Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The temperature dependence of microbial community respiration is amplified by changes in species interactions

Abstract

Respiratory release of CO2 by microorganisms is one of the main components of the global carbon cycle. However, there are large uncertainties regarding the effects of climate warming on the respiration of microbial communities, owing to a lack of mechanistic, empirically tested theory that incorporates dynamic species interactions. We present a general mathematical model which predicts that thermal sensitivity of microbial community respiration increases as species interactions change from competition to facilitation (for example, commensalism, cooperation and mutualism). This is because facilitation disproportionately increases positive feedback between the thermal sensitivities of species-level metabolic and biomass accumulation rates at warmer temperatures. We experimentally validate our theoretical predictions in a community of eight bacterial taxa and show that a shift from competition to facilitation, after a month of co-adaptation, caused a 60% increase in the thermal sensitivity of respiration relative to de novo assembled communities that had not co-adapted. We propose that rapid changes in species interactions can substantially change the temperature dependence of microbial community respiration, which should be accounted for in future climate–carbon cycle models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Species interactions affect the temperature sensitivity of microbial community respiration.
Fig. 2: Experimental design.
Fig. 3: Microbial facilitation amplifies the temperature sensitivity of community respiration.
Fig. 4: Temperature dependence of respiration per cell and community biomass.
Fig. 5: Emergence of facilitation in experimental microbial communities.

Similar content being viewed by others

Data availability

All data to reproduce our results are at https://doi.org/10.5281/zenodo.7105128.

Code availability

All code to reproduce our results are at https://doi.org/10.5281/zenodo.7105128.

References

  1. Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).

    Article  CAS  Google Scholar 

  2. Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).

    Article  CAS  Google Scholar 

  3. Lopez-Urrutia, A., San Martin, E., Harris, R. P. & Irigoien, X. Scaling the metabolic balance of the oceans. Proc. Natl Acad. Sci. USA 103, 8739–8744 (2006).

    Article  CAS  Google Scholar 

  4. Yvon-Durocher, G. et al. Reconciling the temperature dependence of respiration across timescales and ecosystem types. Nature 487, 472–476 (2012).

    Article  CAS  Google Scholar 

  5. Crowther, T. W. et al. Quantifying global soil carbon losses in response to warming. Nature 540, 104–108 (2016).

    Article  CAS  Google Scholar 

  6. Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).

    Article  CAS  Google Scholar 

  7. Rivkin, R. B. & Legendre, L. Biogenic carbon cycling in the upper ocean: effects of microbial respiration. Science 291, 2398–2400 (2001).

    Article  CAS  Google Scholar 

  8. Friedlingstein, P. et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Clim. 27, 511–526 (2014).

    Article  Google Scholar 

  9. Smith, T. P. et al. Community-level respiration of prokaryotic microbes may rise with global warming. Nat. Commun. 10, 5124 (2019).

    Article  Google Scholar 

  10. Antwis, R. E. et al. Fifty important research questions in microbial ecology. FEMS Microbiol. Ecol. 93, fix044 (2017).

  11. Bardgett, R. D., Freeman, C. & Ostle, N. J. Microbial contributions to climate change through carbon cycle feedbacks. ISME J. 2, 805–814 (2008).

    Article  CAS  Google Scholar 

  12. Enquist, B. J. et al. Scaling from traits to ecosystems: developing a general trait driver theory via integrating trait-based and metabolic scaling theories. Adv. Ecol. Res. 52, 249–318 (2015).

    Article  Google Scholar 

  13. Allen, A. P., Gillooly, J. F. & Brown, J. H. Linking the global carbon cycle to individual metabolism. Funct. Ecol. 19, 202–213 (2005).

    Article  Google Scholar 

  14. Schramski, J. R., Dell, A. I., Grady, J. M., Sibly, R. M. & Brown, J. H. Metabolic theory predicts whole-ecosystem properties. Proc. Natl Acad. Sci. USA 112, 2617–2622 (2015).

    Article  CAS  Google Scholar 

  15. Alster, C. J., Koyama, A., Johnson, N. G., Wallenstein, M. D. & von Fischer, J. C. Temperature sensitivity of soil microbial communities: an application of macromolecular rate theory to microbial respiration. J. Geophys. Res. Biogeosci. 121, 1420–1433 (2016).

    Article  Google Scholar 

  16. Yvon-Durocher, G. et al. Five years of experimental warming increases the biodiversity and productivity of phytoplankton. PLoS Biol. 13, e1002324 (2015).

    Article  Google Scholar 

  17. Garzke, J., Connor, S. J., Sommer, U. & O’Connor, M. I. Trophic interactions modify the temperature dependence of community biomass and ecosystem function. PLoS Biol. 17, e2006806 (2019).

  18. Foster, K. R. & Bell, T. Competition, not cooperation, dominates interactions among culturable microbial species. Curr. Biol. 22, 1845–1850 (2012).

    Article  CAS  Google Scholar 

  19. Coyte, K. Z., Schluter, J. & Foster, K. R. The ecology of the microbiome: networks, competition, and stability. Science 350, 663–666 (2015).

    Article  CAS  Google Scholar 

  20. Machado, D. et al. Polarization of microbial communities between competitive and cooperative metabolism. Nat. Ecol. Evol. 5, 195–203 (2021).

    Article  Google Scholar 

  21. Bradford, M. A. et al. Cross-biome patterns in soil microbial respiration predictable from evolutionary theory on thermal adaptation. Nat. Ecol. Evol. 3, 223–231 (2019).

    Article  Google Scholar 

  22. Garcia-Martin, E. E., McNeill, S., Serret, P. & Leakey, R. J. G. Plankton metabolism and bacterial growth efficiency in offshore waters along a latitudinal transect between the UK and Svalbard. Deep Sea Res. I 92, 141–151 (2014).

    Article  CAS  Google Scholar 

  23. Davidson, E. A., Richardson, A. D., Savage, K. E. & Hollinger, D. Y. A distinct seasonal pattern of the ratio of soil respiration to total ecosystem respiration in a spruce-dominated forest. Glob. Change Biol. 12, 230–239 (2006).

    Article  Google Scholar 

  24. Dutkiewicz, S., Follows, M. J. & Bragg, J. G. Modeling the coupling of ocean ecology and biogeochemistry. Glob. Biogeochem. Cycles 23, GB4017 (2009).

    Article  Google Scholar 

  25. Follows, M. J., Dutkiewicz, S., Ward, B. & Follett, C. in Microbial Ecology of the Oceans 3rd edn (eds Gasol, J. & Kirchman, D.) Ch. 12 (John Wiley, 2018).

  26. Letten, A. D. & Stouffer, D. B. The mechanistic basis for higher-order interactions and non-additivity in competitive communities. Ecol. Lett. 22, 423–436 (2019).

    Article  Google Scholar 

  27. Grilli, J., Barabás, G., Michalska-Smith, M. J. & Allesina, S. Higher-order interactions stabilize dynamics in competitive network models. Nature 548, 210–213 (2017).

    Article  CAS  Google Scholar 

  28. Maynard, D. S., Crowther, T. W. & Bradford, M. A. Competitive network determines the direction of the diversity–function relationship. Proc. Natl Acad. Sci. USA 114, 11464–11469 (2017).

    Article  CAS  Google Scholar 

  29. Fiegna, F., Moreno-Letelier, A., Bell, T. & Barraclough, T. G. Evolution of species interactions determines microbial community productivity in new environments. ISME J. 9, 1235–1245 (2015).

    Article  Google Scholar 

  30. Lawrence, D. et al. Species interactions alter evolutionary responses to a novel environment. PLoS Biol. 10, e1001330 (2012).

    Article  CAS  Google Scholar 

  31. Harcombe, W. R., Chacón, J. M., Adamowicz, E. M., Chubiz, L. M. & Marx, C. J. Evolution of bidirectional costly mutualism from byproduct consumption. Proc. Natl Acad. Sci. USA 115, 12000–12004 (2018).

    Article  CAS  Google Scholar 

  32. Goldford, J. E. et al. Emergent simplicity in microbial community assembly. Science 361, 469–474 (2018).

    Article  CAS  Google Scholar 

  33. Yvon-Durocher, G. et al. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature 507, 488–491 (2014).

    Article  CAS  Google Scholar 

  34. Fox, J. W. & Harpole, W. S. Revealing how species loss affects ecosystem function: the trait-based price equation partition. Ecology 89, 269–279 (2008).

    Article  Google Scholar 

  35. Kontopoulos, D., Smith, T. P., Barraclough, T. G. & Pawar, S. Adaptive evolution shapes the present-day distribution of the thermal sensitivity of population growth rate. PLoS Biol. 18, e3000894 (2020).

    Article  CAS  Google Scholar 

  36. Wilson, W. G. & Lundberg, P. Biodiversity and the Lotka–Volterra theory of species interactions: open systems and the distribution of logarithmic densities. Proc. R. Soc. Lond. B 271, 1977–1984 (2004).

    Article  Google Scholar 

  37. Rossberg, A. G. in Food Webs and Biodiversity 181–191 (John Wiley & Sons, 2013).

  38. Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).

    Article  CAS  Google Scholar 

  39. Garcia, F. C., Bestion, E., Warfield, R. & Yvon-Durocher, G. Changes in temperature alter the relationship between biodiversity and ecosystem functioning. Proc. Natl Acad. Sci. USA 115, 10989–10999 (2018).

    Article  CAS  Google Scholar 

  40. Padfield, D., O’Sullivan, H. & Pawar, S. rTPC and nls.multstart: a new pipeline to fit thermal performance curves in R. Methods Ecol. Evol. 12, 1138–1143 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a European Research Council Starting Grant awarded to G.Y.-D. (ERC StG 677278 TEMPDEP). T.C. was supported by the QMEE CDT, funded by NERC grant no. NE/P012345/1. S.P. was funded by Leverhulme Fellowship RF-2020-653\2 and UK national NERC grants NE/M020843/1 and NE/S000348/1.

Author information

Authors and Affiliations

Authors

Contributions

G.Y.-D. and S.P. conceived the study. F.C.G. and G.Y.-D. designed the laboratory experiments. F.C.G., R.W. and D.B.O. carried out the laboratory experiments. T.C. and S.P. developed the theory. All authors conducted the analysis of the experimental data and wrote the manuscript.

Corresponding authors

Correspondence to Samraat Pawar or Gabriel Yvon-Durocher.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–6 and Tables 1–7.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García, F.C., Clegg, T., O’Neill, D.B. et al. The temperature dependence of microbial community respiration is amplified by changes in species interactions. Nat Microbiol 8, 272–283 (2023). https://doi.org/10.1038/s41564-022-01283-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-022-01283-w

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology