Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chemotaxis increases metabolic exchanges between marine picophytoplankton and heterotrophic bacteria

Abstract

Behaviours such as chemotaxis can facilitate metabolic exchanges between phytoplankton and heterotrophic bacteria, which ultimately regulate oceanic productivity and biogeochemistry. However, numerically dominant picophytoplankton have been considered too small to be detected by chemotactic bacteria, implying that cell–cell interactions might not be possible between some of the most abundant organisms in the ocean. Here we examined how bacterial behaviour influences metabolic exchanges at the single-cell level between the ubiquitous picophytoplankton Synechococcus and the heterotrophic bacterium Marinobacter adhaerens, using bacterial mutants deficient in motility and chemotaxis. Stable-isotope tracking revealed that chemotaxis increased nitrogen and carbon uptake of both partners by up to 4.4-fold. A mathematical model following thousands of cells confirmed that short periods of exposure to small but nutrient-rich microenvironments surrounding Synechococcus cells provide a considerable competitive advantage to chemotactic bacteria. These findings reveal that transient interactions mediated by chemotaxis can underpin metabolic relationships among the ocean’s most abundant microorganisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Reciprocal exchanges between Synechococcus and M. adhaerens HP15.
Fig. 2: Reciprocal exchanges between Synechococcus and M. adhaerens HP15 are enhanced by chemotaxis.
Fig. 3: Numerical simulations reveal the dynamic interactions between Marinobacter and Synechococcus.
Fig. 4: DOM enhancement due to chemotaxis depends strongly on the size and concentration of phytoplankton cells.

Similar content being viewed by others

Data availability

All chemotaxis, growth, metabolomics and NanoSIMS data are available at Zenodo (https://zenodo.org/record/7509161#.Y7fUcRVBw2w; https://doi.org/10.5281/zenodo.7509161). Source data are provided with this paper.

Code availability

All analysis scripts are available on GitHub (https://github.com/JB-Raina-codes/Synechococcus-paper).

References

  1. Aylward, F. O. et al. Microbial community transcriptional networks are conserved in three domains at ocean basin scales. Proc. Natl Acad. Sci. USA 112, 5443–5448 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fuhrman, J. A. Microbial community structure and its functional implications. Nature 459, 193–199 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Amin, S. A., Parker, M. S. & Armbrust, E. V. Interactions between diatoms and bacteria. Microbiol. Mol. Biol. Rev. 76, 667–684 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mayali, X. Metabolic interactions between bacteria and phytoplankton. Front. Microbiol. 9, 727 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Amin, S. A. et al. Photolysis of iron–siderophore chelates promotes bacterial–algal mutualism. Proc. Natl Acad. Sci. USA 106, 17071–17076 (2009).

  6. Amin, S. A. et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 522, 98 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Durham, B. P. et al. Cryptic carbon and sulfur cycling between surface ocean plankton. Proc. Natl Acad. Sci. USA 112, 453 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Stocker, R. Marine microbes see a sea of gradients. Science 338, 628 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Bell, W. & Mitchell, R. Chemotactic and growth responses of marine bacteria to algal extracellular products. Biol. Bull. 143, 265–277 (1972).

    Article  Google Scholar 

  10. Azam, F. & Ammerman, J. W. in Flows of Energy and Materials in Marine Ecosystems 345–360 (Springer, 1984).

  11. Mitchell, J. G., Okubo, A. & Fuhrman, J. A. Microzones surrounding phytoplankton form the basis for a stratified marine microbial ecosystem. Nature 316, 58–59 (1985).

    Article  CAS  Google Scholar 

  12. Seymour, J. R., Amin, S. A., Raina, J.-B. & Stocker, R. Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships. Nat. Microbiol. 2, 17065 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Sonnenschein, E. C., Syit, D. A., Grossart, H.-P. & Ullrich, M. S. Chemotaxis of Marinobacter adhaerens and its impact on attachment to the diatom Thalassiosira weissflogii. Appl. Environ. Microbiol. 78, 6900–6907 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Raina, J.-B., Fernandez, V., Lambert, B., Stocker, R. & Seymour, J. R. The role of microbial motility and chemotaxis in symbiosis. Nat. Rev. Microbiol. 17, 284–294 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Seymour, J. R., Ahmed, T., Durham, W. M. & Stocker, R. Chemotactic response of marine bacteria to the extracellular products of Synechococcus and Prochlorococcus. Aquat. Microb. Ecol. 59, 161–168 (2010).

    Article  Google Scholar 

  16. Smriga, S., Fernandez, V. I., Mitchell, J. G. & Stocker, R. Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria. Proc. Natl Acad. Sci. USA 113, 1576–1581 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Flombaum, P., Wang, W.-L., Primeau, F. W. & Martiny, A. C. Global picophytoplankton niche partitioning predicts overall positive response to ocean warming. Nat. Geosci. 13, 116–120 (2020).

    Article  CAS  Google Scholar 

  18. Christie-Oleza, J. A., Sousoni, D., Lloyd, M., Armengaud, J. & Scanlan, D. J. Nutrient recycling facilitates long-term stability of marine microbial phototroph–heterotroph interactions. Nat. Microbiol. 2, 17100 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Morris, J. J., Kirkegaard, R., Szul, M. J., Johnson, Z. I. & Zinser, E. R. Facilitation of robust growth of Prochlorococcus colonies and dilute liquid cultures by ‘helper’ heterotrophic bacteria. Appl. Environ. Microbiol. 74, 4530–4534 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sher, D., Thompson, J. W., Kashtan, N., Croal, L. & Chisholm, S. W. Response of Prochlorococcus ecotypes to co-culture with diverse marine bacteria. ISME J. 5, 1125–1132 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Aharonovich, D. & Sher, D. Transcriptional response of Prochlorococcus to co-culture with a marine Alteromonas: differences between strains and the involvement of putative infochemicals. ISME J. 10, 2892–2906 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jackson, G. A. Simulating chemosensory responses of marine microorganisms. Limnol. Oceanogr. 32, 1253–1266 (1987).

    Article  CAS  Google Scholar 

  23. Gärdes, A., Iversen, M. H., Grossart, H.-P., Passow, U. & Ullrich, M. S. Diatom-associated bacteria are required for aggregation of Thalassiosira weissflogii. ISME J. 5, 436–445 (2011).

    Article  PubMed  Google Scholar 

  24. Al-Wahaib, D., Al-Bader, D., Al-Shaikh Abdou, D. K., Eliyas, M. & Radwan, S. S. Consistent occurrence of hydrocarbonoclastic Marinobacter strains in various cultures of picocyanobacteria from the Arabian Gulf: promising associations for biodegradation of marine oil pollution. J. Mol. Microbiol. Biotechnol. 26, 261–268 (2016).

    CAS  PubMed  Google Scholar 

  25. Raina, J.-B. et al. Subcellular tracking reveals the location of dimethylsulfoniopropionate in microalgae and visualises its uptake by marine bacteria. eLife 6, e23008 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Brumley, D. R. et al. Cutting through the noise: bacterial chemotaxis in marine microenvironments. Front. Mar. Sci. 7, 527 (2020).

    Article  Google Scholar 

  27. Gärdes, A. et al. Complete genome sequence of Marinobacter adhaerens type strain (HP15), a diatom-interacting marine microorganism. Stand. Genom. Sci. 3, 97–107 (2010).

    Article  Google Scholar 

  28. Moore, L. R., Post, A. F., Rocap, G. & Chisholm, S. W. Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus. Limnol. Oceanogr. 47, 989–996 (2002).

    Article  CAS  Google Scholar 

  29. Wawrik, B., Callaghan, A. V. & Bronk, D. A. Use of inorganic and organic nitrogen by Synechococcus spp. and diatoms on the West Florida shelf as measured using stable isotope probing. Appl. Environ. Microbiol. 75, 6662–6670 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lambert, B. S. et al. A microfluidics-based in situ chemotaxis assay to study the behaviour of aquatic microbial communities. Nat. Microbiol. 2, 1344–1349 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Raina, J.-B. et al. Chemotaxis shapes the microscale organization of the ocean’s microbiome. Nature 605, 132–138 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Brumley, D. R. et al. Bacteria push the limits of chemotactic precision to navigate dynamic chemical gradients. Proc. Natl Acad. Sci. USA 116, 10792–10797 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Myklestad, S. M. in Marine Chemistry (ed. Wangersky, P. J.) 111–148 (Springer Berlin Heidelberg, 2000).

  34. Ni, B., Colin, R., Link, H., Endres, R. G. & Sourjik, V. Growth-rate dependent resource investment in bacterial motile behavior quantitatively follows potential benefit of chemotaxis. Proc. Natl Acad. Sci. USA 117, 595–601 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Stocker, R., Seymour, J. R., Samadani, A., Hunt, D. E. & Polz, M. F. Rapid chemotactic response enables marine bacteria to exploit ephemeral microscale nutrient patches. Proc. Natl Acad. Sci. USA 105, 4209–4214 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Buitenhuis, E. et al. MAREDAT: towards a world atlas of MARine Ecosystem DATa. Earth Syst. Sci. Data 5, 227–239 (2013).

    Article  Google Scholar 

  37. Raina, J.-B. et al. Symbiosis in the microbial world: from ecology to genome evolution. Biol. Open 7, bio032524 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Giardina, M. et al. Quantifying inorganic nitrogen assimilation by Synechococcus using bulk and single-cell mass spectrometry: a comparative study. Front. Microbiol. 9, 2847 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Berges, J. A., Franklin, D. J. & Harrison, P. J. Evolution of an artificial seawater medium: improvements in enriched seawater, artificial water over the last two decades. J. Phycol. 37, 1138–1145 (2001).

    Article  Google Scholar 

  40. Guillard, R. R. L. in Culture of Marine Invertebrate Animals: Proceedings—1st Conference on Culture of Marine Invertebrate Animals Greenport (eds Walter, L. S. & Matoira, H. C.) 29–60 (Springer US, 1975).

  41. Kaeppel, E. C., Gärdes, A., Seebah, S., Grossart, H.-P. & Ullrich, M. S. Marinobacter adhaerens sp. nov., isolated from marine aggregates formed with the diatom Thalassiosira weissflogii. Int. J. Syst. Evolut. Microbiol. 62, 124–128 (2012).

    Article  CAS  Google Scholar 

  42. Sonnenschein, E. C. et al. Development of a genetic system for Marinobacter adhaerens HP15 involved in marine aggregate formation by interacting with diatom cells. J. Microbiol. Methods 87, 176–183 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Marie, D., Partensky, F., Jacquet, S. & Vaulot, D. Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Appl. Environ. Microbiol. 63, 186–193 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Hillion, F., Kilburn, M., Hoppe, P., Messenger, S. & Weber, P. K. The effect of QSA on S, C, O and Si isotopic ratio measurements. Geochim. Cosmochim. Acta 72, A377 (2008).

    Google Scholar 

  46. Popa, R. et al. Carbon and nitrogen fixation and metabolite exchange in and between individual cells of Anabaena oscillarioides. ISME J. 1, 354–360 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Sumner, L. W. et al. Proposed minimum reporting standards for chemical analysis. Metabolomics 3, 211–221 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Clerc, E. E., Raina, J.-B., Lambert, B. S., Seymour, J. & Stocker, R. In situ chemotaxis assay to examine microbial behavior in aquatic ecosystems. JoVE https://doi.org/10.3791/61062 (2020).

  49. Ihaka, R. & Gentleman, R. R: a language for data analysis and graphics. J. Comput. Graph. Stat. 5, 299–314 (1996).

    Google Scholar 

  50. Xie, L., Lu, C. & Wu, X.-L. Marine bacterial chemoresponse to a stepwise chemoattractant stimulus. Biophys. J. 108, 766–774 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Son, K., Guasto, J. S. & Stocker, R. Bacteria can exploit a flagellar buckling instability to change direction. Nat. Phys. 9, 494–498 (2013).

    Article  CAS  Google Scholar 

  52. Lee, C. & Bada, J. L. Amino acids in equatorial Pacific Ocean water. Earth Planet. Sci. Lett. 26, 61–68 (1975).

    Article  CAS  Google Scholar 

  53. Yamashita, Y. & Tanoue, E. Distribution and alteration of amino acids in bulk DOM along a transect from bay to oceanic waters. Mar. Chem. 82, 145–160 (2003).

    Article  CAS  Google Scholar 

  54. Menden-Deuer, S. & Lessard, E. J. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr. 45, 569–579 (2000).

    Article  CAS  Google Scholar 

  55. Mullin, M. M., Sloan, P. R. & Eppley, R. W. Relationship between carbon content, cell volume and area in phytoplankton. Limnol. Oceanogr. 11, 307–311 (1966).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank F. Carrara and A. Hein for useful discussions. This work was supported by an Australian Research Council grant (DP180100838) to J.R.S. and J.-B.R. J.-B.R. was supported by an Australian Research Council Fellowship (FT210100100). D.R.B. was supported by an Australian Research Council Fellowship (DE180100911). D.R.B. performed simulations using The University of Melbourne’s High-Performance Computer Spartan (https://doi.org/10.4225/49/58ead90dceaaa). R.S. acknowledges support from a grant by the Simons Foundation (542395) as part of the Principles of Microbial Ecosystems Collaborative (PriME), a Gordon and Betty Moore Symbiosis in Aquatic Ecosystems Initiative Investigator Award (GBMF9197; https://doi.org/10.37807/GBMF9197) and a grant from the Swiss National Science Foundation (315230_176189). We acknowledge use of the Microscopy Australia Ion Probe Facility at The University of Western Australia, a facility funded by the University, State and Commonwealth Governments. This project used NCRIS-enabled Metabolomics Australia infrastructure at the University of Melbourne, funded through BioPlatforms Australia.

Author information

Authors and Affiliations

Authors

Contributions

J.-B.R., D.R.B., S.S., R.S. and J.R.S. designed the experiments. M.G. and J.-B.R. conducted the experimental work. M.G., P.L.C., P.G. and J.B. conducted the NanoSIMS work. J.-B.R. and H.M. conducted the metabolomics. D.R.B. conducted the agent-based simulations. E.C.S. and M.S.U. provided the bacterial strains and mutants. J.-B.R., D.R.B., R.S. and J.R.S. wrote the manuscript, and all authors edited subsequent versions.

Corresponding authors

Correspondence to Jean-Baptiste Raina or Justin R. Seymour.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Simon van Vliet and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Chemotactic response of Marinobacter adhaerens HP15 to metabolites exuded by Synechococcus.

The chemotactic index, Ic denotes the concentration of cells within ISCA wells, normalized by the mean concentration of cells within wells containing no chemoattractants (filtered ESAW), after 30 min laboratory deployment. Wells containing Synechococcus exudates (1 mg ml−1) and 10% Marine Broth (MB) contained significantly more bacteria than the ESAW control (ANOVA, n = 5 biologically independent samples, p < 0.005; Supplementary Table 5). Error bars represent standard error of the mean.

Extended Data Fig. 2 Dissolved Organic Matter (DOM) exposure of model bacteria.

Mean DOM exposure for three bacterial motility strategies across three different Synechococcus concentrations (leakage rate L = 0.052 pmol hr−1). Chemotaxis conferred an enhancement in the DOM exposure by 2.1-, 1.3-, and 1.1-fold, for Synechococcus concentrations of 103, 104, and 105 cells ml−1 respectively, compared to non-chemotactic (ΔcheA) or non-motile (ΔfliC) mutants.

Extended Data Fig. 3 Residence time of model bacteria.

(a). The bacterial residence time depends on the radius of the analysis zone and motility strategy. For ∆cheA mutants, the residence time grows linearly with radius. However, WT cells exhibit a steep increase for small radii, reflecting their capacity to detect the phytoplankton exudates. (b) The rate at which the residence time increases with radius reveals the zone in which chemotactic bacteria exhibit the strongest behavioral response to the DOM gradient. From this the encounter radius of 35 μm can be extracted. Other model parameters include L = 0.052 pmol hr−1, \(\rho = 10^3\,{{{\mathrm{cells}}}}\,{{{\mathrm{ml}}}}^{ - 1}\).

Extended Data Fig. 4 DOM profile does not depend strongly on bacterial consumption.

In each plot, the steady state DOM profile emerges due to a balance between constant phytoplankton exudation and diffusion-limited uptake by bacteria. (a) DOM profile for four different bacterial concentrations. (b) Restricting bacteria to lie in the region R < R0 has a minor influence on the resultant DOM profile.

Extended Data Fig. 5 Growth of Synechococcus sp. CS-94 RRIMP N1 and Marinobacter adhaerens HP15.

(a) Growth curves of M. adhaerens HP15 wild type (WT), non-chemotactic mutant (ΔcheA), and non-motile mutant (ΔfliC), each separately co-cultured with Synechococcus at an initial concentration of 103 cells ml−1 for both partners. (b) Simultaneous growth curve of Synechococcus for the same three co-culture experiments. Note: to clearly visualise differences in cell numbers during early timepoints, Synechococcus cell numbers are plotted on a logarithmic scale. Asterisks indicate timepoints at which treatments are significantly different (simple main effect test, p < 0.05, Supplementary Table 9). Error bars represent standard error of the mean (n = 4 biologically independent samples). (c) Growth curves of Marinobacter adhaerens HP15 wild type (WT), non-chemotactic mutant (ΔcheA), and non-motile mutant (ΔfliC) in Marine Broth. Error bars represent standard error of the mean (n = 3 biologically independent samples). Asterisks indicate timepoints at which treatments are significantly different (simple main effect test, p < 0.05, Supplementary Table 10).

Extended Data Fig. 6 DOM concentration within a 2D cross-section of the full 3D profile.

Results correspond to a Synechococcus concentration of ρ = 103 cells ml−1. Other parameters as in Supplementary Table 8. The white scale bar represents 1 mm.

Extended Data Fig. 7 DOM exposure of model bacteria.

The mean DOM concentration experienced by (a) non-chemotactic (∆cheA) mutants and (b) chemotactic (WT) bacteria, as a function of phytoplankton concentration (cells ml−1) and DOM leakage rate L (pmol hr−1).

Extended Data Fig. 8 Phytoplankton exudation rate affects bacteria-phytoplankton distances and bacterial ‘trapping’.

(a) Bacteria-phytoplankton distance is strongly affected by phytoplankton exudation rate. These data show the distance to the nearest hotspot, averaged over time (3 h co-incubation) and bacterial population (500 cells), as a function of DOM leakage rate L (pmol hr−1). Results are shown for three different phytoplankton concentrations, 103 (dotted), 104 (dashed), 105 cells ml−1 (solid), and for three different bacterial mutants: chemotactic WT (blue), non-chemotactic ∆cheA (orange), non-motile ∆fliC (red). (b) Bacteria-phytoplankton trapping statistics. These data show the percentage of bacterial cells that are situated within 35 μm of a phytoplankton cell (phycosphere), as a function of DOM leakage rate L (pmol hr−1). For each datapoint, results have been averaged over time (3 h co-incubation) and bacterial population (500 cells). Results are shown for three different phytoplankton concentrations, 103 (dotted), 104 (dashed), 105 cells ml−1 (solid), and for three different bacterial mutants: chemotactic WT (blue), non-chemotactic ∆cheA (orange), non-motile ∆fliC (red).

Extended Data Fig. 9 Distribution of the single cell enrichment data reported in Figs. 1 and 2.

(a) 15N uptake of M. adhaerens (103: n = 166; 104: n = 286; 105: n = 172) and (b) 13C uptake of Synechococcus (103: n = 10; 104: n = 17; 105: n = 37).

Supplementary information

Supplementary Information

Supplementary Fig. 1 and Tables 1–10.

Reporting Summary

Supplementary Tables 1–10

Full Supplementary Tables 1–10.

Source data

Source Data Fig. 1

Raw data for Fig. 1.

Source Data Fig. 2

Raw data for Fig. 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raina, JB., Giardina, M., Brumley, D.R. et al. Chemotaxis increases metabolic exchanges between marine picophytoplankton and heterotrophic bacteria. Nat Microbiol 8, 510–521 (2023). https://doi.org/10.1038/s41564-023-01327-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-023-01327-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing