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Expanding known viral diversity in the 
healthy infant gut
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The gut microbiome is shaped through infancy and impacts the maturation 
of the immune system, thus protecting against chronic disease later in life. 
Phages, or viruses that infect bacteria, modulate bacterial growth by lysis 
and lysogeny, with the latter being especially prominent in the infant gut. 
Viral metagenomes (viromes) are difficult to analyse because they span 
uncharted viral diversity, lacking marker genes and standardized detection 
methods. Here we systematically resolved the viral diversity in faecal 
viromes from 647 1-year-olds belonging to Copenhagen Prospective Studies 
on Asthma in Childhood 2010, an unselected Danish cohort of healthy 
mother–child pairs. By assembly and curation we uncovered 10,000 viral 
species from 248 virus family-level clades (VFCs). Most (232 VFCs) were 
previously unknown, belonging to the Caudoviricetes viral class. Hosts were 
determined for 79% of phage using clustered regularly interspaced short 
palindromic repeat spacers within bacterial metagenomes from the same 
children. Typical Bacteroides-infecting crAssphages were outnumbered 
by undescribed phage families infecting Clostridiales and Bifidobacterium. 
Phage lifestyles were conserved at the viral family level, with 33 virulent and 
118 temperate phage families. Virulent phages were more abundant, while 
temperate ones were more prevalent and diverse. Together, the viral families 
found in this study expand existing phage taxonomy and provide a resource 
aiding future infant gut virome research.

The establishment of the gut microbiome (GM) during the first years of 
life plays a pivotal role in the maturation of the infant immune system1,2. 
Early-life GM dysbiosis has been linked to a series of chronic diseases 
occurring later in life, indicative of a lasting effect on immune program-
ming3–6. Most existing research has focused on the bacterial component 
of the GM, but lately it has become evident that viruses are prominent GM 

members. Recent studies have shown that the transfer of gut viral content 
from healthy donors can cure recurrent Clostridioides difficile infections7, 
alleviate diet induced obesity8 and prevent necrotizing enterocolitis 
in preterm neonates9. The mechanisms are still unclear, but probably 
involve modulation of GM composition through viral infection, because 
most gut viruses are bacteriophages (phages) that only infect bacteria10.
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Identifying the viruses and resolving their taxonomies
Virome extractions are known to contain various amounts of bacterial 
contaminating DNA39 and uncharted viral diversity23 makes it difficult 
to discern novel viruses from contaminants. We resolved this issue 
by assembly, clustering and successive rounds of manual curation  
(Methods), to avoid potential selection biases (for details, see Sup-
plementary Information and Supplementary Table 2) in existing tools 
and criteria such as ‘circular contigs’33 that could have prevented the 
identification of truly novel viral clades.

In short, the extracted viromes were sequenced to an aver-
age of 3 Gbp per infant sample. After assembly and species-level 
de-duplication, resulting operational taxonomic units (OTUs) 
were clustered by protein content (Extended Data Fig. 1), visualised 
(Extended Data Fig. 2) and manually curated. Ultimately, 10,021 manu-
ally confirmed viral OTUs (vOTUs) comprised the study’s final set of 
viral species (for details, see Supplementary Information and Online 
Methods). These vOTUs recruited roughly half of total sequencing 
reads, with the remaining half mapping mainly to sequence clusters 
of bacterial contaminating DNA (Supplementary Information and 
Extended Data Figs. 3–5), which is comparable to other studies40. Con-
taminant sequence clusters were not analysed further.

For determining which vOTUs were parts of existing viral fami-
lies, we pooled them with 7,705 species-level de-duplicated reference 
phages41. After gene calling, protein alignments were used for defining 
viral orthologue gene clusters (VOGs) de novo and for constructing an 
aggregate protein similarity (APS) tree. The tree was rooted and cut at 
levels reproducing the recent taxonomy for the Herelleviridae32 phage 
family, thus yielding clusters corresponding to viral families (VFCs), 
subfamilies and genera covering both vOTUs and reference phages. 
An additional order-level cutoff was based on the newly proposed 
caudoviral Crassvirales order35.

The 10,021 species-level vOTUs fell within 248 curated VFCs, 
including 16 known families (Fig. 1) containing 2,497 vOTUs and 232 
previously undescribed VFCs containing 7524 vOTUs. The undescribed 
VFCs were named after the infants that delivered the faecal samples. 
The VFCs were additionally grouped into 17 virus order-level clusters 
(VOCs, Supplementary Table 3), 5 of which were already known (Fig. 1).  
After estimating the typical complete genome size at the family level 
(Fig. 1), 56 % of the 10,021 vOTUs were found to be complete or near 
complete, specifically, 83% of the 2,629 small single-stranded DNA 
(ssDNA) vOTUs and 46% of the 7,392 larger double-stranded DNA 
(dsDNA) vOTUs. vOTU DNA sequences and taxonomies along with 
visualizations of the VFCs (Extended Data Fig. 2) have been made avail-
able via an interactive Fig. 1 at http://copsac.com/earlyvir/f1y/fig1.svg.

Infant gut vOTUs are largely absent from gut virus databases
We checked whether any of our 10,021 curated viral species were 
found within three gut virus databases built mainly on adult faecal 
metagenomic data. The Gut Virome Database (GVD)29 contained 
only 819 of our vOTUs, while the larger and more recent Gut Phage 
Database (GPD)28 and Metagenomic Gut Virus catalogue (MGV)27 
covered 2,307 and 2,171 vOTUs, respectively. Combined, 7,046 (70%) 
of the infant gut vOTUs identified here were not found in any of the 
three gut virus databases. At the family level, however, most of the 
248 VFCs had some representatives in either database, with Crass-
virales VFCs being particularly well represented in both GPD and 
MGV. Importantly, the majority of our most species-rich VFCs (for 
example, candidate family ‘Amandaviridae’) were poorly represented 
in all three databases, while the VFCs best covered by the databases 
were often minor in our data (Fig. 1). In other words, most large gut 
phage clades in databases are only occasionally found in the infant 
gut viromes, and vice versa. This pattern suggests that the infant gut 
is a unique niche harbouring specialized viruses distinct from the 
adult gut. Alternative explanations for this lack of overlap could be 
library selection differences (bonafide viromics in our case versus 

Phages, like bacteria, appear in the gut during the first months 
of life following a host-specific pattern11–14. Virulent phages undergo 
the lytic cycle in which they readily multiply and kill their host cell 
through lysis and release new virions into the ecosystem. Temperate 
phages can integrate into the bacterial chromosome, thereby becom-
ing prophages. This prophage status postpones the killing of the host 
until certain environmental conditions induce the prophage to enter 
the lytic cycle. Some phages can also cause chronic infections lead-
ing to continuous shedding of viral particles15. Bacteria will defend 
themselves against these viruses using multiple defence systems16, 
including clustered regularly interspaced short palindromic repeat 
(CRISPR)–Cas systems, an adaptive immune mechanism where DNA 
records (spacers) of past viral infections are stored on a chromosomal 
CRISPR array to combat future phage attacks17.

Phages can alter GM composition and function8,12, but may also 
directly elicit immune responses from the human host18–20, suggesting 
a tripartite interaction that could modulate host health. The first report 
on the viral metagenome (virome) composition in the infant gut dates 
back more than a decade21, and the infant virome has recently been 
shown to be influenced by caesarean section and formula milk22. Never-
theless large-scale studies establishing the early life virome composition 
and structure are sparse, and human virome studies in general have been 
challenged by the large proportion of uncharted viral diversity, which 
is sometimes referred to as the viral ‘dark matter’ problem23.

The latter means that only a small fraction of nucleic acid 
sequences in a virome can be linked to any known virus. Attempts at 
de novo virus identification have been limited by the lack of universal 
viral marker genes, while de novo classification of novel viruses into 
taxa was hampered by the lack of standardized methods. However, pro-
gress has been made in recent years24–26, leading to several human gut 
virus databases27–29, although these are still developing and currently 
lack viral taxonomies for all the novel viruses they contain. Compre-
hensive viral taxonomies are important for conducting biologically 
meaningful statistical analyses against sample metadata.

Traditionally, defining new viral taxa has required laboratory 
isolation of both virus and host for subsequent characterization30.  
However, the International Committee for the Taxonomy of Viruses 
(ICTV) has recently made it possible to define new viral taxa on the basis 
of sequence information alone. This important change is already having 
major implications as several new taxa are being proposed, particularly 
among the highly diverse tailed phages (caudoviruses)31. Notably, the 
ICTV established the complete taxonomy of the new Herelleviridae fam-
ily, demonstrating the definition of viral families, subfamilies and genera 
according to this new paradigm32. Subsequently, three new caudoviral 
families were identified in human gut metagenome data33. And recently, 
the prominent gut phage family Crassviridae34 was elevated into a viral 
order Crassvirales35, belonging to the new viral class Caudoviricetes, 
which itself is now proposed to encompass caudoviruses36 as a whole.

In this Resource, we characterized the faecal viromes of 647 infants 
at 1 year of age enrolled in the Copenhagen Prospective Studies on 
Asthma in Childhood 2010 (COPSAC2010) cohort37. De novo assembly 
and careful curation allowed us to map out any uncharted viral diversity 
leading to the identification of hundreds of virus family-level clades 
(VFCs). In contrast to the adult gut dominated by virulent Crassvirales, 
we found a diverse and largely temperate infant gut virome.

Results
Study population
COPSAC2010 is a population-based mother–child cohort study of 
700 Danish children from rural, suburban and urban settings around 
the greater Copenhagen area (Supplementary Table 1). Participants 
were recruited in pregnancy with the aim of prospectively studying 
the causes for chronic inflammatory diseases37. Faecal samples were 
successfully collected and had viromes characterized for 647 children 
at 1 year of age. Metagenomes were sequenced in parallel38.

http://www.nature.com/naturemicrobiology
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bulk metagenomics), bioinformatics (curation versus automated 
detection), limited infant gut sequence diversity (enabling complete 
assembly of otherwise rare phages) or the fact that gut viromes are 
extremely individual specific by nature.

Undescribed viral families dominate the infant gut virome
Cutting the APS tree at the family32 and order level35 yielded 248 VFCs 
and 17 VOCs. The family-level cutoff reproduced the recently defined 

crAssphage families35 (Fig. 1). The order-level cutoff reproduced five 
known viral orders (that is, Petitvirales, Tubulavirales, anelloviruses 
(CRESS), Rowavirales and Crassvirales) along with 12 additional strictly 
caudoviral VOCs (Supplementary Table 3). Even at the family level, 232 
out of 248 VFCs were caudoviral, further underlining their diversity. 
The mean and median VFC size was 40 and 17 species-level vOTUs, 
respectively, making the typical VFC similar in richness to currently 
known gut phage families such as Flandersviridae33.
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Fig. 1 | An atlas of infant gut DNA virus diversity. Faecal viromes from 647 
infants at age 1 year were deeply sequenced, assembled and curated, resulting 
in the identification of 10,021 viral species falling within 248 VFCs. Predicted 
host ranges for each VFC are given, and the VFCs have been grouped into 17 
VOCs. Trees show how VFCs are interrelated within each VOC, and heat maps 
and histograms encode their genome size, lifestyle, host range, abundance and 

prevalence across the cohort as well as in published gut virus databases.  
For the 16 previously known viral families, names are written in red. An interactive 
version of the figure with expandable families can be accessed online,  
for browsing the gene contents and downloading the genome of each virus: 
http://copsac.com/earlyvir/f1y/fig1.svg.
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To identify the most predominant viral clades, three measures 
were calculated: total species richness, prevalence across samples 
and mean relative abundance (MRA) (Fig. 2). Family- and order-level 
MRA and prevalence estimates were determined by first mapping 
sample reads to vOTUs, then aggregating their counts on the basis of 
taxonomic affiliation. All three measures were highly correlated (Fig. 2  
and Extended Data Fig. 6), meaning that the most diverse VFCs and 
VOCs were also the most widespread and abundant. The correlation 
between these measures is predicted by the neutral community model, 
which also applies to bacterial community structures42,43.

In our data, vertebrate-infecting ssDNA anelloviruses (Anelloviri-
dae) and bacterial ssDNA microviruses (Petitvirales) were amongst the 
most abundant viral clades (Fig. 2a and next subsection). These were 
followed by ten major dsDNA VFCs belonging to the Caudoviricetes  
viral class (Fig. 2b). Four of these are known caudoviral families pending 
ICTV approval, namely Skunaviridae, Salasmaviridae, β-crassviridae 
and Flandersviridae, while the remaining six comprise new candidate 
families. Importantly, Crassvirales, which are abundant in adult faecal 
viromes44, were surpassed by other VOCs in the infant gut (Fig. 2a).

Skunaviridae is a family of virulent phages infecting Lactococcus 
dairy cultures45. Possibly originating from the diet, they were the most 
abundant caudoviral family in our data (2.7% MRA). Salasmaviridae is 
a viral family harbouring around a dozen Bacillus podoviral species 

including phage phi2946. Here, we were able to broaden the scope of 
the Salasmaviridae family with over 200 diverse vOTUs spanning more 
than 20 viral subfamilies, infecting a wide variety of gut-associated 
Firmicutes and Actinobacteria. β-Crassviridae, a minor Crassvirales 
family in adults, was found in almost a third of the infants (n = 210; 647), 
predicted to infect both Bacteroides and Clostridiales hosts. The major 
adult Crassvirales family, α-Crassviridae35,47, however, was present in 
only 5% (n = 39) of the infants. Flandersviridae is a Bacteroides-infecting 
phage family recently defined on the basis of 30 complete phage 
genomes33 from public metagenome assemblies. Found in almost 
half of the children (n = 286), we markedly expand this family with 80 
complete species-level vOTUs spanning four subfamilies.

Apart from these four known virulent viral families, six previously 
undescribed candidate families were found to be highly abundant, 
prevalent and diverse. The prevalence and richness estimates for 
these candidate families indicate that they are at least as predominant 
in the infant gut ecosystem as crAssphage is in adults44. Candidate 
family ‘Sisseviridae’, almost universally present in the infants (80%), 
harbours the highly prevalent Faecalibacterium phage Oengus48 and 
encompasses a wide range of both temperate and virulent vOTUs 
infecting diverse Firmicutes and Actinobacteria. The temperate can-
didate families ‘Amandaviridae’, ‘Jeppeviridae’ and ‘Alberteviridae’ are 
related, belonging to the major VOC1. These candidate families were 
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present in 70% of the infants, containing between 200 and 300 viral 
species each, infecting Clostridiales genera such as Ruminococcus, 
Blautia, Anaerostipes and Hungatella. Apart from a few unclassified 
Clostridium and Brevibacillus reference phage species that co-cluster 
within them, these expansive clades are largely unexplored. Finally, 
‘Evaviridae’ and ‘Hannahviridae’ comprise two related candidate fami-
lies of Bacteroides-infecting phages containing around 200 species in 
total. The former appears strictly virulent while the latter harbours 
separate subfamilies that are either virulent or temperate. ‘Hannah-
viridae’ includes the recently described Bacteroides phage ‘Hanky-
phage’49 known for its diversity-generating retroelements, and it has 
been extensively described in a parallel provirome study performed 
on the same samples50.

Clades of ssDNA viruses in the infant gut
ssDNA vOTUs recruited around a third of the sequencing reads, but after 
normalizing for their short genome sizes, they accounted for 60% of the 
MRA (Extended Data Fig. 3). The short multiple-displacement ampli-
fication (sMDA) protocol used to detect the ssDNA viruses could have 
inflated their counts51. However, the families did still display canonical 
positioning along the neutral community model (Figs. 2b and 3f) so we 
infer that any artificial inflation would have been limited. The ssDNA 
families fell within three separate viral classes, Malgrandeviricetes, 
CRESS viruses and Faserviricetes, each harbouring a single viral order.

Microviruses of the Petitvirales viral order (class Malgrandevirice-
tes) are ubiquitous small icosahedral ssDNA phages and were the most 
prevalent and abundant group of viruses in our viromes, making up 52% 
of the MRA. Twenty-one per cent of all CRISPR spacer matches from 
the metagenome targeted microviruses (http://copsac.com/earlyvir/
f1y/taxtable.html), underlining their importance. vOTUs from the two 
major families Gokushoviridae and Alpaviridae (currently subfamilies 
Gokushovirinae and Alpavirinae) in our data are predicted to infect 
Clostridiales and Bacteroidales, respectively, but other minor VFCs 
were also detected (Fig. 1).

Anelloviruses from the CRESS class of ssDNA viruses, also known 
as Torque Teno viruses, comprise a single family (Anelloviridae) of 
small 3 kb ssDNA viruses that infect vertebrate cells. They cause 
chronic asymptomatic infections in healthy humans, with elevated 
titre in immunocompromised patients52. The immature infant immune 
response may explain their abundance in our samples (7% of the MRA). 
They comprise by far the richest single family with 970 species-level 
vOTUs. On average, each infant harboured ten species of Anelloviridae, 
consistent with earlier findings13. Unsurprisingly, no CRISPR spacer 
matched any Anelloviridae vOTUs.

Inoviruses from the Tubulavirales order (class Faserviricetes) are a 
ubiquitous and diverse group of filamentous phages with small ssDNA 
genomes53. Some integrate into their host genomes using integrases 
while others cause chronic non-lethal infections that result in the 
continuous shedding of viral particles15. Although they were diverse 
in our data, distributed among seven families like the Petitvirales, 
their species richness was lower at 235 vOTUs, and abundances were 
correspondingly lower totalling 1% MRA. Most of the inoviral families 
found were predicted to infect Clostridiales, although members of the 
VFC ‘Adamviridae’, appear to specifically infect Bifidobacterium (Fig. 1).

Virus lifestyle determines both abundance and prevalence
Most of the ten major caudoviral VFCs lacked integrases, otherwise 
commonly found in less abundant VFCs. Since an integrase is an indica-
tor of a temperate lifestyle, we investigated whether a virulent lifestyle 
was linked to higher abundances. First, the typical complete genome 
size per VFC was determined for 228 VFCs by examining the size dis-
tribution of their constituent vOTUs. The median (interquartile range 
(IQR)) complete genome size for the VFCs was 35 kb (30–50 kb). Using 
the determined minimum complete size limit per viral family (Fig. 1), 
5,608 vOTUs with complete and near-complete genomes were screened 

for integrases (Methods). Phage lifestyles were mostly homogeneous 
at the family level and a total of 118 VFCs were deemed temperate, while 
only 33 were found to be virulent. The remaining 97 VFCs exhibited 
either a mixed lifestyle pattern or were uncertain due to an insufficient 
number of complete genomes.

Family-level abundance was not significantly linked to phage 
lifestyle (two-sided Wilcoxon test, P = 0.90; Fig. 3a), but temperate 
VFCs were significantly more prevalent than virulent VFCs (P = 0.048; 
Fig. 3b). Temperate phages have been shown to be more genetically 
diverse than their virulent counterparts54, so we compared the amount 
of unique branch length (as a fraction of total branch length) in viru-
lent versus temperate family-level APS subtrees. Indeed, temperate 
caudoviral VFCs were more genetically diverse (P = 0.021; Fig. 3c) than 
virulent VFCs. Clostridiales hosts were particularly enriched in tem-
perate VFCs, whereas most virulent VFCs were predicted to infect 
Bacteroidales (Fig. 1). According to our CRISPR spacer mappings, and 
in line with other studies28,55, some vOTUs appeared to infect multiple 
host species, genera or even families of bacteria. We checked whether 
spacers targeted virulent phages more often than temperate phages, 
or whether a virulent lifestyle was associated with a broader host range. 
This was not the case as both temperate and virulent families exhibited 
similar mean host ranges (P = 0.2; Fig. 3d) and numbers of targeting 
spacers (P = 0.097; Fig. 3e).

Finally, plotting the abundance and prevalence of the virulent and 
temperate VFCs against each other (Fig. 3f) suggested that virulent 
VFCs had elevated titre despite being found in fewer children. We 
tested this hypothesis systematically using the neutral community 
model (Fig. 3g), which describes the community relationship between 
abundance and prevalence56. After fitting the model on all of our VFC 
abundances, virulent VFCs had significantly lower residuals against it 
than temperate VFCs (two-sided Wilcoxon test, P = 2.1 × 10−5; Fig. 3h), 
confirming that they were both less prevalent and more abundant 
than temperate VFCs.

Phage–host abundances are linked in spite of virus lifestyle
Bacterial hosts for the vOTUs were predicted using 317,968 CRISPR 
spacers from our metagenome assembled genomes (MAGs)38, 11 million 
spacers from the CRISPR spacer database57 and using WIsH58. These 
predictions were merged by their last common ancestor. Bacterial host 
genera were predicted for 63% of the vOTUs, with 77% being covered 
at the order level (Fig. 4a), and 79% at the host phylum level. Bacte-
roides was by far the most commonly predicted host genus followed 
by Faecalibacterium and Bifidobacterium. At the order level, however, 
approximately half of the annotated vOTUs had Clostridiales as hosts, 
with Bacteroidales covering just one-quarter (Fig. 4a). This mirrors 
the corresponding pattern for the bacterial taxa in the metagenomes, 
where Bacteroides was the most abundant genus, while Clostridiales 
were more diverse (Fig. 4b).

MRAs of bacterial host genera in the metagenomes were strongly 
correlated with cognate phage MRAs in the viromes (Spearman’s 
ρ = 0.76, P < 1.45 × 10−17; Fig. 4c) supporting both the accuracies of 
host predictions and viral abundance estimations. Overall, in the infant 
gut, both virulent and temperate phages correlate positively with the 
abundances of their hosts (Extended Data Figs. 7 and 8). Although viru-
lent phages lyse their hosts, cross-sectionally they still act as positive 
markers for their presence.

Discussion
The recent publication of several large and curated gut virus databases 
illustrates the massive diversity of the human gut viral community27–29. 
Yet, significant parts of this ecological niche remain uncharacterized. 
A thorough description of the gut viruses is essential to understand 
their roles, especially if one aims at modulating the GM for prevention 
and treatment of chronic disease. We deeply sequenced 647 infant 
gut viromes and mapped the uncharted viral diversity by de novo 
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assembly and classification. The approach led to the uncovering of 
248 VFCs, 232 of which were previously unknown, and most of which 
belonged to the Caudoviricetes viral class. Temperate phages dominate 
the 1-year-old gut virome, and crAssphage is overshadowed by several 
previously undescribed viral clades. Such comprehensive taxonomic 
resolution of virome data allows for biologically meaningful statistical  
analyses against sample metadata, aiding future research in transla-
tional viromics.

Systematically resolving the uncharted viral diversity (‘dark mat-
ter’) left only 7% of the virome sequences unaccounted (Extended 
Data Fig. 3) and the VFCs that were uncovered in the process repre-
sent a major expansion of current phage taxonomy. Resolution of 
phage lifestyles showed that most phages in the infant gut ecosystem 
are temperate, even though the less diverse virulent phages can be 
more abundant. This echoes recent findings on the neonatal gut12, also 

dominated by temperate phages, and it is in contrast to adults where 
virulent phages dominate29.

In addition to the six major candidate families described, numerous 
additional predominant caudoviral VFCs can be browsed online (Fig. 1). 
In general, Bacteroides-infecting VFCs were more often virulent and host 
specific, while VFCs infecting Clostridiales featured wider host ranges 
and were overwhelmingly temperate. Multiple VFCs were often special-
ized for a single host genus, for example, seven Akkermansia-specific 
VFCs (Fig. 1). Others were more agnostic, having multiple host genera, 
for example, Clostidiales-infecting VFCs such as ‘Amandaviridae’. Some 
vOTUs were even predicted to infect multiple bacterial families within 
the same order. Such features underscore the rapid rates of speciation 
that caudoviruses attain both horizontally across hosts, but also verti-
cally within tight host niches. Phylogenetically distinct hosts such as 
Bacteroides and Akkermansia59 probably present greater barriers for 
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Fig. 3 | Temperate versus virulent viral families in the infant gut.  
a–e, Characteristics of temperate versus virulent VFCs in the data in terms of 
MRA (a), prevalence (b), genetic diversity as measured by unique branch length 
(c), number of metagenomic CRISPR spacer matches (d) and host range  
(number of host species) (e). f, Fit of the neutral community model, on the  
VFCs from Fig. 2b. g, Deriving neutral community model residuals from the  
log-transformed prevalences. h, Comparison of neutral community model 

residuals, showing that temperate VFCs tend to have positive residuals, whereas 
virulent VFCs tend towards negative residuals, indicating that temperate 
phages are present in lower abundance despite being found in more children, 
as compared with virulent phages. For a–e and h, n = 151 (118 temperate + 33 
virulent). Box plot elements: centre line, median; box limits, upper and lower 
quartiles; whiskers, 1.5× IQR; points, outliers. Two-sided Wilcoxon test P values 
reported. For f and g, n = 248 (118 temperate + 33 virulent + 97 unknown).
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host switching, making their phage families more host specific in a 
human gut context. This is in contrast to Clostridiales genera, dozens 
of which often co-exist, encouraging host flexibility. Overall, we found 

caudoviral richness to exceed host richness by an order of magnitude, 
both at the species and genus levels (for example, 2,858 caudoviral 
genera versus 203 host genera in the metagenome).
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Most virome studies so far amplified the extracted DNA with MDA 
before sequencing, which may bias sequence composition towards 
ssDNA viruses60,61 in addition to compromising quantitative analyses 
overall. However, the largest meta-analysis of virome studies29 did not 
find differences between non-MDA and standard 2 h MDA gut viromes. 
Furthermore, in a recent gut virome study using a different DNA library 
kit enabling ssDNA detection supposedly without biases61, microvi-
ruses outnumbered caudoviruses in a third of the samples62. Here, 
we used a 30 min sMDA step to enable ssDNA detection while limiting 
biases. We found the opposite trend; that microviruses outnumbered 
caudoviruses in two-thirds of the infants. But we also showed strong 
co-abundances between phages and their hosts. Moreover, we made 
a thorough comparison linking plaque forming units to virome abun-
dances (Extended Data Fig. 9). We conclude that our results on viral 
abundances are relevant in quantitative terms despite using sMDA, at 
least for dsDNA viruses.

Skunaviridae, our most abundant caudoviral family, comprised 
only eight complete vOTUs in the dataset. This is atypical considering 
the hundreds of vOTUs in most of the other abundant viral families. All 
reference phages belonging to the family infect Lactococcus while our 
vOTUs were predicted to infect Streptococcus, but this could be an arte-
fact caused by the lack of CRISPR-Cas systems in Lactococcus63. Strep-
tococcus, although very prevalent in the children, may not have been 
abundant enough to support the high counts of virulent Skunaviridae. 
We also did not find any strong correlation between Skunaviridae and 
Streptococcus or Lactococcus in the data. Thus, it remains a possibility 
that these strictly virulent phages were ingested via fermented dairy 
products where they naturally occur, as previously proposed64.

In a previous study on Escherichia coli phages isolated from the 
same samples65, virulent coliphages were less prevalent but more 
abundant and had broader host ranges than temperate coliphages. 
Here we found the same pattern on a more global scale. Virulent phage 
families across diverse hosts were more abundant but less prevalent 
than temperate phage families. Although we found no difference in 
host ranges, temperate phage families were more genetically diverse 
compared with the virulent ones. The higher prevalence and lower 
abundance of temperate phages probably reflects frequent prophage 
induction, as shown in mouse models66–68, and that induced virions 
do not readily re-infect and multiply. In viromics, this would appear 
as a stable background of diverse temperate phages on top of which 
virulent blooms would stochastically appear from random phage–host 
encounters. For our infant samples, this temperate background was 
intense enough to overshadow the diversity of virulent phages. Possi-
bly, in adult viromes where the GM and host immunity have stabilized, 
the bacteria are less stressed and the temperate virome, in turn, less 
dominant. This notion is consistent with how a virulent phage core 
is linked to adult gut health69, as well as the paucity of crAssphage in 
infant viromes29.

Methods
The COPSAC2010 cohort
The study was embedded in the Danish population-based COPSAC2010 
prospective mother–child cohort of 736 women and their children 
followed from week 24 of pregnancy, with the aim of studying the 

mechanisms underlying chronic inflammatory diseases37 (Supple-
mentary Table 1). The study was conducted in accordance with the 
guiding principles of the Declaration of Helsinki and was approved by 
The National Committee on Health Research Ethics (H-B-2008-093) 
and the Danish Data Protection Agency (2015-41-3696). Both parents 
gave written informed consent before enrollment. Faecal samples were 
collected for 660 participants at age 1 year.

Virome extraction
Each sample was mixed with 10% vol/vol glycerol and stored at −80 °C 
until DNA extraction for metagenomes38 and virome extraction. 
Extraction and sequencing of viromes were done using previously 
described protocols70. Briefly, DNA from faecal filtrates enriched in 
viral particles was extracted and subjected to short (30 min) MDA 
amplification and libraries were prepared following the manufac-
turer’s procedures for the Illumina Nextera XT kit (FC-131-1096). For 
epiflorescence virus-like particle (VLP) estimations, 10 µl of a virome 
sample was diluted 100-fold, fixed and deposited on a 0.02 µm filter, 
dried and stained with SYBR-Gold (200×), then visualized with an epi-
fluorescence microscope using a 475 nm laser. VLPs were counted in 
eight to ten fields and multiplied over the remaining filter surface area.

Sequencing, assembly and decontamination
Virome libraries were sequenced on the Illumina HiSeq X platform 
to an average depth of 3 Gb per sample with paired-end 2× 150 bp 
reads. Satisfactory sequencing results were obtained for 647 out of 
660 samples. Virome reads were quality filtered and trimmed using 
Fastq Quality Trimmer/Filter v0.0.14 (options -Q 33 -t 13 -l 32 -p 90 
-q 13), and residual Illumina adaptors were removed using cutadapt 
(v2.0). Trimmed reads were de-replicated using the VSEARCH71 (v2.4.3) 
derep_prefix and then assembled with Spades72 (v3.10.1) using the meta 
flag while disabling read error correction. Decontamination clusters 
were generated by reducing redundancy by de-duplicating the 1.5 M 
contigs above 1 kb in size into 267k 90% ANI representatives using a 
previously published pipeline73 then calling genes using Prodigal74 
(v2.6.3) and aligning proteins all-against-all using FASTA75 (v36.3.6f) 
for building an APS tree76 using custom code (https://github.com/
shiraz-shah/VFCs). The tree was cut close to the root to obtain the 
decontamination clusters. Bacterial MAGs from the same samples38 
were mined for CRISPR spacers using CRISPRDetect77 (v2.2), and the 
virome decontamination clusters were ranked by their extent of CRISPR 
targeting multiplied by sample prevalence. The protein alignment 
results were passed through an orthology filter78 (https://github.com/
shiraz-shah/VFCs) and clustered using Markov clustering79 (v14-137) to 
obtain VOGs de novo. VOGs were used to visualize the gene contents 
of contigs within each decontamination cluster. The top 400 ranked 
clusters were inspected visually for two viral signatures, namely con-
servation of contig sizes and of gene content. There were diminishing 
returns beyond the top 400 mark and the remaining decontamination 
clusters were assumed to represent contaminants.

OTU delineation and protein annotation
Species-level (95% ANI) de-duplication of contigs into OTUs was 
done using BLAT80 and custom code for clustering (https://github.

Fig. 4 | Phages and their bacterial hosts in the 1-year-old infant gut. Prediction 
of bacterial hosts for the 10,021 vOTUs found in the infant gut virome shows 
that Bacteroides, Faecalibacterium and Bifidobacterium are the three most 
prominent host genera. a, Distribution of virus host predictions collapsed to 
bacterial order and genus levels, respectively. Numbers in parentheses denote 
the number of vOTUs with a given host genus or order, respectively. b, The top 
100 gut bacterial genera found in gut metagenomes from the same infant faecal 
samples, as represented by a taxonomic tree. The MRA of each bacterial genus is 
shown in the blue heat map, while the fraction of the 647 infants harbouring the 

host genus (that is its prevalence) is shown with the brown bar plot. The outer ring 
displays per bacterial genus, the proportion of infant gut vOTUs (yellow) relative 
to reference phage species with known hosts41 (dark blue). Numbers behind each 
genus name denote the total number of vOTUs versus reference phage species 
per bacterial host genus. The 16 major host genera from a are indicated by a dot 
in front of their names in b. c, Each dot represents a genus from b, by its MRA in 
the metagenome against the aggregate MRA of all its vOTUs in the virome. Host 
abundances correlated strongly with corresponding phage abundances as tested 
by a Spearman’s rank test (two-sided P value).
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com/shiraz-shah/VFCs). Reference phages were de-duplicated to the 
species-level using the same strategy. Comparisons of the vOTUs to the 
GVD, GPD and MGV were also performed similarly. Decontaminated 
vOTUs and reference phage species41 were pooled and the APS tree and 
VOGs were recomputed. Multiple sequence alignments (MSAs) of VOGs 
were constructed with MUSCLE81 v3.8.425. VOG MSAs were aligned 
against MSAs from Pfam82, the Conserved Domains Database83, the 
Clusters of Orthologous Groups of proteins database84 and TIGRFAMs85 
using HH-suite3 (ref. 86) v3.0-beta.3 to gain functional annotations.

Resolution of viral taxonomy
We first used FigTree (v1.4.4) to root the APS tree by selecting an out-
group that branched out directly from the stem of the tree. Next we 
used phylotreelib and treetool (https://github.com/agormp/phy-
lotreelib) to generate viral genera, subfamilies, VFCs and VOCs as 
follows. First, treetool’s cladeinfo option was used to retrieve the dis-
tances from the root to the branch points corresponding to existing 
phage genera, subfamilies, families and orders32,35. Next, treetool.
py’s–clustcut option was used to cut the rooted APS tree at the above 
distances in order to obtain clades of both vOTUs and reference phages 
corresponding to viral genera, subfamilies, families and orders. The 
distances we used to cut the tree were 0.250, 0.125, 0.04 and 0.025, 
respectively, corresponding to average amino-acid identity (AAI) and 
coverage thresholds of 70%, 50%, 28% and 22% for each respective 
taxonomic level.

Curation of VFCs
Viral families from above were visualized (Extended Data Fig. 2) to (1) 
further curate each individual member vOTU to separate confirmable 
viruses that had structural VOGs, from subclades of vOTUs represent-
ing various virus-related MGEs, such as satellites, that did not harbour 
genes coding for typical structural proteins. (2) The OTU length distri-
bution within each family was inspected and then plotted in a histogram 
with 5 kb steps to locate the right-most size peak. The 5 kb step immedi-
ately preceding this peak was set as the lower size bound for a complete 
or near-complete genome. (3) The family visualizations were inspected 
to manually remove families that were dominated by reference phages, 
so as to avoid interference with ongoing classification efforts. Weak 
families composed mainly of MGEs or fragments, having fewer than 
five vOTUs or fewer than two complete vOTUs were also removed. For 
the final version of the family visualizations available online, VOG MSAs 
were realigned against MSAs from PHROGs87 because this database was 
more informative than Pfam, Conserved Domains Database, Clusters 
of Orthologous Groups of proteins database and TIGRAMs.

Host prediction
MAG spacers, along with spacers from CRISPRopenDB57 and WIsH57 
(v1.0) were used to generate separate host predictions for each vOTU. 
The three predictions were integrated using the last common ancestor 
of the two most closely matching predictions, as an error-correction 
strategy, since all three methods would occasionally mispredict. Bac-
terial genus abundances in the metagenome were derived by running 
mOTUs88 (v2) on the reads from each sample followed by aggregating 
mOTU abundances at the genus-level in R (v4.0.2) using phyloseq89 
(v1.41.1).

Abundance estimation
Bacterial contamination was estimated for each virome sample 
using ViromeQC40 (v1.0) along with a custom approach where we 
leveraged the metagenomes cognate to each virome: Reads were 
mapped from both fractions against the 16S rRNA gene90 and cpn60 
(ref. 91) and the degree of contamination was calculated as the ratio 
between the two fractions. Abundances of vOTUs in each sample were 
determined by mapping sample reads to sample contigs using the 
Burrows–Wheeler Aligner92 (v0.7.17-r1188) with the option mem -a, 

then using the msamtools (v0.9.6) profile to determine depth and 
length-normalized relative abundances with iterative redistribution of 
ambiguously mapped reads proportionally to uniquely mapped reads 
(https://github.com/arumugamlab/msamtools). The obtained contig 
abundances were then aggregated at the OTU level using custom code 
(https://github.com/shiraz-shah/VFCs) to obtain vOTU abundances 
per sample. vOTU abundances were aggregated at the family and order 
levels in R (v4.0.2) using phyloseq89 (v1.41.1) to obtain the statistics 
used for Figs. 2 and 3.

Phage lifestyle prediction
A list of VOGs matching to integrase and large serine recombinase pro-
tein families was first curated, then used to predict whether complete 
vOTUs within viral families were temperate or virulent. Families where 
more than 95% of complete vOTUs did not harbour an integrase were 
deemed virulent, whereas for temperate families at least 50% of both 
complete and incomplete vOTUs were required to carry an integrase.

Benchmarking
The versions of virus discovery tools used for benchmarking (Sup-
plementary Table 2) were DeepVirFinder (v1.0), VIBRANT (v1.2.1), 
VIRSorter (1.0.6), VIRSorter2 (v2.0 commit 22f6a7d), Seeker (commit 
9ae1488), PPR-Meta (v1.1) and CheckV (v.0.7.0). The random prediction 
was created by randomly sampling the 362,668 OTUs 12,500 times 
without replacement. The number 12,500 was chosen because it was 
reasonably close to our own positive set and the number of positives 
generated by most tools.

Figures and statistical analysis
Figure 1 was drawn by first collating data at the family level using phy-
loseq89 then using Circos v0.69-8 (ref. 93) for rendering. Figures 2–4, 
Extended Data Figs. 4–8 and corresponding statistical analyses were 
generated using the statistical software R and the tidyverse suite, 
including ggplot2 (ref. 94) and related add-on packages ggraph95, 
ggforce96, ggpubr97, ggrepel98, ggstance99 and patchwork100. For 
deriving unique branch lengths (Fig. 4), we used the function pd.calc 
from the caper package101. The neutral.fit function from the MicEco R 
library (https://github.com/Russel88/MicEco) was used for fitting the 
family-level abundances to the neutral community model.

Availability of unique biological materials
Access upon request of the infant faecal samples to third parties is 
not part of the consent granted by the parents upon enrollment into 
the COPSAC2010 cohort. Nor is such access compliant with Danish or 
EU regulations for safeguarding rights of underage human research 
participants. Materials might however be obtained as part of a scien-
tific collaboration agreement with COPSAC, and queries for such may 
be sent to the COPSAC Data Protection Officer, Ulrik Ralkiaer, PhD 
(administration@dbac.dk).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Viral genome sequences, taxonomy and host predictions and VOGs for 
all viruses are available through the online version of Fig. 1 on http://cop-
sac.com/earlyvir/f1y/fig1.svg as well as the FigShare repository https://
doi.org/10.6084/m9.figshare.21102805. Benchmarking data including 
the non-viral sequence clusters is also available through the above as 
well as via http://copsac.com/earlyvir/f1y/benchmark.tsv. Sequencing 
FASTQ files can be accessed through the European Nucleotide Archive 
(ebi.ac.uk) using the project number PRJEB46943. Reference phages 
were obtained from the INPHARED database on millardlab.org. Refer-
ence Bacterial cpn60 sequences were obtained from cpndb.ca.
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Code availability
Data analyses were carried out using free and open source software 
as specified in the Online Methods. Custom code was also used and is 
available on GitHub (https://github.com/shiraz-shah/VFCs).
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Extended Data Fig. 1 | Overview of decontamination and curation procedure.
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Extended Data Fig. 2 | Clickable gene map of vOTUs belonging to the the 
Ingridviridae family. Available online at http://copsac.com/earlyvir/f1y/
families/Ingridviridae.svg along with similar maps for the remaining 247 families, 
available via http://copsac.com/earlyvir/f1y/fig1.svg. Small vertical gaps between 
vOTUs denote genus boundaries, while large gaps denote subfamily boundaries. 
Ordering of the vOTUs follows the order in the APS tree and thus, related vOTUs 
are next to each other. ORFs are aligned vertically based on strandedness and 

colored by VOG affiliation. VOG definitions against the PhROGs database87 can be 
looked up by clicking on each ORF. ORF gene product (GP) numbers are displayed 
by mouse-over hovering. GenBank files for each vOTU can be viewed along with 
virus and host taxonomy by clicking on the OTU name. Caudoviral maps were 
inverted and zeroed according to TerL gene coordinates, while the GenBank files 
were not. Reference phages that belong to the same family were also included in 
the maps and are indicated by GenBank accession numbers.
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Extended Data Fig. 3 | From assembly to curated vOTUs in numbers. After 
assembly, species-level deduplication and manual decontamination, most 
sequence clusters were inferred to be non-viral and had small sizes while viral 
OTUs were much fewer but longer (A). After mapping, vOTUs accounted for 
roughly half of the reads (B). 97% of the reads originally comprised “dark matter” 
but only 7% was left after resolution (C). The 10,021 curated vOTUs fell within 

five viral classes (caudoviruses [dsDNA], microviruses [ssDNA], anelloviruses 
[ssDNA], inoviruses [ssDNA] and adenoviruses [dsDNA]). Distributions of the 
viral classes by: mapped reads (D), MRAs, after normalising read counts for 
sequencing depth and genome size (E) and species richness, that is number of 
vOTUs (F) are shown. G) Same as F but at viral order-level, with orders colored  
as in Fig. 2.
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Extended Data Fig. 4 | Features of vOTUs versus non-viral sequence clusters 
within data. Distribution of size, MRA and sample prevalence for contaminant 
non-viral sequence clusters and curated vOTUs respectively. The vOTU size 
distribution shows peaks corresponding to genome lengths for the three 
major classes of viruses in the dataset, namely anelloviruses, microviruses and 
caudoviruses (3 kb, 5.5 kb, and 40 kb). The contaminant size distribution peaks at 
the contig inclusion cutoff (1 kb) continuing with a long uniform tail, consistent 

with the unspecific origin expected for contaminating DNA. Curated vOTUs 
were more abundant and prevalent than contaminating species. The majority of 
the contaminating sequences were sample-specific, in contrast to most curated 
vOTUs which were found in more than one sample. The latter is consistent with 
their bacterial chromosomal origin, as unspecific subsampling of the large 
bacterial genome space is unlikely to yield overlaps between samples.
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Extended Data Fig. 5 | Comparison of three approaches for estimating the 
proportion of bacterial contamination. Each graph has 647 dots, one for each 
sample. Axes denote the proportion of bacterial contamination as estimated 
by the indicated method. Each graph is a pairwise comparison of two different 

methods. A) mappings to non-viral sequence clusters versus ViromeQC B) 
non-viral sequence cluster mappings versus metagenome core gene depletion 
C) metagenome core gene depletion versus ViromeQC. Spearman’s correlation 
coefficients (ρ) are given for all three comparisons.
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Extended Data Fig. 6 | Viral family species-richness is linked to prevalence 
and abundance. The species-richness within a family is highly correlated 
with both its prevalence (A) and the MRA across samples (B), shown here with 
Spearman’s correlation tests (two-sided P values). MRAs are correspondingly 

correlated with prevalence as already shown in Fig. 3. The correlation between all 
three measures is in line with predictions made by the neutral community model. 
MRA, mean relative abundance.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Sample-to-sample co-abundance of phages in the 
virome and host-bacteria in the metagenome. Correlations between host 
bacterial relative genus abundances in the metagenomes with aggregate relative 
abundances for phages predicted to infect those host genera in the virome, 
compared across all children. A) Volcano plot showing how all significant 
correlations between phage-host pairs were positive (ρ > 0; n = 87 genera, 
Spearman’s correlation tests, two-sided P values). B) The distribution of these 
correlation values was significantly higher than zero (One-sample Wilcoxon test, 
two-sided P = 2.4·10-12, n = 87, right side), whereas random non-matched phage-

host pairs were centered around zero (left side). C) These correlations were 
positive regardless of phage lifestyle (one-sample Wilcoxon tests with two-sided 
P values), and D) stood out against the background of all genus combinations 
tested (same data shown in panel B, diagonal is matched phage-host pairs and 
off-diagonal are non-matched pairs). Boxplots demonstrate median, middle line; 
lower and upper quartile, box bounds; and most extreme observations within 1.5 
x interquartile range above/below box, whiskers. All individual data points are 
overlaid on the boxplots.
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Extended Data Fig. 8 | Mean co-abundance of phages and hosts regardless 
of viral lifestyle. Correspondence between host genus abundances in the 
metagenome with aggregate abundances for all phages infecting those genera 
in the virome, as stratified by virus lifestyle, namely, temperate phages (A) and 

virulent phages (B). The MRA of both virulent and temperate phages correlates 
positively with host MRA. MRA, mean relative abundance. Correlations were 
tested using Spearman’s rank test (two-sided P values).
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Extended Data Fig. 9 | The sMDA amplified viromes are quantitative for 
dsDNA phages. The relationship between experimentally determined PFU/g 
of faeces for 32 coliphages65, against mapped virome and metagenome reads 
per kilobase per million (RPKM), from the corresponding 32 samples. The two 
panels show data for temperate and virulent coliphages respectively. Axes were 
log-transformed to capture the dynamic range. A linear model was fit following 
log-transformation. Temperate coliphages show only a tendency of being 
associated presumably because read-mappings were shared between induced 
phage DNA and bacterial chromosomal DNA. For the virulent coliphages, 

however, the relationship was quantitative throughout the range of PFU 
counts (from 270 to 1.6 M). The sMDA amplified virome is no less quantitative 
than the unamplified metagenomes for the same samples. sMDA: short 
multiple-displacement amplification. Paired viromes/metagenomes from the 
same samples are connected using dashed lines. Regression lines are drawn 
using linear models, the shaded area represents the 95% confidence band for the 
regression line. P values correspond to Spearman’s rank correlation tests, are 
two-sided and were not adjusted for multiple comparisons.
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