Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Isolation and infection cycle of a polinton-like virus virophage in an abundant marine alga

Abstract

Virophages are small double stranded DNA (dsDNA) viruses that can only replicate in a host by co-infecting with another virus. Marine algae are commonly associated with virophage-like elements such as Polinton-like viruses (PLVs) that remain largely uncharacterized. Here we isolated a PLV that co-infects the alga Phaeocystis globosa with the Phaeocystis globosa virus-14T (PgV-14T), a close relative of the "Phaeocystis globosa virus-virophage" genomic sequence. We name this PLV ‘Gezel-14T. Gezel is phylogenetically distinct from the Lavidaviridae family where all known virophages belong. Gezel-14T co-infection decreases the fitness of its viral host by reducing burst sizes of PgV-14T, yet insufficiently to spare the cellular host population. Genomic screens show Gezel-14T-like PLVs integrated into Phaeocystis genomes, suggesting that these widespread viruses are capable of integration into cellular host genomes. This system presents an opportunity to better understand the evolution of eukaryotic dsDNA viruses as well as the complex dynamics and implications of viral parasitism.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Gezel-14T is a bona fide virus.
Fig. 2: Infection dynamics of P. globosa, PgV-14T and Gezel-14T.
Fig. 3: Gezel-14T proteomic features.
Fig. 4: PLVs associated with P. globosa.
Fig. 5: Phylogeny and gene content of Gezel-like PLVs.

Similar content being viewed by others

Data availability

The sequencing data are available from NCBI SRA SRR20333090 (Bioproject PRJNA835735). PgV-14T and Gezel-14T genome assemblies were deposited in NCBI Genbank under accession numbers OP080611 and OP080612. Annotated fragments of complete PLVs and NDDV from P. globosa and other algae are provided as Supplementary File 6 . Source data are provided with this paper. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD036892. Additional material is supplied in the Figshare repository at https://doi.org/10.6084/m9.figshare.21294852. Source data are provided with this paper.

Code availability

Code used for bioinformatic analyses is available at https://github.com/BejaLab/Gezelvirus and https://github.com/BejaLab/phaeocystis-viral-elements.

References

  1. Koonin, E. V. & Dolja, V. V. Virus world as an evolutionary network of viruses and capsidless selfish elements. Microbiol. Mol. Biol. Rev. 78, 278–303 (2014).

    Article  CAS  Google Scholar 

  2. Pritham, E. J., Putliwala, T. & Feschotte, C. Mavericks, a novel class of giant transposable elements widespread in eukaryotes and related to DNA viruses. Gene 390, 3–17 (2007).

    Article  CAS  Google Scholar 

  3. Kapitonov, V. V. & Jurka, J. Self-synthesizing DNA transposons in eukaryotes. Proc. Natl Acad. Sci. USA 103, 4540–4545 (2006).

    Article  CAS  Google Scholar 

  4. Krupovic, M. & Koonin, E. V. Polintons: a hotbed of eukaryotic virus, transposon and plasmid evolution. Nat. Rev. Microbiol. 13, 105–115 (2015).

    Article  CAS  Google Scholar 

  5. Koonin, E. V., Krupovic, M. & Yutin, N. Evolution of double-stranded DNA viruses of eukaryotes: from bacteriophages to transposons to giant viruses. Ann. N. Y. Acad. Sci. 1341, 10–24 (2015).

    Article  CAS  Google Scholar 

  6. Yutin, N., Raoult, D. & Koonin, E. V. Virophages, polintons, and transpovirons: a complex evolutionary network of diverse selfish genetic elements with different reproduction strategies. Virol. J. 10, 158 (2013).

    Article  CAS  Google Scholar 

  7. Krupovic, M., Bamford, D. H. & Koonin, E. V. Conservation of major and minor jelly-roll capsid proteins in Polinton (Maverick) transposons suggests that they are bona fide viruses. Biol. Direct 9, 6 (2014).

    Article  Google Scholar 

  8. Yutin, N., Shevchenko, S., Kapitonov, V., Krupovic, M. & Koonin, E. V. A novel group of diverse Polinton-like viruses discovered by metagenome analysis. BMC Biol. 13, 95 (2015).

    Article  Google Scholar 

  9. Bellas, C. M. & Sommaruga, R. Polinton-like viruses are abundant in aquatic ecosystems. Microbiome 9, 13 (2021).

    Article  CAS  Google Scholar 

  10. Pagarete, A., Grébert, T., Stepanova, O., Sandaa, R.-A. & Bratbak, G. Tsv-N1: a novel DNA algal virus that infects Tetraselmis striata. Viruses 7, 3937–3953 (2015).

    Article  CAS  Google Scholar 

  11. Bekliz, M., Colson, P. & La Scola, B. The expanding family of virophages. Viruses 8, 317 (2016).

    Article  Google Scholar 

  12. Fischer, M. G. The virophage family Lavidaviridae. Curr. Issues Mol. Biol. https://doi.org/10.21775/cimb.040.001 (2021).

  13. Desnues, C. et al. Provirophages and transpovirons as the diverse mobilome of giant viruses. Proc. Natl Acad. Sci. USA 109, 18078–18083 (2012).

    Article  CAS  Google Scholar 

  14. Campos, R. K. et al. Samba virus: a novel mimivirus from a giant rain forest, the Brazilian Amazon. Virol. J. 11, 95 (2014).

    Article  Google Scholar 

  15. Gaia, M. et al. Broad spectrum of mimiviridae virophage allows its isolation using a mimivirus reporter. PLoS ONE 8, e61912 (2013).

    Article  CAS  Google Scholar 

  16. Hackl, T., Duponchel, S., Barenhoff, K., Weinmann, A. & Fischer, M. G. Virophages and retrotransposons colonize the genomes of a heterotrophic flagellate. eLife 10, e72674 (2021).

    Article  CAS  Google Scholar 

  17. Yau, S. et al. Virophage control of Antarctic algal host-virus dynamics. Proc. Natl Acad. Sci. USA 108, 6163–6168 (2011).

    Article  CAS  Google Scholar 

  18. Gong, C. et al. Novel virophages discovered in a freshwater lake in China. Front. Microbiol. 7, 5 (2016).

    Article  Google Scholar 

  19. Zhou, J. et al. Three novel virophage genomes discovered from Yellowstone Lake metagenomes. J. Virol. 89, 1278–1285 (2014).

    Article  Google Scholar 

  20. Yutin, N., Kapitonov, V. V. & Koonin, E. V. A new family of hybrid virophages from an animal gut metagenome. Biol. Direct 10, 19 (2015).

    Article  Google Scholar 

  21. Stough, J. M. A. et al. Genome and environmental activity of a Chrysochromulina parva virus and its virophages. Front. Microbiol. 10, 703 (2019).

    Article  Google Scholar 

  22. La Scola, B. et al. The virophage as a unique parasite of the giant mimivirus. Nature 455, 100–104 (2008).

    Article  Google Scholar 

  23. Fischer, M. G. & Suttle, C. A. A virophage at the origin of large DNA transposons. Science 332, 231–234 (2011).

    Article  CAS  Google Scholar 

  24. Gaia, M. et al. Zamilon, a novel virophage with Mimiviridae host specificity. PLoS ONE 9, e94923 (2014).

    Article  Google Scholar 

  25. Mougari, S. et al. Guarani virophage, a new Sputnik-like isolate from a Brazilian lake. Front. Microbiol. 10, 1003 (2019).

    Article  Google Scholar 

  26. Sheng, Y., Wu, Z., Xu, S. & Wang, Y. Isolation and identification of a large green alga virus (Chlorella Virus XW01) of Mimiviridae and its virophage (Chlorella Virus Virophage SW01) by using unicellular green algal cultures. J. Virol. 96, e02114–e02121 (2022).

    Article  Google Scholar 

  27. Baudoux, A. C. & Brussaard, C. P. D. Characterization of different viruses infecting the marine harmful algal bloom species Phaeocystis globosa. Virology 341, 80–90 (2005).

    Article  CAS  Google Scholar 

  28. Santini, S. et al. Genome of Phaeocystis globosa virus PgV-16T highlights the common ancestry of the largest known DNA viruses infecting eukaryotes. Proc. Natl Acad. Sci. USA 110, 10800–10805 (2013).

    Article  CAS  Google Scholar 

  29. Tarutani, K., Nagasaki, K. & Yamaguchi, M. Virus adsorption process determines virus susceptibility in Heterosigma akashiwo (Raphidophyceae). Aquat. Microb. Ecol. 42, 209–213 (2006).

    Article  Google Scholar 

  30. Gann, E. R., Gainer, P. J., Reynolds, T. B. & Wilhelm, S. W. Influence of light on the infection of Aureococcus anophagefferens CCMP 1984 by a ‘giant virus’. PLoS ONE 15, e0226758 (2020).

    Article  CAS  Google Scholar 

  31. Van Etten, J. L., Burbank, D. E., Xia, Y. & Meints, R. H. Growth cycle of a virus, PBCV-1, that infects Chlorella-like algae. Virology 126, 117–125 (1983).

    Article  Google Scholar 

  32. Boyer, M. et al. Mimivirus shows dramatic genome reduction after intraamoebal culture. Proc. Natl Acad. Sci. USA 108, 10296–10301 (2011).

    Article  CAS  Google Scholar 

  33. Desnues, C. & Raoult, D. Inside the lifestyle of the virophage. Intervirology 53, 293–303 (2010).

    Article  CAS  Google Scholar 

  34. Sobhy, H., Scola, B. L., Pagnier, I., Raoult, D. & Colson, P. Identification of giant Mimivirus protein functions using RNA interference. Front. Microbiol. 6, 345 (2015).

    Article  Google Scholar 

  35. Fischer, M. G. & Hackl, T. Host genome integration and giant virus-induced reactivation of the virophage mavirus. Nature 540, 288–291 (2016).

    Article  CAS  Google Scholar 

  36. Wodarz, D. Evolutionary dynamics of giant viruses and their virophages. Ecol. Evol. 3, 2103–2115 (2013).

    Article  Google Scholar 

  37. Farr, G. A., Zhang, L. & Tattersall, P. Parvoviral virions deploy a capsid-tethered lipolytic enzyme to breach the endosomal membrane during cell entry. Proc. Natl Acad. Sci. USA 102, 17148–17153 (2005).

    Article  CAS  Google Scholar 

  38. Suhre, K., Audic, S. & Claverie, J.-M. Mimivirus gene promoters exhibit an unprecedented conservation among all eukaryotes. Proc. Natl Acad. Sci. USA 102, 14689–14693 (2005).

    Article  CAS  Google Scholar 

  39. Legendre, M. et al. mRNA deep sequencing reveals 75 new genes and a complex transcriptional landscape in Mimivirus. Genome Res. 20, 664–674 (2010).

    Article  CAS  Google Scholar 

  40. Smith, D. R., Arrigo, K. R., Alderkamp, A.-C. & Allen, A. E. Massive difference in synonymous substitution rates among mitochondrial, plastid, and nuclear genes of Phaeocystis algae. Mol. Phylogenet. Evol. 71, 36–40 (2014).

    Article  CAS  Google Scholar 

  41. Krupovic, M., Kuhn, J. H. & Fischer, M. G. A classification system for virophages and satellite viruses. Arch. Virol. 161, 233–247 (2016).

    Article  CAS  Google Scholar 

  42. Suplatov, D. A., Besenmatter, W., Svedas, V. K. & Svendsen, A. Bioinformatic analysis of alpha/beta-hydrolase fold enzymes reveals subfamily-specific positions responsible for discrimination of amidase and lipase activities. Protein Eng. Des. Sel. 25, 689–697 (2012).

    Article  CAS  Google Scholar 

  43. Burt, A. & Koufopanou, V. Homing endonuclease genes: the rise and fall and rise again of a selfish element. Curr. Opin. Genet. Dev. 14, 609–615 (2004).

    Article  CAS  Google Scholar 

  44. Sullivan, M. B. DNA extraction of cesium chloride-purified viruses using wizard prep columns. Protocols https://doi.org/10.17504/protocols.io.c26yhd (2016).

  45. González-Domínguez, J. & Schmidt, B. ParDRe: faster parallel duplicated reads removal tool for sequencing studies. Bioinformatics 32, 1562–1564 (2016).

    Article  Google Scholar 

  46. Guillard, R. R. L. Culture of phytoplankton for feeding marine invertebrates. In Culture of Marine Invertebrate Animals: Proceedings—1st Conference on Culture of Marine Invertebrate Animals Greenport (eds Smith, W. L., & Chanley, M. H.) 29– 60 (Springer, 1975).

  47. Cottrell, M. & Suttle, C. Wide-spread occurrence and clonal variation in viruses which cause lysis of a cosmopolitan, eukaryotic marine phytoplankter Micromonas pusilla. Mar. Ecol. Prog. Ser. 78, 1–9 (1991).

    Article  Google Scholar 

  48. Krueger, F., James, F., Ewels, P., Afyounian, E. & Schuster-Boeckler, B. FelixKrueger/TrimGalore: v0.6.7 - DOI via Zenodo. https://doi.org/10.5281/zenodo.5127899 (2021).

  49. Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

    Article  CAS  Google Scholar 

  50. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article  CAS  Google Scholar 

  51. Patel, A. et al. Virus and prokaryote enumeration from planktonic aquatic environments by epifluorescence microscopy with SYBR Green I. Nat. Protoc. 2, 269–276 (2007).

    Article  CAS  Google Scholar 

  52. Bolte, S. & Cordelières, F. P. A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 224, 213–232 (2006).

    Article  CAS  Google Scholar 

  53. Brussaard, C. P. D. Optimization of procedures for counting viruses by flow cytometry. Appl. Environ. Microbiol. 70, 1506–1513 (2004).

    Article  CAS  Google Scholar 

  54. Kirzner, S., Barak, E. & Lindell, D. Variability in progeny production and virulence of cyanophages determined at the single-cell level. Environ. Microbiol. Rep. 8, 605–613 (2016).

    Article  Google Scholar 

  55. Ziv, I. et al. A perturbed ubiquitin landscape distinguishes between ubiquitin in trafficking and in proteolysis. Mol. Cell. Proteomics 10, M111.009753 (2011).

  56. HaileMariam, M. et al. S-Trap, an ultrafast sample-preparation approach for shotgun proteomics. J. Proteome Res. 17, 2917–2924 (2018).

    Article  CAS  Google Scholar 

  57. Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906 (2007).

    Article  CAS  Google Scholar 

  58. Kong, A. T., Leprevost, F. V., Avtonomov, D. M., Mellacheruvu, D. & Nesvizhskii, A. I. MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics. Nat. Methods 14, 513–520 (2017).

    Article  CAS  Google Scholar 

  59. Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).

    Article  CAS  Google Scholar 

  60. Lechner, M. et al. Proteinortho: detection of (Co-)orthologs in large-scale analysis. BMC Bioinformatics 12, 124 (2011).

    Article  Google Scholar 

  61. Buchfink, B., Reuter, K. & Drost, H.-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368 (2021).

    Article  CAS  Google Scholar 

  62. Cox, J. et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction termed MaxLFQ. Mol. Cell. Proteomics 13, 2513–2526 (2014).

    Article  CAS  Google Scholar 

  63. Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).

  64. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  Google Scholar 

  65. O’Connell, J. et al. NxTrim: optimized trimming of Illumina mate pair reads. Bioinformatics 31, 2035–2037 (2015).

    Article  Google Scholar 

  66. Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).

    Article  CAS  Google Scholar 

  67. Luo, R. et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 1, 2047-217X-1–18 (2012).

  68. Chevreux, B., Wetter, T. & Suhai, S. Genome sequence assembly using trace signals and additional sequence information. In Proc. German Conference on Bioinformatics 45–56 (Fachgruppe Bioinformatik, 1999).

  69. Deng, Z. & Delwart, E. ContigExtender: a new approach to improving de novo sequence assembly for viral metagenomics data. BMC Bioinformatics 22, 119 (2021).

    Article  CAS  Google Scholar 

  70. Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9, e112963 (2014).

    Article  Google Scholar 

  71. Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).

    Article  CAS  Google Scholar 

  72. Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).

    Article  CAS  Google Scholar 

  73. Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

    Article  CAS  Google Scholar 

  74. Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).

    Article  CAS  Google Scholar 

  75. Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453–4455 (2019).

    Article  CAS  Google Scholar 

  76. Barbera, P. et al. EPA-ng: massively parallel evolutionary placement of genetic sequences. Syst. Biol. 68, 365–369 (2019).

    Article  Google Scholar 

  77. Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    Article  Google Scholar 

  78. Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).

    Article  CAS  Google Scholar 

  79. Steinegger, M. et al. HH-suite3 for fast remote homology detection and deep protein annotation. BMC Bioinformatics 20, 473 (2019).

    Article  Google Scholar 

  80. Enright, A. J., Van Dongen, S. & Ouzounis, C. A. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 30, 1575–1584 (2002).

    Article  CAS  Google Scholar 

  81. Bolduc, B. et al. vConTACT: an iVirus tool to classify double-stranded DNA viruses that infect Archaea and Bacteria. PeerJ 5, e3243 (2017).

    Article  Google Scholar 

  82. Zimmermann, L. et al. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J. Mol. Biol. 430, 2237–2243 (2018).

    Article  CAS  Google Scholar 

  83. Heger, A. & Holm, L. Rapid automatic detection and alignment of repeats in protein sequences. Proteins 41, 224–237 (2000).

    Article  CAS  Google Scholar 

  84. Chase, E., Desnues, C. & Blanc, G. Integrated viral elements unveil the dual lifestyle of Tetraselmis spp. polinton-like viruses. Virus Evol. 8, veac068 (2022).

  85. Egge, E. S., Eikrem, W. & Edvardsen, B. Deep-branching novel lineages and high diversity of haptophytes in the Skagerrak (Norway) uncovered by 454 pyrosequencing. J. Eukaryot. Microbiol. 62, 121–140 (2015).

    Article  CAS  Google Scholar 

  86. Hovde, B. T. et al. Chrysochromulina: genomic assessment and taxonomic diagnosis of the type species for an oleaginous algal clade. Algal Res. 37, 307–319 (2019).

    Article  Google Scholar 

  87. Andersen, R. A., Bailey, J. C., Decelle, J. & Probert, I. Phaeocystis rex sp. nov. (Phaeocystales, Prymnesiophyceae): a new solitary species that produces a multilayered scale cell covering. Eur. J. Phycol. 50, 207–222 (2015).

    Article  Google Scholar 

  88. Stepanova, O. A. Black Sea algal viruses. Russ. J. Mar. Biol. 42, 123–127 (2016).

    Article  Google Scholar 

  89. Alarcón-Schumacher, T., Guajardo-Leiva, S., Antón, J. & Díez, B. Elucidating viral communities during a phytoplankton bloom on the West Antarctic Peninsula. Front. Microbiol. 10, 1014 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Noordeloos for providing advice on how to culture P. globosa and PgV-14T, L. Shaulov for expert technical assistance with TEM sample preparations and imaging, I. Pekarsky and N. Dahan for help with light microscopy, I. Navon and the Smoler Proteomics Center for help with the mass spectrometry analyses, the ICTV Virophage study group for nomenclature discussions, and S. Larom for technical assistance. This work was funded by a European Commission ERC Advanced Grant (321647, to O.B.), Israel Science Foundation grants 143/18 (O.B.), 1623/17 and 2167/17 (T.L. and O.K.), and the Ariane de Rothschild Women Doctoral Program (S.R.). O.B. holds a Louis and Lyra Richmond Chair in Life Sciences.

Author information

Authors and Affiliations

Authors

Contributions

S.R. conceived the project, designed the experiments and performed the experimental work. A.R. performed bioinformatic analyses. S.R., T.L. and O.K. performed proteomics. C.P.D.B supplied the algal and viral strains. O.B. supervised the project. S.R. drafted the paper, which was critically revised and approved by all authors.

Corresponding authors

Correspondence to Sheila Roitman or Oded Béjà.

Ethics declarations

Competing interests

The authors declare no conflicts of interest.

Peer review

Peer review information

Nature Microbiology thanks Sebastien Santini and Christopher Bellas for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Comparison of the sequences of the terminal inverted repeats (TIRs) in Gezel-16T (formerly PgVV) and Gezel-14T.

a. The sequences of the TIRs were subdivided into (near) identical units based on their appearance in the four flanking regions. Note that the ends of the Gezel-14T genome could not be fully assembled and are thus truncated. Positions of the dinucleotide variation in units of type A are indicated. A region with homology to the TIR sequences located in both genomes in the intergenic spacer between genes TVpol and pgvv05 is shown for comparison. b. Results of amplification of the Gezel-14T TIR regions using a forward primer in unit G and side-specific reverse primers (shown to the left). The two major PCR products correspond to two versions of the fragment differing by the number of DAE units.

Extended Data Fig. 2 Gezel-14T is a virophage.

Infection experiments on P. globosa cultures infected with a. a mixed PgV-14T/Gezel-14T lysate, b. a pure PgV-14T lysate, c. Gezel-14T only. Purple lines denote the uninfected control culture; full lines the cell survival measured by OD of chlorophyll A. Viral abundances were calculated by qPCR and are marked as dashed lines for PgV-14T and dotted lines for Gezel-14T. n = 3 biologically independent cultures and lysates. Data are presented as mean values +/− SD, exact values can be found in Supplementary File 1 ‘Gezel-14T only infection’.

Extended Data Fig. 3 Gezel-14T ORFs not detected by proteomics are transcribed during infection.

PCR on cDNA for the six ORFs with no significant hits in the proteomics analyses. M, Molecular Marker; -, non-template control; +, positive control (Gezel-14T DNA); samples were collected 2,4 and 6 hs post-infection. Two experiments (biological replicates) were analysed for each gene, only one is shown here.

Source data

Extended Data Fig. 4 Secondary structure and domain composition of the protein coded by Gezel-16T ORF PGVV_00014.

First track: per-position PSIPRED secondary structure prediction with blue lines corresponding to beta sheets and red lines to alpha-helices (coils not shown), Y-axis reflects confidence values (0–9). Second track: position of the large deletion in Gezel-14T. Third track: amino acid repeats discovered with RADAR with each colour corresponding to a repeat type. Fourth track: locations of the hhsearch matches to Pfam profile PF03903 (Enterobacteria phage T4 tail-fiber protein gp36) when searched against the Pfam database distributed with HH-Suite. Fifth track: hhsearch matches to Uniprot records: VP1_MPRVN – protein VP1 of Micromonas pusilla reovirus (Q1I0V1); FIBL1_BPT5 – L-shaped tail-fiber protein pb1 of Escherichia phage T5 (P13390).

Extended Data Fig. 5 Proteomic analysis of PgV-14T particles and during infection.

Proteins found by mass spectrometry in purified PgV-14T viral particles (P - rhomboids) and 4, 6 and 8 hs  post-infection (circles). Relative quantification as described in the methods section. Dots mark samples where relevant peptides were found, but below the significance threshold. Right panel includes all detected uncharacterized proteins. Raw data can be found in Supplementary File 3.

Extended Data Fig. 6 Early mimiviral promoter motif among mesomimiviruses.

Results of the MEME search for common motifs in sequences upstream of ORFs in mesomimiviruses. Only motifs fitting the pattern WWWWWTGW are shown, supplemented by the unusually high-frequency palindromic motif TCCGGA of Tetraselmis virus 1. For each motif, a consensus sequence, number of sites and E-value are provided (to the left). Per-position weblogos and frequency distribution of distances from the start codon are shown in the middle and to the right.

Extended Data Fig. 7 Phylogenetic analysis of MCPs from NCLDVs and NCLDV-like dwarf viruses.

The clade including the MCPs of NCLDV-like dwarf viruses (NDDVs) is highlighted in green and MCPs appearing in mesomimiviral genes are highlighted in cyan. The tree is midpoint-rooted. Host groups are indicated when known. Numbers of sequences for collapsed clades are shown in parentheses.

Extended Data Fig. 8 Viruses associated with Phaeocystis globosa and other haptophtes.

a. Schematic representation of the P. globosa-PgV-Gezel system. b. Distribution of NCLDVs, PLVs and NDDVs among haptophytes. The cladogram is after references85,86,87. Strains available with genomic data suitable for analysis of integrated viruses are indicated (asterisks mark strains for which only transcriptomes are available). CeV – Chrysochromulina ericina virus, CpVs – Chrysochromulina parva viruses; EhVs – Emiliania huxleyi viruses, IgV – Isochrysis galbana virus88, ‘PaV’ – ‘Phycodnaviridae Antarctica virus’ (mesomimivirus hypothesized to infect P. antarctica89), PgVs – Phaeocystis globosa viruses, PpV – Phaeocystis pouchetii virus.

Extended Data Fig. 9 Clustering of Gezel-group PLVs.

a. Bipartite network of gene cluster sharing between Gezel-group PLVs. Triangles represent individual PLV genomes. Genes were clustered based on profile-profile matches (see Materials and Methods) and each cluster is represented as a dot. Red labels are provided for clusters that could be associated with widespread and/or functional families (see Supplementary Table 1 for definitions of the widespread families). b. Clustering structure according to vcontact2. VC subclusters are indicated, partial genomes of integrated P. globosa PLVs are indicated with asterisks.

Extended Data Fig. 10 Incidence and mobility of genes coding for putative non-intronic homing endonucleases located between genes for capsid proteins.

From top to bottom: GIY-YIG endonuclease gene seg2 between mCP and MCP genes (ORFs pgvv10 and pgvv12) in Gezel and its absence in closely related viruses as evidenced by the three metagenomic contigs; HNH endonuclease gene in the PLV Montjoie2259 and its lack in members of the same subgroup as exemplified by PLV-YSL1; a similar case of segD, a gene for a GIY-YIG-family endonuclease located between genes coding for the hexon and penton proteins present in Enterobacteria phage T4 but absent from Enterobacteria phage T2. ORF numbers are provided, percentages show similarity at the DNA level.

Supplementary information

Supplementary Information

Supplementary Text, Table 1, Figs. 1 and 2, and References.

Reporting Summary

Supplementary File 1

Primers list, P. globosa-PgV-Gezel infection dynamics.

Supplementary File 2

Genome comparison of PgV and Gezel -16T and -14T viral strains, virions measurements.

Supplementary File 3

Proteomics data, PCRs for poly-cystronic transcripts.

Supplementary File 4

Metagenomic and Metatranscriptomics assemblies analysed in this project, integrated and standalone viruses index and sequences, PCR for P. globosa PLVs.

Supplementary File 5

Cluster affiliation and best hhsearch Pfam hits for protein sequences from mesomimiviruses, Lavidaviruses, PLVs and NCLDV-like dwarf viruses.

Supplementary File 6

Annotated viruses and viral fragments found in algal genomes.

Source data

Source Data Fig. 1

Unprocessed DNA gel, unprocessed images (TEM-SYBR).

Source Data Extended Data Fig. 3

Unprocessed gels.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roitman, S., Rozenberg, A., Lavy, T. et al. Isolation and infection cycle of a polinton-like virus virophage in an abundant marine alga. Nat Microbiol 8, 332–346 (2023). https://doi.org/10.1038/s41564-022-01305-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-022-01305-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing