig. 9e and Supplementary Table 4). 
Given the saturating MOI used in the experiment, these results were 
surprising. Our expectation was that all cells would be infected. To 
validate our measurements, we thus performed time-lapse microscopy 
on similarly infected E. coli cells and found that only 34.3% of cells in 
the initial frame eventually lysed, which agrees with the 33.6% of cells 
we observed by M3-seq to have >1 λ transcript at the 30-min timepoint 
(Fig. 5f). Collectively, these data show how even at high MOIs, bulk 
measurements do not accurately reflect the single-cell-level processes 
occurring during infection40.

Using our M3-seq data, we next sought to determine whether  
E. coli mount an active transcriptional response to λ infection and lysis. 
Examining host genes that were differentially expressed between the 
lytic cluster and the rest of the population revealed only a small set of 
genes with modest log2 fold changes (Extended Data Fig. 9f) and the 
upregulated genes encoded products previously reported to be part 
of indirect effects of lysis35. Reanalysing our data using only the E. coli 
MG1655 genome next revealed that without inclusion of the phage 
genes, cells identified with high viral load from analysis with the λ 
genome were not discriminated (Extended Data Fig. 9g–k)40. These 
results strengthen previous claims made using bulk transcriptional 
assays35 that E. coli do not mount a specific transcriptional response to 
λ phage lysis, despite the hijacking of host transcriptional machinery 
and the production of hundreds of foreign virions within the cell.

Discussion
While emerging technologies for scRNA-seq provide a means to iden-
tify and characterize rare subpopulations of bacteria, many meaning-
ful applications will require the ability to sequence large numbers of 
single cells across a diversity of experimental manipulations. Here we 
report the development of M3-seq, a two-step procedure of combina-
torial indexing and efficient post hoc ribosomal RNA depletion that 
simultaneously enables scale in the number of cells profiled (herein, 
229,671 total cells and 10,937 cells per condition), breadth in the num-
ber of conditions (herein, 20) and a high mRNA detection efficiency 
(herein, 100–1,000 UMIs per cell) (Fig. 1a). M3-seq therefore allows 
transcriptome-scale scRNA-seq at massive cell numbers and across 
multiple conditions. Alternative methods, including other combina-
torial indexing-based approaches, can provide reasonable scale with 
comparable UMI capture, but most have an abundance of rRNA reads 
in the final library9,10. Established probe-based approaches have the 
opposite problem. By design, these methods avoid signal from rRNA 
but, due to the strain-specificity of probe hybridization, are not readily 

Fig. 4 | M3-seq characterizes independent activation of prophages in 
B. subtilis. a, UMAP of B. subtilis transcriptomes from ciprofloxacin- and 
nalidixic acid-treated cells in exponential phase (OD = 0.3). Colours indicate 
treatment conditions (90 min). b, Same as a but with colours indicating 
clusters of transcriptionally similar cells. c, Pseudobulk gene expression of the 
two prophages in the DNA-damaging antibiotic-treated conditions (yellow) 
compared to exponential phase (grey). d, Same as a but with colour gradient 
indicating percentage of PBSX prophage UMIs within each cell. Percentages 
were calculated by dividing the total number of PBSX UMIs by the total number 
of UMIs in each cell. e, Same as a but with colour gradient indicating percentage 
of SPβ prophage UMIs within each cell. f, Schematic of B. subtilis genome with 
location of PBSX and SPβ prophages indicated. g, Zero-centred and normalized 
expression of marker genes for each of 7 clusters identified in b. Marker genes 
were defined as detailed in Methods, where a maximum of 5 genes were included 
per cluster. h, Classification of cells with induced prophages. Green indicates 

cells with relative expression of PBSX genes >8.4% per cell, which is >10th 
percentile of PBSX prophage gene expression in cluster 5 from b. Red indicates 
cells with relative expression of SPβ genes >15.0% per cell, which is >10th 
percentile of SPβ prophage gene expression in cluster 6 from b. Brown indicates 
cells above both thresholds. i, Schematic of prophage classification results.  
The expected independent co-induction probability (calculated from observed 
PBSX and SPβ percentages) is 2.5%. j, Dual-colour smFISH of B. subtilis with no-
drug treatment (left), or B. subtilis treated with ciprofloxacin for 90 min (right). 
Probes hybridizing to PBSX genes were labelled with a green fluorophore.  
Probes hybridizing to SPβ genes were labelled with a red fluorophore. Scale bar, 
5 μm. k, Fluorescent reporter fusions of B. subtilis PL-gfp (PBSX promoter) and  
PyonO-mKate2 (SPβ promoter) treated with no drug (left), or treated with 
ciprofloxacin (right) for 150 min to allow for maturation of the fluorescent 
protein. Percentages of induction were calculated from a single set of acquired 
images (N = 1,394 cells). Scale bar, 5 μm.

http://www.nature.com/naturemicrobiology


Nature Microbiology | Volume 8 | October 2023 | 1846–1862 1854

Article https://doi.org/10.1038/s41564-023-01462-3

applied across species12. Moreover, techniques that rely on imaging may 
capture only up to a hundred genes at a time11. We note that concurrent 
with this study, two studies also reported using rRNA depletion in con-
junction with bacterial scRNA-seq15,41. One of the described methods, 
BacDrop, uses an in situ enzymatic approach on unamplified transcripts 
before indexing and depletes rRNA to similar levels as we observed but 
risks digesting non-rRNA transcripts15. The other method41 uses a post 

hoc Cas9-based approach to deplete the amplified DNA library. This 
approach achieves less rRNA depletion41, which is consistent with our 
trial runs using Cas9-based rRNA depletion (75–80% rRNA in the final 
library, Extended Data Fig. 3a).

Despite the advantages of M3-seq, some technical challenges 
remain. One way to improve the method would be to develop a 
means of balancing the number of cells recovered across treatments;  
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for example, we recovered ~59,000 tetracycline-treated E. coli cells 
in eBW4, but only 886 cycloserine-treated cells, which may represent 
a biological effect but is currently difficult to separate from possible 
technical considerations (for example, differences in round-one bar-
code capture). Looking forward, application of all current methods to 
mixed-species bacterial communities will also require computational 
solutions for parsing genes with highly conserved sequences and 
experimental optimization of in situ barcoding to maximize recovery of 
species-specific transcriptomes. Such challenges are highlighted in our 
study. For example, in one of our experiments (eBW4), we attempted to 
profile four species of bacteria (B. subtilis, E. coli, Pseudomonas aerugi-
nosa, Staphylococcus aureus) but found that we could not recover UMIs 
at a satisfactory capture rate for the last two species. We attributed 
this challenge to growth stage differences, physical differences and 
sequencing depth. Nevertheless, the success of detecting multiple spe-
cies and conditions in these experiments provides precedent for what 
we anticipate will be many applications of M3-seq to exploring niches 
and single-cell strategies that emerge within a microbial community.

We see multiple biological systems for which our technology 
is ripe to be applied. Undoubtedly, a key application will be host–
pathogen interactions, for example, to reveal how bacteria mobilize 
phage-immunity mechanisms. Moreover, this application need not 
be restricted to bacterial cells. Because of the generality of using ran-
dom primers and the rRNA depletion scheme, our method can also 
be employed to study how mammalian cells respond to infection by 

intracellular pathogens and how these infecting pathogens respond 
to host factors.

Why do rare bacterial subpopulations exist within a genetically 
identical bacterial population? One reason may be that transcriptional 
heterogeneity can act as a bet-hedging strategy in response to envi-
ronmental variation. Such effects have been challenging to study with 
previous methods but using M3-seq, we discovered a rare acid-tolerant 
subpopulation expressing the gad genes in E. coli. We found that 
gad-expressing bacteria could survive strong acid treatment but were 
less fit in standard growth conditions, supporting a bet-hedging model 
of gene expression and highlighting how even temporally heterogene-
ous processes can have functional impact. Indicative of scRNA-seq as 
a discovery platform, many questions remain about this observation: 
How do varying environments change the presence of this subpopula-
tion? How do other species such as B. subtilis deal with similar sorts of 
stresses? Similarly, through the scale afforded by M3-seq, we were able 
to uncover subpopulations of cells in E. coli exposed to bacteriostatic 
drugs, the biological relevance of which remains to be fully understood. 
Undoubtedly, additional bacterial single-cell profiling efforts will yield 
further understanding of these features in the future.

Methods
Bacterial strains and growth conditions for eBW1
B. subtilis 168 and E. coli (MG1655) were streaked out from a frozen 
glycerol stock onto an LB plate and grown overnight at 37 °C. Following 
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a night of growth, a single colony was picked and inoculated into 5 ml of 
LB broth and grown with shaking at 250 r.p.m. overnight at 37 °C. The 
next morning, the overnight culture was diluted (1:100 for E. coli, 1:25 
for B. subtilis) into multiple 30-ml tubes with 5 ml of fresh LB media and 
grown with shaking at 250 r.p.m. Cells were collected once at OD = 0.6 
and again at 4 h post dilution. The volume of cells was normalized so 
that 1 OD of cells was sampled and fixed at each step. Cells were imme-
diately spun down for 5 min at 5,000 g at 4 °C and resuspended in 4 ml 
of freshly made 4% formaldehyde. The resuspended cells were rotated 
overnight at 4 °C until the next morning.

Bacterial strains and growth conditions for eBW2
B. subtilis 168 and E. coli (MG1655) were streaked out from a frozen 
glycerol stock onto an LB plate and grown overnight at 37 °C. Following 
a night of growth, a single colony was picked and inoculated into 5 ml of 
LB broth and grown with shaking at 250 r.p.m. overnight at 37 °C. The 
next morning, the overnight culture was diluted (1:100 for E. coli, 1:25 
for B. subtilis) into 35 ml of fresh LB medium in a 250 ml Erlenmeyer 
flask and grown with shaking at 250 r.p.m. Upon reaching OD = 0.3, 
5 ml of cells were split into tubes containing 2× the minimum inhibitory 
concentration of antibiotics (ciprofloxacin or cefazolin, 2 tubes), or 
no drug (2 tubes). The cells in the no-drug tubes were sampled once 
at OD = 0.6 and again at 120 min after the split. The cells in the tubes 
with drugs were sampled at 20 min post split (T20) and again at 120 min 
post split (T360). The volume of cells was normalized so that 1 OD of cells 
was sampled and fixed at each step. Cells were immediately spun down 
for 5 min at 5,000 g at 4 °C and resuspended in 4 ml of freshly made 4% 
formaldehyde. The resuspended cells were rotated overnight at 4 °C 
until the next morning.

Bacterial strains and growth conditions for eBW3
B. subtilis 168 and E. coli (MG1655 and Nissle) were streaked out from 
a frozen glycerol stock onto an LB plate and grown overnight at 37 °C. 
Following a night of growth, a single colony was picked, inoculated 
into 5 ml of LB broth and grown with shaking at 250 r.p.m. overnight 
at 37 °C. The next morning, the overnight culture was diluted (1:100 
for E. coli, 1:25 for B. subtilis) into 35 ml of fresh LB medium in a 250-ml 
Erlenmeyer flask and grown with shaking at 250 r.p.m. Upon reaching 
OD = 0.3, 5 ml of cells were split into tubes containing 2× the minimum 
inhibitory concentration of antibiotics (ciprofloxacin or cefazolin), or 
no drug. The cells in the no-drug tubes were sampled once at OD = 0.6 
and again at 360 min after the split. The cells in the tubes with drugs 
were sampled at 90 min post split (T90) and again at 360 min post split 
(T360). The volume of cells was normalized so that 1 OD of cells was 
sampled and fixed at each step. Cells were immediately spun down 
for 5 min at 5,000 g at 4 °C and resuspended in 4 ml of freshly made 4% 
formaldehyde. The resuspended cells were rotated overnight at 4 °C 
until the next morning.

Bacterial strains and growth conditions for eBW4
B. subtilis 168, E. coli MG1655 and P. aeruginosa PA14 were streaked 
out from a frozen glycerol stock onto an LB plate and grown over-
night at 37 °C. Following a night of growth, a single colony was picked, 
inoculated into 5 ml of LB broth and grown with shaking at 250 r.p.m. 
overnight at 37 °C. The next morning, the overnight culture was diluted 
(1:100 for E. coli, 1:25 for B. subtilis, 1:50 for P. aeruginosa) into 35 ml of 
fresh LB medium in a 250-ml Erlenmeyer flask and grown with shaking 
at 250 r.p.m. Upon reaching OD = 0.3, 4 ml of cells were split into tubes 
containing 2× the minimum inhibitory concentration of antibiotics 
(gentamycin, tetracycline, erythromycin, chloramphenicol, cefazolin, 
cycloserine, ciprofloxacin, or nalidixic acid), λ phage at MOI = 100 (for 
E. coli), or no drug. The cells in the tubes were sampled and had their 
absorbance read at 90 min post split (T90). The volume of cells was 
normalized so that 1 OD of cells was sampled and fixed at each step. 
Cells were then prepared in the same manner as with eBW1–3.

Cell preparation
Following an overnight fixation, cells were prepared for scRNA-seq 
following an adjusted protocol9. Briefly, cells were first spun down 
for 10 min at 5,000 g at 4 °C. Cells were then resuspended in 0.25 ml 
of PBS-RI comprising PBS + 0.01 U μl−1 SUPERase-IN RNase inhibitor  
(Invitrogen, AM2696). Cells were spun down again for 10 min at 5,000 g 
at 4 °C and resuspended in 150 μl of 1× PBS-RI and 150 μl of 100% etha-
nol. Following the first permeabilization, cells were spun down for 
8 min at 7,000 g at 4 °C and washed twice with 200 μl of PBS-RI. After 
this final wash, cells were permeabilized by resuspension in 45 μl 
2.5 mg ml−1 lysozyme solution dissolved in TEL-RI buffer comprising 
100 mM Tris (pH 8.0), 50 mM EDTA and 0.1 U μl−1 SUPERase-IN RNase 
inhibitor and incubated at 37 °C for 15 min. Cells were then spun down 
and washed once in 100 μl of PBS-RI. After the final wash, cells were 
resuspended in 100 μl of 0.5× PBS-RI, counted and examined with a 
haemocytometer (INCYTO DHC-S02).

Round-one indexing
Fixed and permeabilized cells were split into wells of a 96-well plate, 
each containing a single indexing primer (2.5 μl per well, 20 μM). To 
each well, we added 312,500 cells, 0.25 μl of Maxima H Minus reverse 
transcriptase (Thermo Fisher, EP0753), 0.25 μl of deoxyribonucleo-
tide triphosphates (dNTPs) at an original concentration of 10 mM 
(NEB, N0447L), 2.5 μl of 5× Maxima H Minus reverse transcription 
buffer, 0.125 μl RNase-Out (Thermo Fisher, 10777019) and PEG 8000 
to a final concentration of 7.5%, Tween-20 to a final concentration 
of 0.02% and nuclease-free water up to 10 μl. Reactions were then 
incubated as follows to perform first-round indexing by reverse 
transcription: 50 °C for 10 min, 8 °C for 12 s, 15 °C for 45 s, 20 °C for 
45 s, 30 °C for 40 s, 42 °C for 6 min, 50 °C for 50 min and hold at 4 °C. 
Samples were then pooled together and spun for 20 min at 7,000 g 
to isolate processed cells. Cells were then washed in 0.5× PBS-RI and 
resuspended in 75 μl of 1× Ampligase buffer (Lucigen, A0102K). Pooled 
cells were counted and examined on the haemocytometer, and diluted 
for loading onto the Chromium Controller (10X Genomics). The cell 
loading for each experiment is indicated in Supplementary Table 2. 
Methods in this section were adapted from single-cell combinatorial 
fluidic indexing procedures.

Loading cells into microfluidic droplets
Cells were prepared for loading onto the Chromium scATAC platform 
v.1.1 (10X Genomics 1000176). After counting, pooled cells were ali-
quoted and mixed with 19 μl 1× Ampligase buffer, 2.3 U μl−1 Ampligase 
(Lucigen A0102K), 1.5 μl reducing agent B (10X Genomics, 2000087), 
2.3 μl 100 μM bridge oligo oDS025 and nuclease-free water up to 75 μl. 
The mixture was kept on ice and loaded onto the Chromium Next GEM 
Chip H (10X Genomics, 1000162) with gel beads from the Chromium 
Next GEM Single Cell ATAC Library & Gel Bead kit (10X Genomics, 
1000176). To create emulsions, we followed the Chromium Single Cell 
ATAC Reagent Kits User Guide (v.1.1 Chemistry) (CG000209 Rev A).  
Briefly, the microfluidic chip was prepared by adding 70 μl of cell mix-
ture to wells in row 1, 50 μl Next GEM scATAC beads to wells in row 2 
and 40 μl of partitioning oil to wells in row 3. In addition, 50% glycerol 
was added to all unused lanes (70 μl 50% glycerol was added to unused 
lanes in row 1, 50 μl to unused lanes in row 2 and 40 μl to unused lanes in 
row 3). The chip was run on the Chromium Controller (10X Genomics) 
with the Next GEM Chip H programme. This step partitions the cells and 
uniquely indexed gel beads into droplets. Methods in this section were 
adapted from single-cell combinatorial fluidic indexing procedures16.

Round-two indexing
After transferring 100 μl of each emulsion mixture to a clean reaction 
tube, second-round indexing was performed by ligation. Briefly, emul-
sions were incubated for 12 cycles of 98 °C for 30 s and 59 °C for 2 min. 
Emulsions were broken by adding 125 μl recovery agent (10X Genomics) 
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and pipetting up the hydrophobic phase. Cells were then reverse 
crosslinked and lysed by adding 10 μl of 10× Lysis-T (250 mM EDTA, 
2 M NaCl, 10% Triton X-100) and 4 μl of proteinase K (NEB, P8107S), and 
incubating at 55 °C for 1 h. After lysis, DNA:RNA hybrid libraries were 
isolated using the following procedure: (1) 200 μl of Dynabead cleanup 
mix, which consists of 182 μl cleanup buffer (10X Genomics, 2000088), 
9 μl Dynabeads MyOne Silane (Thermo Fisher, 37002D), 5 reducing 
agent B (10X Genomics, no catalogue no.) and 5 μl of nuclease-free 
water, was added to each sample; (2) samples were mixed by pipetting 
(10×); (3) samples were incubated at room temperature for at least 
10 min; (4) beads were isolated from samples using a magnetic stand 
and washed 2 times with 200 μl 80% ethanol; and (5) hybrid libraries 
were then eluted in 40 μl of elution buffer (Qiagen, 19086).

Second-strand cDNA synthesis
The eluted single-stranded library was stripped of RNA by adding 2 μl 
of RNase H (NEB M0297L), 4 μl of 10× RNase H buffer (NEB B0297S) 
and incubating for 30 min at 37 °C. The reaction was purified with a 
1.8× solid phase reversible immobilization (SPRI), where the final elu-
ate volume was 25 μl. To perform second-strand synthesis, we used 
a modified version42, where we added 8 μl of 5× Maxima H- reverse 
transcription buffer, 4 μl 10 μM dNTPs, 2.5 μl of Klenow Fragment 
(3’ -> 5’ exo -, NEB M0212L), 5 μl 50% PEG 8000 and 1.5 μl 100 μM S^3 
randomer (oBW140). The reaction was incubated at 37 °C for 60 min, 
cleaned with a 1.8× SPRI and eluted in 30 μl of nuclease-free water. The 
full length, double-stranded library was amplified using PCR by adding 
30 μl of 2× Q5 High Fidelity master mix (NEB M0492L), 0.4 μl 100 μM 
oDS028 and 0.4 μl 100 μM oBW170. We amplified the library using 
the following protocol: 98 °C for 30 s, 14 cycles of 98 °C for 20 s, 65 °C 
for 30 s, 72 °C for 3 min. Following the first round of PCR, the reaction 
was cleaned twice, each time using a 1.2× SPRI reaction, and eluting in 
40 μl. This was to ensure primer dimers were properly removed. The 
resulting samples were the gene expression (GEX) libraries.

Library fragmentation using Tn5 transposase
We prepared the following 5× Tn5 reaction buffer: 50 mM 
N-[tris(hydroxymethyl)methyl]-3-aminopropanesulfonicacid (TAPS) 
(Sigma, T9659-100G), 25 mM MgCl2. We assembled Nextera Read 2-only 
transposomes according to established protocols16. Briefly, 10 μl 
100 μM oDS029 and 10 μl 100 μM oDS30 were mixed and annealed 
using the following temperature programme: 95 °C for 2 min, followed 
by a 0.1 °C s−1 ramp down to 4 °C. Annealed oligos were then diluted 
with 80 μl of nuclease-free water (final concentration, 10 μM) and, after 
10 μl 100% glycerol was added to an aliquot of 10 μl diluted annealed 
oligos, 8 μl of the oligo-glycerol sample was mixed with 2 μl of EZ-Tn5 
(Lucigen, TNP92110) and incubated at 25 °C for 40 min. The resulting 
Read 2 transposomes were stored at −20 °C.

After construction, gene expression libraries were quantified 
(Qubit HS dsDNA kit) and fragmented in multiple reactions with the 
following components: 10 ng gene expression library sample, 4 μl of 5× 
Tn5 buffer, 1 μl of Read 2 transposome and water up to 20 μl. Reactions 
were incubated at 55 °C for 10 min and then inactivated with 1 μl 20% 
SDS at 55 °C for 10 min. Following inactivation, reactions were purified 
using a 1.2× SPRI reaction (elution volume, 25 μl). The resulting samples 
were the fragmented GEX libraries.

Second library amplification and in vitro transcription
Fragmented GEX libraries were mixed with 25 μl of 2× Q5 master mix, 
0.4 μl 100 μM oBW170 and 0.4 μl 100 μM oBW168, and amplified using 
the following protocol: 72 °C for 3 min, 98 °C for 30 s, 9 cycles of 98 °C 
for 10 s, 65 °C for 30 s, 72 °C for 30 s, a final incubation at 72 °C for 
5 min and hold at 4 °C. Resulting samples were purified with a 1.2× SPRI 
reaction (elution volume, 40 μl) and converted into RNA by in vitro 
transcription. Briefly, 100 ng of amplified libraries were mixed with 
8 μl 5× transcription buffer (Thermo Fisher, EP0112), 6 μl 2.5 mM rNTPs 

(NEB, N0466L), 1.5 μl of T7 RNA polymerase (Thermo Fisher, EP0112) 
and 1 μl of RNase-Out. Reactions were incubated at 37 °C for 2 h, after 
which DNA templates were digested with 3 μl DNase I (NEB, M0303L) 
and 3 μl 10× DNase I buffer (NEB, B0303S) at 37 °C for 15 min. RNA was 
purified using a 2× SPRI reaction (elution volume, 25 μl). These samples 
were the in vitro transcribed GEX libraries.

Ribosomal RNA depletion
To enrich for mRNA reads within a DNA library that was constructed 
using random priming, we developed an in-house approach to deplete 
ribosomal reads. Probes hybridizing to ribosomal RNA sequences of 
the bacterial species used in this study were designed (using previously 
designed software19). Multiple reactions (depending on the yield of the 
in vitro transcription reaction) each containing 500 ng of RNA, probes, 
and hybridization buffer were prepared as follows (using protocols 
adapted from ref. 19): 500 ng of in vitro transcribed RNA, 3 μg of rRNA 
probes, 0.6 μl 5 M NaCl, 1.5 μl 1 M Tris-HCl and nuclease-free water up to 
15 μl. Hybridization was then performed using the following tempera-
ture programme: 95 °C for 2 min and 0.1 °C s−1 ramp down to 25 °C, 25 °C 
for 5 min. Following rRNA probe hybridization, 6 μl RNase H mix con-
sisting of 3 μl of 10× RNase H buffer (NEB B0297), 2 μl of thermostable 
RNase H (NEB M0523S) and 1 μl of RNase H were added to each tube. The 
reactions were incubated for 45 min at 50 °C to digest the rRNA–DNA 
hybrids. Following rRNA digestion, the DNA probes were degraded 
by adding 3 μl of 10× DNase I buffer, 3 μl of DNase I and incubating for 
45 min at 37 °C. The rRNA-depleted RNA library was purified with a 2× 
SPRI reaction and eluted in 25 μl of nuclease-free water.

Final library prep
To recover an rRNA-depleted cDNA library for sequencing, we next per-
formed a second round of reverse transcription using the end specific 
P5 primer, thus ensuring reverse transcription of full library constructs. 
To each tube of purified RNA, we added the following reagents: 8 μl 
Maxima H Minus reverse transcription buffer, 1 μl Maxima H Minus 
reverse transcriptase, 1 μl RNase-Out, 6 μl 2.5 mM dNTPs, 0.4 μl 100 μM 
oBW170 and 0.2 μl 100 μM oBW171. The reaction was incubated in the 
thermocycler with the following temperature programme: 50 °C for 
10 min, 8 °C for 12 s, 15 °C for 45 s, 20 °C for 45 s, 30 °C for 40 s, 42 °C 
for 6 min, 50 °C for 18 min and hold at 4 °C.

Following reverse transcription, the reaction was purified with a 1.2× 
SPRI and eluted in 25 μl of nuclease-free water. The reverse-transcribed 
DNA reactions were then indexed using a final indexing PCR to multiplex 
different libraries on the same sequencing run. For each reaction, 25 μl 
of reverse-transcribed DNA was mixed with 25 μl Q5 High Fidelity mas-
ter mix, 0.4 μl 100 μM oBW170 and 0.4 μl 100 μM of a unique P7 index 
primer. The reactions were amplified with the following temperature 
programme: 98 °C for 30 s, 9 cycles of 98 °C for 10 s, 65 °C for 30 s, 72 °C  
for 30 s, a final incubation at 72 °C for 5 min and hold at 4 °C.

After two purifications with 0.8× SPRI, our final sequencing librar-
ies were quality controlled on the Qubit and Bioanalyzer. We also 
checked the concentration and quality of each DNA library using qPCR 
(primers: oBW170/oBW176, oBW141/oBW176). We note that this final 
qPCR step is essential as it checks for the percentage of the reads that 
can be sequenced in each library. Typically, a ΔCT of 0–0.6 (oBW141/
oBW176 - oBW170/oBW176) indicates a fully sequenceable library. Fol-
lowing the final qPCR, libraries were diluted to 5 nM and sequenced with 
the NovaSeq SP 100 cycle kit (Illumina 20028401) using the following 
read structure: 26 bp Read 1, 30 bp i5 index, 8 bp i7 index, 74 bp Read 2.

FISH
To enable cost-effective detection of multiple different RNAs in 
the same cells, we closely followed established frameworks for 
single-molecule FISH43,44. Briefly, multiple primary probes hybridizing 
to an mRNA of interest were first designed. These probes contained 
a constant 20-nt flanking sequence that allows for hybridization of a 
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fluorescent secondary probe. This allowed us to avoid the cost of order-
ing multiple fluorescent primary probes to tile our gene of interest.

Primary probes for FISH for RNA sequences of interest were 
designed using the same software used to design rRNA probes19. For 
each RNA transcript of interest, we designed at least 10 different probes 
hybridizing to different regions of that transcript. A 20-nt sequence 
was added to the 3’ end of each probe to allow for hybridization of 
the fluorescent readout probes. Primary probes for each gene were 
mixed at an equimolar ratio such that the final concentration of DNA 
molecules was 100 μM. Fluorescent readout probes were ordered fol-
lowing Supplementary Table 1 in ref. 44.

Cells in each condition of interest were grown, fixed and permea-
bilized as described above. After the permeabilization step, cells were 
washed and resuspended in 600 μl primary hybridization buffer (40% 
formamide (Thermo Fisher, 15515026), 2× SSC (Invitrogen AM9673)) and 
aliquoted into 1.5 ml tubes. Primary probe mix (1 μl, 100 μM) was added 
to each tube and hybridized overnight at 30 °C in the dark. The next 
morning, cells were spun down at 7,000 g for 8 min and resuspended 
in 200 μl wash buffer (30% formamide (Thermo Fisher, 15515026), 2× 
SSC (Invitrogen, AM9673)). Cells were spun down for 8 min at 7,000 g, 
resuspended again in 200 μl wash buffer and incubated in the dark at 
room temperature for 30 min. Cells were then spun down at 7,000 g 
for 8 min and resuspended in 100 μl secondary hybridization buffer 
(10% formamide, 2× SSC, 10% Ficoll PM-400 (Sigma-Aldrich F5415-25 
ml)). Of each 100 μM readout probe, 0.5 μl was added to the tubes and 
incubated for 1 h at 34 °C. Following secondary hybridization, cells were 
spun down at 7,000 g and resuspended in wash buffer with 10 μg ml−1 
DAPI (Thermo Fisher, D1306). Cells were incubated for 20 min at room 
temperature, spun down at 7,000 g and resuspended in 100 μl of 2× SSC.

Cells were imaged on 1% agarose pads made with filtered PBS on 
a Nikon TiE microscope with a Plan Apo ×100 objective, Hanamatsu 
ORCAFlash4.0 camera and NIS Elements imaging software v.5.21.00. 
Images were analysed using FIJI v.2.9.0.

Acid tolerance assay
A 25 ml culture of E. coli (MG1655) or E. coli (MG1655 ΔgadAΔgadBΔgadC) 
was first grown to OD = 0.3 in a 125 ml flask with shaking at 250 r.p.m. at 
37 °C. After reaching OD = 0.3, the cultures were split in aliquots of 5 ml 
to culture tubes and placed back onto the shaker to grow for another 6 h 
until OD = 2.8. Cultures were then acidified to pH 3.0 using 12 N HCl and 
returned to the shaker. A volume of 10 μl of the cultures was sampled at 
intermittent timepoints and serial diluted for c.f.u. counting.

Acid recovery assay
A 25 ml culture of E. coli (MG1655) transformed with PgadB-gfp was first 
grown to OD = 0.3 in a 125 ml flask with shaking at 250 r.p.m. at 37 °C. 
After reaching OD = 0.3, the cultures were split in aliquots of 5 ml to 
culture tubes and placed back onto the shaker to grow for another 
6 h until OD = 2.8. At this point, 1 μl of the culture was imaged on a 1% 
agarose pad made with LB medium to understand the distribution of 
GFP fluorescence in single cells. Cultures were then acidified to pH 3.0 
using 12 N HCl and returned to the shaker. Following 1 h of acid stress, 
1 μl of the acidified culture was transferred onto a fresh 1% LB-agarose 
pad at pH 7.5 at 37 °C to assess viability. t = 0 refers to the time when 
cells were placed onto the pad. Cells were imaged every 15 min to track 
and assess growth over time.

The resulting movies were analysed by first segmenting the cells 
using DeLTa45 v.2.0.0 and then using custom Python scripts to extract 
the fluorescence distribution and assess viability. A cell was considered 
viable if it underwent a single division during the 8-h imaging period.

Quantification of the gad subpopulation
Cells were grown as described above. Following the split into 5 ml  
aliquots, cells were allowed to grow for 6 more hours until OD = 2.8 and 
imaged on a 1% agarose pad made with filtered PBS.

Following data acquisition, cells were segmented and tracked 
using DeLTa and then analysed with custom scripts. To determine the 
percentage of gad+ cells within each replicate, we first log transformed 
the length-normalized fluorescence intensity of each cell and then fit 
a normal distribution to the log-transformed intensities46. Cells with 
fluorescence intensity beyond the 99th percentile of the theoretical 
distribution were considered as gad+. The percentage of gad+ cells 
was then calculated using the number of gad+ cells determined above.

Imaging E. coli under strong acid stress
Cells were grown as described above. After reaching OD = 2.8, cells were 
transferred to a fresh LB pad adjusted to pH 3.5 with 1 μl of propidium 
iodide. Following data acquisition, cells were segmented and analysed 
to identify any GFP fluorescence change over time.

Single-cell growth analysis into stationary phase
Cells were grown as described above. Following the split into 5 ml ali-
quots, cells were grown for 2 more hours in a 125 ml flask with shaking at 
250 r.p.m. at 37 °C. These cells were then diluted 5-fold in conditioned 
media, and then 1 μl of cells were imaged on a 1% agarose pad made with 
DPBS at 30 °C. To track single-cell growth and fluorescence, cells were 
imaged every 12 min over a period of 10 h.

Following data acquisition, cells were segmented and tracked 
using DeLTa and then analysed with custom scripts. Growth rates were 
calculated as the change in segmented cell length per hour normalized 
using the cell length. Fluorescence intensity in each cell was normal-
ized by using the cell area. To classify gad+ and gad− in the time-lapse 
data, we took the top quartile of cells of GFP expression as gad+ and the 
bottom quartile as gad−. Growth rates were calculated during a 30-min 
window at 420–450 min after the start of imaging and significance 
values were computed using independent two-sided t-test.

Single-cell growth analysis under IPTG induction
Cells were grown by backdiluting (1:100) overnights of E. coli (MG1655) 
transformed with either T5-gfp or T5-gadBC into 25 ml of LB in a 125 ml 
flask, with shaking at 250 r.p.m. at 37 °C. In the mixed culture experi-
ment, after cells reached an OD = 0.3, 500 μl of each culture were mixed 
in an Eppendorf tube. Isopropylthio-β-galactoside (IPTG) was then 
added to a final concentration of 100 μM. Of the mixed culture, 1 μl 
was added to a 1% agarose pad made with LB with 100 μM IPTG. Cells 
were imaged every 10 min at 37 °C over a period of 3 h.

Following data acquisition, cells were segmented and tracked 
using the DeLTa software as described above and then analysed with 
custom scripts. Growth rates and fluorescence intensity were cal-
culated as described above. In the mixed culture experiment, cells 
were identified as containing T5-gfp if the fluorescence intensity of 
a cell was more 10,000 fluorescence units. Growth rates of the two 
populations and the associated significance values were computed 
as described above.

Imaging phage lysis
An overnight culture of E. coli MG1655 was backdiluted 1:100 into 25 ml 
of LB in a 125 ml flask, with shaking at 250 r.p.m. at 37 °C. Following 
growth to OD = 0.3, 500 μl of these cells were mixed with λ phage to an 
MOI = 100. A volume of 1 μl of cells + phage was added to a 1% agarose 
pad made with LB + 1 μl of propidium iodide, and λ phage added to the 
same concentration as for the cells. Cells were imaged every 10 min 
at 37 °C over a period of 4 h. Following data acquisition, cells were 
manually counted and tracked to find the total number of lysed cells 
over the first 120 min.

Bulk RNA-seq library preparation
E. coli (MG1655) was grown as described above to OD = 0.6. A volume 
of 2 ml of cells was spun down at 5,000 g for 10 min, resuspended in 
45 μl 2.5 mg ml−1lysozyme solution (described above) and incubated 
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at 37 °C for 15 min. RNA was purified using the Qiagen RNeasy Mini 
kit (Qiagen, 74104) where the final eluate volume was 30 μl. The RNA 
was reverse transcribed by adding 5 μl Maxima H Minus reverse tran-
scription buffer, 0.5 μl Maxima H Minus reverse transcriptase, 0.5 μl 
RNase-Out, 4 μl 2.5 mM dNTPs and 0.4 μl 100 μM oBW121, and incubat-
ing using the following temperature programme: 50 °C for 10 min, 8 °C 
for 12 s, 15 °C for 45 s, 20 °C for 45 s, 30 °C for 40 s, 42 °C for 6 min, 50 °C 
for 50 min and hold at 4 °C.

Following reverse transcription, RNA was stripped from the 
reverse-transcribed DNA by adding 2 μl of RNase H and incubating the 
mixture at 37 °C for another 30 min. The library was purified using a 1.2× 
SPRI and eluted in 25 μl nuclease-free water. Second-strand synthesis, 
PCR and tagmentation were performed as described above. The first 
PCR was performed using primer pairs oBW154 and oDS28. Following 
tagmentation, the library was amplified for 8 cycles as described above 
using oBW154 and oBW168. This library was used to test for different 
rRNA depletion strategies.

Cas9-based rRNA depletion
To test Cas9-based rRNA depletion, we first synthesized a pool of guide 
RNAs that cleave at different sites of the 5S, 16S and 23S ribosomal 
RNAs. DNA templates for the guide RNAs were designed by running 
previously written scripts17. The 5S, 16S and 23S rRNA sequences of the 
species of interest were combined into a fasta file and used as input for 
the software, which was run with default parameters.

The DNA templates were purchased as a pool from IDT and ampli-
fied with PCR by first annealing at a 1:1 equimolar ratio, mixing 1 μl 
DNA template, 0.4 μl 100 μM oBW138, 0.4 μl 100 μM oBW139, 10 μl 
nuclease-free water, 12.5 μl 2× Q5 High Fidelity master mix and using 
the following temperature programme: 98 °C for 30 s, 35 cycles of 98 °C 
for 10 s, 65 °C for 30 s, 72 °C for 45 s, a final incubation at 72 °C for 5 min 
and hold at 4 °C. Following PCR, the DNA templates were purified using 
a 1.2× SPRI and used for in vitro transcription. Guide RNAs were tran-
scribed using the NEB HiScribe kit (NEB E2040S) by mixing 100 ng of 
DNA template, 2 μl of 10× reaction buffer, 2 μl 100 mM ATP, 2 μl 100 mM 
GTP, 2 μl 100 mM CTP, 2 μl 100 mM UTP, 2 μl T7 RNA polymerase mix 
and nuclease-free water up to 20 μl, and incubated overnight at 37 °C.

Following an overnight in vitro transcription, DNA template was 
digested by adding 3 μl 10× DNase buffer, 2 μl DNase I and incubating 
for an additional 15 min at 37 °C. Guide RNAs were purified using a 2× 
SPRI reaction and checked for purity by running on a 15% TBE-urea gel 
(Invitrogen, EC6885BOX). Guide RNA concentration was quantified 
using the Broad Range RNA Qubit kit (Thermo Fisher, Q10210).

To perform Cas9-based depletion in our most-optimized condi-
tion, 2 ng of library was mixed with 1.5 μl NEB 3.1 buffer and sgRNA and 
NEB Cas9 at a 20,000:3,000:1 ratio of sgRNA:Cas9:DNA. The reaction 
was incubated at 37 °C for 2 h, after which Cas9 was stripped from the 
DNA by adding in 1 μl Proteinase K and 1 μl 10% SDS, and incubating for 
15 min at 50 °C. The DNA library was purified with a 1.2× SPRI, eluted 
in 25 μl nuclease-free water and mixed with 25 μl 2× Q5 High Fidelity 
master mix, 0.4 μl 100 μM oBW170 and 0.4 μl 100 μM of a unique P7 
index primer. The reactions were amplified with the following tem-
perature programme: 98 °C for 30 s, 12 cycles of 98 °C for 10 s, 65 °C 
for 30 s, 72 °C for 30 s, a final incubation at 72 °C for 5 min and hold at 
4 °C. Libraries were sequenced on the MiSeq reagent kit v.2 (300 cycles) 
(Illumina MS-102-2002) using the following read structure: 26 bp Read 
1, 30 bp i5 index, 8 bp i7 index, 100 bp Read 2.

Quantifying cell loading in the 10X microfluidic system
To quantify whether single bacterial cells could be loaded into the 10X 
microfluidic system, we first fixed 2 ml of E. coli MG1655 cells grown to 
OD = 0.4 overnight in 4 ml 4% formaldehyde. Cells were prepared as 
described above up to after the first wash following permeabilization. 
Following the first wash, cells were incubated in 50 μl 5 μM Sytox Green 
(Thermo Fisher, S7020) for 15 min. After the incubation, cells were 

washed twice in 100 μl of PBS-RI and then resuspended in 100 μl of 0.5× 
PBS-RI. Cells were counted and then loaded onto the 10X microfluidic 
system using the Chip A 5’ kit.

Following droplet generation, 5 μl of the mixture was transferred 
onto a glass coverslip and imaged on a Nikon TiE microscope with a Plan 
Apo ×20 objective and Hanamatsu ORCAFlash4.0 camera. Cells in each 
droplet were then manually counted for quantification.

Plaque assays
To test the titre of phage preparations, 3 μl of phage was spotted in 
10-fold serial dilutions on a lawn of E. coli MG1655 grown on 0.2% LB 
top agar with or without magnesium.

Data preprocessing
Raw base calls were retrieved from the NovaSeq and processed with a 
custom version of Picard tools v.2.19.2 following the pipeline described 
in the original SciFi-seq pipeline16. Reads were aligned to a combination 
of one or more of B. subtilis 168, E. coli MG1655 and E. coli Nissle genomes 
using STAR (v.2.76)47 and annotated with featureCounts (v.2.0.0)48. 
Reads were filtered such that all the reads used for downstream analysis 
had mapQ score > 1, which correspond to reads that have aligned to 3 
or less locations and mapped lengths greater than 20 bp. Annotated 
and filtered reads were loaded into Python 3.7.6, where custom code 
was written to assign non-rRNA reads to combinations of droplet and 
plate barcodes in pandas.

After assigning reads to barcode combinations, we filtered out 
‘cell clumps’, which we defined as droplet barcodes in which a given 
droplet barcode had more than 8 associated plate barcodes. We split 
barcode combinations by condition (round-one barcodes) and per-
formed another filtering step using the knee method for each condi-
tion5,9. We note that this step is important because bacteria in different 
conditions have different amounts of mean mRNA expression. When 
necessary, index collision rates were calculated by computing the 
fraction of cells with <85% of UMIs assigned to one species and then 
corrected to account for within-species interactions by multiplying  
a scale factor of 1

2pq
, where p is the frequency of species 1 and q the 

frequency of species 2, such that p + q = 1. After the last filtering step, 
a cell/gene matrix was made where the entries of the matrix are the 
number of UMIs that we measured for that gene in a particular cell.

Cell identity determination
In cases where two species were processed with the same round-one 
barcode, barcode combinations were assigned to a specific species if 
>85% of UMIs mapped to unique species-specific transcripts. Other-
wise, cells were designated as mixed.

Single-cell analysis
Metrics for the scRNA-seq results were compiled and plotted using 
custom scripts in Python 3.7.6. Downstream analysis of single-cell data 
was performed using pipelines detailed in Seurat (v4.0.3)49. Data were 
first preprocessed by filtering out genes that were expressed in less 
than 10 cells and cells that expressed less than 10 UMIs. The data were 
then normalized by dividing the UMI counts in each cell by the total 
number of UMIs measured in that cell, multiplying by a scale factor  
of 100, adding a count of 1 to each entry and then log-normalizing 
the scaled values49. The normalized expression data were then scaled 
to have mean 0 and unit variance, and dimensionally reduced using 
principal component analysis (PCA). When necessary, the kurtosis of 
each principal component was computed by taking the matrix of cells 
by principal component coordinates and then calling the ‘kurtosis’ 
function from the R package moments50.

Following PCA, we computed a uniform manifold approximation 
representation and a shared neighbour graph using the first 10 princi-
pal components. We performed graph-based clustering on the shared 
neighbour graph to identify clusters of gene expression programmes 
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using the Louvain algorithm (algorithm 3 in Seurat 4.0.3). Marker genes 
for each cluster were computed using two-sided Wilcoxon rank-sum 
test and corrected using Bonferroni correction. Further data analysis 
and plotting were performed using custom scripts in R.

Gene set enrichment analyses were performed using topGo 
(2.48.0). Briefly, marker genes were determined using the FindMarkers  
function in Seurat, whereby we compared the within-cluster average 
expression to out-of-cluster average expression and filtering for genes 
with P value < 0.05 (two-sided Wilcoxon rank-sum test). This list was then 
split into genes that were upregulated in the cluster and genes that were 
downregulated. The two lists of genes were then used for biological pro-
cess term enrichment using two-sided Fisher’s exact test, in which the 
input was a vector of length (number of genes in the genome), and each 
entry in the vector was 1 if the index corresponded to a gene in the list of 
upregulated/downregulated (depending on whether we were testing up- 
or downregulated genes) genes and 0 otherwise. Following the test, the 
P values were −log10 transformed such that the most strongly enriched 
biological processes have the highest score. Selected processes to be 
plotted were those with the lowest P values after thresholding at 0.05.

To compute silhouette scores, we took the PCA matrix and cluster 
outputs from Seurat, and used the silhouette score function from the 
KBET package51.

Comparison with bulk RNA-seq
Bulk RNA-seq data for exponentially growing E. coli were created fol-
lowing library construction methods as performed for M3-seq. Raw 
reads from the bulk data were aligned to the E. coli MG1655 genome and 
annotated as described above. Single-cell and bulk transcriptomes of 
exponentially growing E. coli were compared by computing the Pearson 
correlation of log10-normalized UMI count of each gene between the 
two measurements. Normalized UMI count for each gene in single-cell 
data was then computed by adding a pseudocount of 1 to each gene, 
summing over the UMI counts for that gene across all cells, dividing by 
the sum of total UMIs and multiplying by a scale factor. Normalized UMI 
counts for bulk measurements were computed as described above. The 
normalized UMI counts of the bulk and single-cell datasets were log10 
transformed and used for plotting and correlation measurements.

Marker gene identification
Marker genes for each cluster were defined as those observed in at 
least 5% of cells in that cluster and with the lowest adjusted P values 
(two-sided Wilcoxon rank-sum test) after thresholding to select genes 
with >0.5 log2 fold change between within-cluster and out-of-cluster 
average expression. For panels that plotted marker gene expression 
across clusters, a maximum of 6 genes were included per cluster.

Testing for BC1-specific bias in clustering analysis
To identify potential clustering biases that could be driven by different 
BC1s, we computed a normalized cluster percentage for each cluster 
and BC1. The normalized cluster percentage was defined as: p(Bi ,Cj)

p(Bi)
, 

where p(Bi, Cj) represents the fraction of cells in cluster j that have BC1 
i and Bi the total fraction of cells in the population with BC1 i.

Statistics and reproducibility
Experimental replicates. Unless otherwise stated, all representative 
images and micrographs were collected over a single set of acquired 
images. In Fig. 2g, experiments were repeated 3 times with similar 
results. Data from Figs. 2i,j,l, 4j,k and 5f were from a single set of 
acquired images (N = 1).

Boxplot limits. Unless otherwise stated, within the boxplots the centre 
line represents the median, the lower and upper bounds of the box the 
25th and 75th percentiles, respectively, and the limits of the whiskers 
1.5× the distance from the 25th and the 75th percentiles.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Sequencing data have been deposited to GEO (accession number 
GSE231935); raw image files have been uploaded in Zenodo (https://
doi.org/10.5281/zenodo.8168551) and are also available upon request.

Code availability
All analysis and demultiplexing scripts are available at https://github.
com/brwaang55/m3seq_scripts.
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Extended Data Fig. 1 | M3-seq experimental workflow and rRNA depletion 
scheme. a. Detailed schematic of M3-seq experimental workflow: Populations 
of fixed and permeabilized bacteria are (i) aliquoted into wells of one or more 
96 well plates. Each well contains a uniquely indexed random hexamer, which 
acts as a primer for (ii) in situ reverse transcription. These primers also carry 
unique molecular identifier (UMIs) sequences. During reverse transcription, 
cell-associated RNA molecules are converted to cDNAs with primer barcodes and 
UMIs on their 5’ ends. After reverse transcription, (iii) cells are pooled and loaded 
into a commercially available device for droplet-based indexing (herein, the 
Chromium Controller from 10x Genomics) without a need for limiting dilution. 
After partitioning into droplets, (iv) a second index is ligated onto the 5’ end of 
the reverse transcribed, cell-associated cDNAs (herein, using Next GEM Single 
Cell ATAC reagents from 10x Genomics). Following indexing, cells are lysed, and 
(v) cDNA molecules are converted to double-strand DNA using a Klenow enzyme 
and a random primer with a PCR handle at the 5’ end. This double-strand cDNA 
is then (vi) amplified by PCR, (vii) fragmented with Tn5 transposase loaded with 

Nextera read 2 primers, and (viii) attached to a T7 promoter via a second round 
of PCR. Next, (ix) cDNA molecules are transcribed back into RNA using T7 RNA 
polymerase. This step prepares the amplified library for rRNA depletion. After 
transcription, (x) the resulting RNA is annealed to a set of DNA probes that are 
complementary to rRNA sequences within the library (Supplementary Table 4). 
This annealing allows for selective degradation of those sequences with RNase 
H. Finally, in a second reverse transcription step, (xi) the indexed and rRNA-
depleted library is converted back into cDNA, and (xii) the resulting cDNA is 
amplified one more time to add a required sequencing adaptor. The library is 
then ready for paired-end sequencing. b. Detailed schematic of rRNA depletion 
steps: To remove rRNA sequences from M3-seq libraries, we (i) convert indexed 
and amplified cDNA libraries into RNA via in vitro transcription, (ii) hybridized 
rRNA sequences within the library to DNA probes and digest those sequences 
using RNase H, and (iii) convert the remaining sequences back into DNA using a 
P5 primer.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Piloting single-cell RNA-sequencing in bacteria 
without rRNA depletion. a. Distributions represent bacterial cells per droplet 
produced on the Chromium Controller (10x Genomics) at indicated cell loading 
numbers. Bacterial droplet loading was quantified as described in Materials and 
Methods. b. Representative image of droplets quantified in panel (A). E. coli cells, 
which were stained with Sytox green, are visible as green dots. c. Curves represent 
expected index collision rates (that is, percentage of cells with the same round-
one index labelled with the same round-two index) as a function of loaded cells 
using different indexing schemes. d. Analysis of a mixture of exponential and 
stationary phase B. subtilis (blue) and E. coli (red) using only round-two (droplet-
based) indexes. Species assignments for each ‘cell’ were made as determined 
in Materials and Methods. Data were generated without rRNA depletion 
(eBW1 in Supplementary Table 2). e. Same as (D) but analysis performed with 
combinatorial barcodes. f. Comparison of bulk RNA-seq data to pseudobulk, 
computationally rRNA-depleted single-cell gene expression in exponential phase 
E. coli from eBW1. Each point represents a single gene. r, Pearson correlation. 

g. Read counts per cell from single-cell gene expression data without rRNA depletion 
(1023 ± 436 reads for B. subtilis and 1926 ± 1054 reads for E. coli when considering 
rRNAs; 117 ± 81 reads for B. subtilis and 72 ± 72 reads for E. coli when considering 
only non-rRNAs). Data was collected from a single experiment; over B. subtilis 
4601 cells and E. coli 5883 cells. Boxplot limits are as defined in Materials and 
Methods. h. Same as (G) but for UMI counts per cell (34 ± 13 UMIs for B. subtilis and 
52 ± 23 UMIs for E. coli when considering rRNAs; 5 ± 5 UMIs for B. subtilis and 3 ± 3 
UMIs for E. coli when considering only non-rRNAs). i. Same as (G) but for stationary 
phase B. subtilis (1838 cells) and E. coli (2094 cells) (720 ± 380 reads for B. subtilis 
and 1902 ± 1297 reads for E. coli when considering rRNAs; 23 ± 23 reads for  
B. subtilis and 0 ± 0 reads for E. coli when considering only non-rRNAs). j. Same 
as (H) but for stationary phase B. subtilis and E. coli (22 ± 10 UMIs for B. subtilis 
and 50 ± 30 UMIs for E. coli when considering rRNAs; 2 ± 2 UMIs for B. subtilis, and 
0 ± 0 UMIs for E. coli when considering only non-rRNAs). Data above are reported 
as medians with maximum average deviation.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Additional analysis of M3-seq development.  
a. Efficiency of rRNA depletion using two different post hoc approaches: 
degradation by rRNA-targeted Cas917,18 (yellow) and RNase H-mediated digestion 
after in vitro transcription (green). b. Comparison of gene expression data  
from rRNA-depleted and control libraries. Bulk libraries were prepared as in 
Materials and Methods. r, Pearson correlation. c. Comparison of 30 round-one 
barcode frequencies from an RNA-seq library before and after post hoc rRNA 
depletion. Bulk libraries were prepared and depleted of rRNA as in Materials and 
Methods. r, Pearson correlation. d. Percentages of tRNA sequences in B. subtilis 
and E. coli single-cell libraries prepared with and without rRNA depletion. Data 
from undepleted libraries come from eBW1, and data from depleted libraries 
come from eBW3. e. Same as (D) but for sRNAs. f. Same as (D) but for 5’ UTRs.  
g. Same as (D) but for 3’ UTRs. h. M3-seq analysis of a mixture of B. subtilis (blue) 
and E. coli (red) in late exponential phase (OD = 2.1, 2.0 respectively) wherein 
each point corresponds to a single ‘cell’. Species assignments as described 

in Materials and Methods. We observed a 13% collision rate, 30% corrected to 
include same-species collisions. Data were generated with rRNA depletion (eBW2 
in Supplementary Table 2). i. Same as (H) but for B. subtilis and a different strain 
of E. coli (OD = 0.3, 0.3 respectively). Data were generated with rRNA depletion 
(eBW3 in Supplementary Table 2) and show a 12% collision rate, 32% corrected. 
j. Same as (I) but for cells in early stationary phase (OD = 2.4, 3.0 respectively). 
Data were generated with rRNA depletion (eBW3 in Supplementary Table 2) and 
show a 6.1% collision rate, 22% corrected. k. Same as (I) but for cells 90 minutes 
post ciprofloxacin treatment (eBW3 in Supplementary Table 2). Data show a 
1.84% collision rate, 3.68% corrected, l. Genes per cell (after species assignment) 
observed in exponential phase cells across two experiments, eBW2 and eBW3 
(298 ± 104 and 371 ± 82 median genes with absolute deviation for B. subtilis, 
respectively; 151 ± 47 and 75 ± 31 median genes with absolute deviation for E. coli 
MG1655, respectively; 175 ± 50 genes with for E. coli Nissle in eBW3). Boxplot limits 
are as defined in Materials and Methods.
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Extended Data Fig. 4 | M3-seq profiling during exponential growth and 
early stationary phase. a. Top: UMAP of replicate M3-seq data generated from 
E. coli MG1655 treated with twice the minimum inhibitory concentration of 
ciprofloxacin, sampled after 6 hours of treatment. b. Same as (A) but for B. subtilis 
168. c. Same as (A) but for E. coli Nissle. d. Comparison of replicate data from (A) 
using mean log normalized UMI counts per cell (that is, unique UMIs relative to 
total UMIs per cell averaged across all cells for each gene). Each point represents  

a single gene. r, Pearson correlation. e. Same as (D) but using data from (B).  
f. Same as (D) but using data from (C). g. Comparison of RNA-seq data to M3-seq 
pseudobulk profiles from exponential phase E. coli from eBW3. Pseudobulk 
measurements were obtained by normalizing UMI counts by the total number 
of UMIs in the dataset and log transforming the normalized counts. Each point 
represents a single gene. r, Pearson correlation.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | M3-seq profiling during exponential growth and early 
stationary phase. a. UMAPs of E. coli MG1655 transcriptomes in exponential 
and early stationary phase (top) and associated clustering (bottom, set to the 
lowest clustering resolution parameter). Clustering set at the lowest resolution 
parameter. Axes denote the first two UMAP components. b. Same as (A) but for 
E. coli Nissle. c. Same as (A) but for B. subtilis 168. d. GO term enrichment of select 
biological process calculated with marker genes identified for populations of 
exponential and stationary phase E. coli MG1655 identified in (A). Marker genes 
were determined as described in Materials and Methods. The p-values are -log10 
transformed such that the most strongly enriched biological processes have 

the highest score. Selected processes were those with the lowest p-values after 
thresholding at 0.05. Enrichments for exponential and stationary phase cells 
include expected processes (green and red, respectively), including growth 
related and energy generation processes (exponential) and those involving 
secondary carbon metabolism and the TCA cycle (stationary). e. Same as (D) 
but for E. coli Nissle. Similar to E. coli MG1655, enrichments include expected 
processes (green for exponential; red for stationary). f. Same as (D) but for  
B. subtilis 168. Similar to E. coli, enrichments include expected processes  
(green for exponential; red for stationary).
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Subpopulation of early stationary phase cells 
expressing acid-tolerance genes also identified in E. coli Nissle. a. UMAP of  
E. coli Nissle transcriptomes from cells at early stationary phase (OD = 2.6). Colours 
indicate clusters of transcriptionally similar cells. b. GO-term enrichment of 
select biological processes calculated with marker genes identified for cluster 
3 in (A). Marker gene identification and GO term analyses were performed as 
described in Materials and Methods. c. Same as (A) but with colour gradient 
indicating expression of gadABC genes (in normalized UMI counts). d. Zero-
centred and normalized expression of marker genes for each cluster identified  
in (A). Marker genes were defined as described in Materials and Methods.  
e. Schematics of gadABC genes in the two strains of E. coli used in this study: 
MG1655 and Nissle. f. Same as (A) but with colour gradient indicating number of 
UMIs captured in each cell. g. Normalized cluster percentage for each BC1 in each 
cluster (N = 1, 1295, 1053, 83, 68 cells respectively). The normalized percentage 
for each BC1/cluster combination and boxplot limits are determined as described 
in Materials and Methods. h. Plot depicts survival of wildtype E. coli MG1655 
and ∆gadABC mutant with and without exposure to acid stress during early 
stationary phase. Curves indicate mean values, and the shaded regions the 95% 

confidence interval between 2 biological replicates for control samples, and 4 
biological replicates for acidified samples. i. Plot depicts fluorescence intensity 
of individual PgadB-GFP transformed E. coli MG1655 cells during acid exposure as 
described in Materials and Methods. Fluorescence intensity tracks are broken 
out by the time of death of each cell. j. Plot depicts growth of E. coli transformed 
with gadBC (solid) or gfp (dashed) transgene under different concentrations 
of IPTG inducer. Curves indicate mean values, and the shaded regions the 95% 
confidence interval between 3 technical replicates for each sample. k. Single-
cell fluorescence distributions of E. coli transformed with GFP transgene after 
induction. l. Representative growth and GFP fluorescence intensity traces  
of E. coli transformed with PgadB-gfp during growth into stationary phase.  
m. Fluorescence kymograph of E. coli transformed with PgadB-gfp over time from 
(K). n. Single-cell growth rates of gad- and gad+ cells from (L,M) using time-lapse 
microscopy. gad- and gad+ cells were determined as described in Materials 
and Methods (N = 1, 93, 78 cells respectively). Growth rates were computed as 
described in Materials and Methods. p = 0.00032 obtained from independent, 
two-sided t-test.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Multiplexed single-cell analysis of bacterial response 
to eight different antibiotics. a. Zero-centered and normalized expression of 
select genes in E. coli MG1655 cultures treated with the indicated antibiotics. 
Data from eBW4 (Supplementary Table 2). Genes were selected from among 
those related to the following GO terms: ‘Response to DNA damage’, ‘Cell wall 
stress’, and ‘Ribosome’. b. Same as (A) but for B. subtilis. Genes were selected 

from among those related to the ‘Response to DNA damage’ and ‘Ribosome’ 
GO terms and by searching for genes known to be upregulated in response to 
treatment with cell-wall targeting antibiotics (that is cefuroxime). c. UMAPs of 
E. coli MG1655 transcriptomes after treatment with indicated antibiotics (top) and 
corresponding cluster assignments (bottom). Clusters were uniquely defined for 
each population. d. Same as (C) but for B. subtilis 168.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Defining MGE-expressing populations of E. coli using 
M3-seq data. a. UMAP of E. coli MG1655 transcriptomes from cells treated with 
the bacteriostatic antibiotics tetracycline and chloramphenicol. Colour gradient 
indicates normalized expression of pinQ, a marker gene for cluster 8 identified in 
Fig. 3e. b. Same as (A) but with colour gradient indicating normalized expression 
of tfaQ, a marker gene for cluster 13 identified in Fig. 3e. c. Same as (A) but with 
colour gradient indicating normalized expression of ydfK, a marker gene for 
cluster 12 identified in Fig. 3e. d. Same as (A) but with colour gradient indicating 
normalized expression of insI-2, a marker gene for cluster 16 identified in Fig. 3e. 
e. Plots of cells in principal component space for E. coli treated with bacteriostatic 
antibiotics, wherein the colour gradient indicates normalized pinQ expression. 
The principal component dimensions chosen for this analysis contained high 
loadings in genes that were upregulated in rare subpopulations (for example, 
pinQ, tfaQ). f. Same as (E) but with colour gradient indicating normalized tfaQ 

expression. g. Same as (E) but with colour gradient indicating normalized ydfK 
expression. h. Same as (E) but with colour gradient indicating normalized insI-2 
expression. i. Kurtosis of all 100 computed principal components calculated 
from the single-cell transcriptomes of tetracycline- and chloramphenicol-treated 
E. coli MG1655. Notably, principal components with the highest kurtosis were not 
necessarily the same as those with the highest variance. j. Kurtosis of 15 principal 
components computed from tetracycline- and chloramphenicol-treated  
E. coli MG1655 cells, with individual curves corresponding to calculations from 
down-sampled subsets of cells with and without UMI counts scrambled among 
genes. Notably, scrambling abolishes the kurtosis signal and removes structure 
from clustering. Curves indicate mean values, and the shaded region the 95% 
confidence interval across N = 5 independent down-samplings. k. Same as ( J) 
but for down-sampled subsets of cells with and without UMI counts scrambled 
among cells across N = 5 down-samplings.
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Extended Data Fig. 9 | See next page for caption.

http://www.nature.com/naturemicrobiology


Nature Microbiology

Article https://doi.org/10.1038/s41564-023-01462-3

Extended Data Fig. 9 | Growth and gene expression in E. coli cells infected 
with λ phage. a. Growth and gene expression in E. coli cells infected with λ phage. 
A. Plot depicts growth of E. coli grown to early exponential phase (OD ~ 0.2–0.3) 
and infected with λ phage (MOI ~ 100) or supplemented with phage vehicle 
(LB). Curves indicate mean values, and shaded error bars are 95% confidence 
intervals. b. Replicate plaque assays of λ phage grown on E. coli MG1655 without 
magnesium (the same conditions used in phage infection experiments eBW4). 
c. Pseudobulk comparison of the infected sample compared to an exponential 
phase control. Each point represents a single gene, and the red dots represent λ 
phage genes. d. Zero-centered and normalized expression of all observed λ genes 
for each cluster identified in Fig. 5b. Genes displayed were those genes which had 
more than 10 UMIs across the entire population. Expression of λ genes is strongly 
enriched in the lytic cluster (3) but lower in the rest of the population. e. Boxplot 
of E. coli and λ UMIs/cell of lytic (1189 cells) and non-lytic cells (8195 cells). 
Boxplot limits are as defined in Materials and Methods. We report a median of 

57 ± 35 E. coli UMIs, 0 ± 0 λ UMIS for non-lytic cells, and 55 ± 34 E. coli UMIs, 18 ± 14 
λ UMIs for lytic cells. Data was collected in a single sequencing experiment (N = 1). 
f. Volcano plot of all host genes when comparing the cells in the lytic cluster to 
cells outside the cluster. Fold changes and p-values were computed using the 
FindMarkers function in Seurat, where the ‘min.pct’ and ‘logfc.threshold’ were 
both set to 0. g. UMAP of phage infected cells generated using alignments to only 
the E. coli MG1655 genome. Colors indicate sampling timepoint after infection. 
h. Same as (G) but with colors indicating clusters of transcriptionally similar cells 
assigned after re-performing clustering with only E. coli transcripts. i. Same as  
(G) but with colour gradient indicating normalized λ phage UMI count in each cell.  
j. Boxplots of normalized λ UMI count across each cluster in (H) (N = 4215, 2885, 
2075, 209 cells). Boxplot limits are as defined in Materials and Methods.  
k. Silhouette scores computed using the principal components of the lytic 
cluster (see Fig. 5b, c) and of ‘null subpopulation’ which is a random sample of 
cells across each alignment.
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Extended Data Table 1 | Statistics of existing bacterial scRNA-seq methods

Individual run statistics from previous studies of single-cell RNA-sequencing in bacteria. Numbers in each category were selected by taking maximum reported values. ‘Cells profiled’ 
indicates the maximum number of bacterial cells (for any number of strains) used in a single experiment. While ultimately the limiting factor is cost per cell, all else being equal, removing 
rRNA reads, either by using probes or rRNA depletion, will be more cost effective, with the latter also allowing for observation of unbiased gene sets. ‘Measurable genes’ indicates the number 
of genes that could theoretically be measured using the indicated method. ‘Median mRNA UMIs per cell’ indicates the maximum number of UMIs per mRNA per cell (for any number of strains 
and conditions) reported in the indicated study. ‘Median mRNA genes per cell’ same as ‘Median mRNA UMIs per cell’ except for genes. ‘Conditions profiled’ refers to the maximum number of 
reported samples/conditions profiled in a single experiment. While the limiting factor in conditions profiled is time and cost, we note that indexing multiple samples using indexed primers is 
currently the most time and cost efficient approach to profile multiple conditions.
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