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Longitudinal multi-omics analyses of  
the gut–liver axis reveals metabolic 
dysregulation in hepatitis C infection  
and cirrhosis

The gut and liver are connected via the portal vein, and this relationship, which 
includes the gut microbiome, is described as the gut–liver axis. Hepatitis C 
virus (HCV) can infect the liver and cause fibrosis with chronic infection. HCV 
has been associated with an altered gut microbiome; however, how these 
changes impact metabolism across the gut–liver axis and how this varies with 
disease severity and time is unclear. Here we used multi-omics analysis of 
portal and peripheral blood, faeces and liver tissue to characterize the gut–
liver axis of patients with HCV across a fibrosis severity gradient before (n = 29) 
and 6 months after (n = 23) sustained virologic response, that is, no detection 
of the virus. Fatty acids were the major metabolites perturbed across the liver, 
portal vein and gut microbiome in HCV, especially in patients with cirrhosis. 
Decreased fatty acid degradation by hepatic peroxisomes and mitochondria 
was coupled with increased free fatty acid (FFA) influx to the liver via the portal 
vein. Metatranscriptomics indicated that Anaerostipes hadrus-mediated 
fatty acid synthesis influences portal FFAs. Both microbial fatty acid synthesis 
and portal FFAs were associated with enhanced hepatic fibrosis. Bacteroides 
vulgatus-mediated intestinal glycan breakdown was linked to portal glycan 
products, which in turn correlated with enhanced portal inflammation in 
HCV. Paired comparison of patient samples at both timepoints showed that 
hepatic metabolism, especially in peroxisomes, is persistently dysregulated 
in cirrhosis independently of the virus. Sustained virologic response was 
associated with a potential beneficial role for Methanobrevibacter smithii, 
which correlated with liver disease severity markers. These results develop 
our understanding of the gut–liver axis in HCV and non-HCV liver disease 
aetiologies and provide a foundation for future therapies.

The gut microbiome is an outsourcing of genes by the host to maxi-
mize calorie and environmental exploitation that directly influences 
host energy regulation, metabolism and immunity1,2. The liver is the 
nexus between the gut and the remainder of the host and is itself 

vulnerable to perturbations in this complex biology3,4. Alterations in 
the gut–liver axis have been well demonstrated in non-alcoholic fatty 
liver disease (NAFLD) and chronic liver disease from non-metabolic 
aetiologies5. Viral hepatitis including chronic hepatitis C virus (HCV) 
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Host metabolism is downregulated in HCVi and fibrosis
Transcriptomics was performed on paired liver biopsies from HCVi 
and SVR that identified 7,866 differentially expressed genes (DEGs) in 
HCVi compared with SVR (DeSeq2, false discovery rate (FDR) P value 
<0.1). Over-representation analysis was performed on DEGs using 
Kyoto Encyclopedia of Genes and Genomes (KEGG) (FDR P value <0.1)  
(Fig. 2a). As expected, HCVi showed upregulated hepatic inflammatory 
and anti-viral pathways enriched in interferon genes as well as enhanced 
hepatic expression of IFNG and IFNL1 compared with SVR (Source Data 
Fig. 2). Intriguingly, every pathway downregulated in HCVi was meta-
bolic, including metabolism of FAs, branched-chain amino acids, aro-
matic amino acids, peroxisomes and peroxisome proliferator-activated 
receptor (PPAR) signalling. When analysed using Gene Ontology (GO) 
by cellular component, genes downregulated in HCVi localized to per-
oxisomes and mitochondria, organelles fundamental for energy and 
redox balance7 (over-representation analysis, Fisher’s exact test; FDR 
P value <0.1) (Fig. 2b). Mitochondrial and peroxisomal dysfunction in 
FA oxidation has been shown across liver disease aetiologies, including 
HCV8,9. Reduced FA degradation (FoldEnrichment −5.23, FDR P value 
<0.0001), peroxisome FA oxidation (for example, ACOX FoldChange 
−0.67, FDR P value <0.0001), catalase (CAT) (FoldChange −0.66, FDR  
P value <0.0001) and retinol metabolism (DHRS4 FoldChange −0.32, 
FDR P value 0.029) in HCVi exemplifies peroxisomes’ role in redox 
imbalance in liver disease10,11 (Fig. 2c and Extended Data Fig. 3).

We next explored if hepatic metabolic dysfunction translates 
into circulatory changes. Compared with SVR, HCVi showed elevated 
peripheral and portal levels of a wide range of metabolites, many of 
which belonged to categories with decreased hepatic degradation 
(FDR P value <0.1) (Fig. 2d,e). Increased levels of such metabolites 
alongside decreased hepatic processing could have negative conse-
quences in HCVi from impaired energy extraction and/or excess of 
metabolically active compounds with implications for insulin resist-
ance, onco-metabolism, hepatic steatosis and sarcopenia12–15.

Lastly, we assessed whether hepatic aberrations in HCV are related 
to fibrosis and persist in SVR fibrosis. Hepatic genes and portal metabo-
lites co-expressed in both HCVi and SVR and linked to liver disease 
severity independent of HCV were explored using consensus weighted 
gene correlation network analysis (WGCNA) on paired HCVi and SVR 
samples. Only one hepatic module ‘MEred’ inversely correlated with 
fibrosis (Pearson correlation co-efficient −0.47, unadjusted P value 0.02) 
and only one portal metabolite module ‘MEyellow’ positively correlated 
with direct portal pressure (Pearson correlation co-efficient 0.60, unad-
justed P value 0.002) in both HCVi and SVR (Fig. 3a,b). Hepatic ‘MEred’ 
module was enriched in metabolism notably FA degradation (FoldEn-
richment 8.87, FDR P value <0.0001), PPAR signalling (FoldEnrichment 
4.78, FDR P value 0.0013) and peroxisomes (FoldEnrichment 3.84, FDR 
P value 0.010); and portal ‘MEyellow’ module was most enriched in free 
fatty acids (FFAs) (Fig. 3c,d). These findings expand on the current 
knowledge of serum metabolic alterations in HCV and SVR16.

In summary, our results extend knowledge of downregulated 
hepatic mitochondrial and peroxisomal FA catabolism and PPAR sig-
nalling in HCV cirrhosis9. Many of these metabolic concepts, especially 
related to FA metabolism and peroxisome function, remain perturbed 
in advanced fibrosis after SVR.

Portal metabolites and gut microbiome in HCVi liver disease
Our findings of hepatic metabolic dysregulation accentuated in fibrosis 
were an opportunity to explore the gut–liver axis in fibrosis. As the 
portal vein is the major conduit for metabolic signals between the gut 
microbiome and the liver, we explored portal vein metabolomics and 
the gut microbiome across liver disease severity within HCVi. First, 
serum metabolic signature in HCVi was analysed in relation to fibrosis 
using similarity network fusion (SNF) and spectral clustering analysis on 
1,541 metabolites measured in portal and peripheral serum17 (Fig. 4a). 
There was a significant difference in mean Ishak fibrosis scores of the 

is a major cause of liver disease that results in persistent inflammation 
and subsequent fibrosis in the liver. This hepatic fibrosis ultimately 
progresses to end-stage liver disease known as cirrhosis. Early stage 
of cirrhosis, referred to as ‘compensated cirrhosis’, is associated with 
intact hepatic function. Over time, this can progress to hepatic dys-
function referred to as ‘decompensated cirrhosis’. It is in such patients 
with decompensated cirrhosis that alteration in the normal compo-
sition of intestinal microbial species, also known as gut dysbiosis, 
has been described5. In the past decade, clearance of HCV infection 
called sustained virologic response (SVR) has become a reality with the 
advent of direct-acting anti-viral therapy. However, cirrhosis persists 
in the immediate post-SVR period with a gradual regression of fibrosis 
over years. Thus, HCV-associated liver disease can serve as a model to 
delineate alterations in the gut–liver axis due to fibrosis, both with 
and without the presence of the initial trigger, that is, HCV. Lastly, to 
complete studies investigating the gut–liver axis, the portal vein should 
be interrogated as it is the most direct signalling conduit between the 
gut microbiome and the liver. Core aberrancies in these three biologi-
cal compartments, their integration across liver disease severity, and 
changes over time lack detailed characterization.

In this Article, to this end, we have added insight into the role of 
the gut–liver axis in chronic liver disease by exploring the portal vein in 
patients with HCV across fibrosis severity at two timepoints, that is, in 
chronic HCV-associated compensated liver disease (HCVi) followed by 
re-evaluation approximately 6 months after HCV elimination (Fig. 1). To 
achieve this, we simultaneously collected blood samples from periph-
eral and portal veins, liver biopsies and faeces at the two timepoints, 
that is, before and after SVR. Specifically, combination therapy with 
sofosbuvir and velpatasvir, oral inhibitors of viral replication, was used 
to achieve SVR. We explored the metabolic interplay in the gut–liver axis 
by performing metabolomics on serum, RNA transcriptomics on liver 
and faeces, and microbial 16S ribosomal RNA analysis on faeces. The 
severity of hepatic fibrosis was measured on histopathological samples 
at both HCVi and SVR timepoints utilizing a scoring system derived 
by Ishak6. By utilizing a multilayered integrative analysis maximizing 
high-throughput molecular techniques we have characterized the 
biological landscape in the gut microbiome, the portal vein, the liver 
and their interactions across distinct stages of liver disease severity. This 
was a hypothesis-generating study utilizing HCV as a model to elucidate 
the role of the gut–liver axis in fibrosis rather than HCV pathogenesis.

Our comprehensive multi-omics analysis has revealed dysregu-
lated energy homeostasis in the gut–liver axis with a predominant 
disruption in fatty acid (FA) metabolism (Extended Data Fig. 1). In 
the liver, metabolic alterations were localized to peroxisomes and 
mitochondria in HCVi and persisted in advanced fibrosis after SVR. 
In the microbiome, there was enhanced transcriptional activity of 
Anaerostipes hadrus-mediated FA synthesis and functional predomi-
nance of mucin-degrading Bacteroides vulgatus with worsening HCVi 
disease severity. By integrating the three biological compartments, we 
have shown how these hepatic and microbial metabolic perturbations 
directly relate to host inflammation in HCVi via immune and metabolic 
signals circulating in the portal vein.

Results
In total, 29 patients completed initial evaluation (HCVi) and 23 patients 
completed re-evaluation approximately 6 months after SVR, that is, 
on average 0.99 years (range 0.73–1.25 years) from sofosbuvir/vel-
patasvir initiation (Fig. 1). All patients underwent sampling of portal 
and peripheral blood, faeces and liver tissue at both timepoints for 
paired analysis. To elucidate perturbations in the gut–liver axis related 
to fibrosis, patients were stratified utilizing Ishak fibrosis scores6 on 
liver biopsies from HCVi and SVR timepoints. Patients with Ishak fibrosis 
score ‘0–4’ were characterized as non-cirrhotics and ‘5–6’ as cirrhotics 
(Supplementary Table 1). There was no difference in fibrosis or direct 
portal pressure between HCVi and SVR (Extended Data Fig. 2).
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patient groups derived from portal metabolomics SNF (P = 0.0066), but 
with no difference based on peripheral metabolomics SNF (P = 0.23). 
This was validated using logistic regression modelling (Supplementary 
Table 6). Spectral clustering was then performed on 25 HCVi patient 
networks generated from individual super-pathways (Supplementary 
Table 7). FFA was the only super-pathway where HCVi patient groups 
showed a significant difference in mean Ishak fibrosis scores based 
on spectral clustering of portal (P = 0.005), but not peripheral FFA 
(P = 0.49) (Fig. 4b). This was validated using logistic regression (Sup-
plementary Table 6).

Unbiased clustering of patients with HCVi into early and advanced 
fibrosis based on only portal metabolomic profile encouraged inves-
tigation of gut microbial composition and transcriptional activity in 
HCVi. Faecal 16S rRNA analysis showed no significant relationship 
between microbial phyla or genera and fibrosis in HCVi (Extended Data 
Fig. 4a,b and Supplementary Fig. 1a,b). Next, we explored changes in 
transcriptional activity that may precede compositional alterations by 
examining HCVi faecal metatranscriptomics. Microbial RNA sequences 
were aligned to MetaHIT Consortium, 889,668 nucleotide sequences 
were captured, 4,718 microbial KEGG Orthology (KO) genes were anno-
tated and KO genes were grouped into KEGG functional modules cor-
related with liver disease severity markers using background-adjusted 
median Spearman correlation (SCCbg.adj.)

18. This unbiased exploration of 
microbial function revealed a direct association of fibrosis and hepatic 
necroinflammation with microbial energy metabolism including FAs, 

amino acids, and glycans in HCVi (Fig. 4c, Extended Data Fig. 5a, b) (FDR 
P value <0.1). Specifically, fibrosis positively correlated with micro-
bial FA biosynthesis, initiation (SCCbg.adj. 0.22, FDR P value 0.092) and 
elongation (SCCbg.adj. 0.21, FDR P value 0.092), but not with β-oxidation 
(SCCbg.adj. −0.11, FDR P value 0.45). Hepatic necroinflammation posi-
tively correlated with microbial glycan degradation; heparan sulfate 
(aspartate aminotransferase (AST), SCCbg.adj. 0.25, FDR P value 0.040; 
γ-glutamyl transferase (GGT), SCCbg.adj. 0.21, FDR P value 0.059) and 
dermatan sulfate (GGT, SCCbg.adj. 0.28, FDR P value 0.094) degradation.

To determine transcriptionally active microbial species, 
de novo assembly was performed on the microbial metatranscrip-
tome by co-abundance clustering using MGS canopy algorithm19. 
Taxonomically annotated co-abundance gene groups (CAGs) were 
analysed using leave-one-out analysis18. Fibrosis-associated micro-
bial ‘FA biosynthesis initiation’ was driven by CAG003: uncultured 
bacterium followed by CAG015: A. hadrus, a FA-synthesizing gut 
commensal20,21(Supplementary Table 2). Similarly, GGT-associated 
microbial ‘heparan sulfate degradation’ was predominantly driven by 
CAG007: B. vulgatus, a glycan-metabolizing gut commensal22.

Microbial function linked to portal metabolites in HCVi
To elucidate an influence of microbial metabolism on the host via portal 
circulation, portal metabolite WGCNA modules were correlated with 
transcriptionally active microbial CAGs (SCCbg.adj., FDR P value <0.1) 
(Fig. 5a). The major transcriptionally active microbial species for FA 
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biosynthesis CAG015: A. hadrus showed strongest association with 
portal modules M02 (SCCbg.adj. 0.28, FDR P value 0) and M07 (SCCbg.adj.  
0.27, FDR P value 0) that predominantly contained complex lipids and 
FFAs. Microbial contribution to portal FFA was reinforced from the 
direct associations of portal FFA with CAG015: A. hadrus (for example, 
portal palmitate, Spearman correlation co-efficient 0.50, unadjusted 
P value 0.0084) and with KO genes for microbial FA biosynthesis (Sup-
plementary Table 3). Of note, FFA associations with CAG015: A. hadrus 
were limited to long-chain FFA, not short-chain FFA. This was interesting 
as A. hadrus is known to influence host health through short-chain FA 
synthesis, and to our knowledge there is no pre-existing literature on 
its role in long-chain FA synthesis20,21. Our findings support a role for  
A. hadrus-mediated FA biosynthesis on the availability of long-chain 
FFAs in portal circulation. Furthermore, strong correlations of 
long-chain FFAs with liver enzymes, pro-inflammatory cytokines and 
macrophage activation only in portal vein (for example, portal FFA16:0 
with AST, Spearman correlation co-efficient 0.61, unadjusted P value 
0.0003; IL-8, Spearman correlation co-efficient 0.66, unadjusted  
P value ≤0.0001) suggests pathological implications of microbially 
derived long-chain FFAs in HCVi liver disease progression (Fig. 5b).

In HCVi, the transcriptionally active species for mucosal glycan 
degradation CAG007: B. vulgatus was the major driver for most dis-
ease associated microbial functions (Fig. 4d). This was important 
as microbial glycan metabolism influences intestinal homeostasis 
and inflammation23,24. During calorie imbalance, B. vulgatus shifts 
energy extraction to mucosal glycans, and by degrading mucin 

it becomes a pathobiont causing barrier dysfunction and inflam-
mation, best studied in inflammatory bowel disease (IBD)22,25. Our 
findings highlight this concept in HCVi liver disease with hepatic 
metabolic dysfunction akin to ‘calorie imbalance’. Inferring translo-
cation from peripheral blood limits accurate appraisal of gut-derived 
signals before hepatic processing. Direct evaluation of portal signals 
uncovered a possible contribution of B. vulgatus to portal glycan 
products and a pro-inflammatory role of portal glycan products, 
concepts not fully explored in liver disease. Transcriptionally active 
CAG007: B. vulgatus showed the strongest correlation with por-
tal module M03 (SCCbg.adj. 0.60, FDR P value 0) containing diverse 
glycans including N-acetylglucosamine/N-acetylgalactosamine 
(GlNAc-GalNAc) and N-acetylneuraminic acid/sialic acid (Fig. 5a). 
CAG007: B. vulgatus directly correlated with GlNAc-GalNAc only 
in portal (Spearman correlation co-efficient 0.62, unadjusted  
P value 0.0007), but not peripheral serum (Spearman correla-
tion co-efficient 0.12, unadjusted P value 0.559) (Fig. 5c). Only in 
portal serum was GlNAc-GalNAc elevated in HCVi-Cir compared 
with HCVi-NC (Fig. 5d). Both GlNAc-GalNAc and sialic acid strongly 
correlated with markers of inflammation, including AST, alkaline 
phosphatase (ALP), GGT, sCD14, sCD163, IL-6, IL-8, TNFα, CXCL9 
and HMGB1 (for example, portal GlNAc-GalNAc with TNFα, Spear-
man correlation co-efficient 0.63, unadjusted P value 0.0003); 
CD4 and CD8 T cells, intestinal α4β7 T cells; and an unfavourable 
lipid profile (Supplementary Table 4). Negative consequences of  
B. vulgatus-mediated glycan degradation were supported by elevated 
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Fig. 2 | Longitudinal evaluation revealed reduced hepatic metabolism 
in peroxisomes and mitochondria alongside higher circulatory levels 
of corresponding metabolites in HCVi compared with SVR. a, Over-
representation analysis on the hepatic DEGs with FDR P value <0.1 in 
HCVi compared with SVR mapped to the KEGG pathway database using 
NetworkAnalyst software. Visualized are the 20 most enriched hepatic KEGG 
pathways, FDR P value <0.1. Bars shaded blue represent hepatic pathways 
enriched in DEGs upregulated in HCVi, and bars shaded orange represent 
pathways enriched in DEGs downregulated in HCVi compared with SVR (n = 22). 
b, Predominant cellular location of the 2,380 DEGs downregulated in HCVi with 
FDR P value <0.1, identified using GO Cellular Component Database. Visualized 

are the ten most enriched cellular locations for hepatic DEGs decreased in HCVi 
compared with SVR, FDR P value <0.1 (n = 22). c, Detailed illustration using GAGE 
R of hepatic DEGs in the KEGG functional pathway ‘Peroxisome’ downregulated  
in HCVi compared with SVR, FDR P value <0.1. DEGs highlighted blue for 
fold change >0 (that is, increased in HCVi) and red for fold change <0 (that 
is, decreased in HCVi) compared with SVR (n = 22). d,e, Paired comparison 
of alterations in serum metabolite levels between HCVi and SVR (two-sided 
Wilcoxon matched-pairs signed-rank test, and FDR P value <0.1). Visualization 
of representative portal (d) and peripheral (e) metabolites elevated in HCVi 
compared with SVR belonging to categories with downregulated hepatic 
metabolism (n = 23).
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markers of gut dysbiosis (IL-18) and intestinal dysfunction (zonulin) 
in HCVi compared with SVR (Extended Data Fig. 6). Although cor-
relative, exploring metabolic and immune markers in portal vein has 
revealed how B. vulgatus-mediated glycan degradation may impair 
intestinal homeostasis in HCVi liver disease22. Portal glycan products 
and their correlates of gut permeability, dysbiosis, inflammatory 
signals and α4β7 T cells are emerging therapeutic targets in IBD; 
our findings suggest therapeutic themes in hepatic disorders26,27.

We explored a possible relationship between disease-associated 
microbial functions and hepatic immune homeostasis on a transcrip-
tional level. This inter-omics integration showed direct associations 
of microbial FA biosynthesis and intestinal glycan degradation with 
multiple hepatic pathways for inflammation, immunity and dysbio-
sis (SCCbg.adj., FDR P value <0.1) (Fig. 5e). Extra-hepatic FFAs without 
hepatic lipid oxidation can potentiate oxidative stress and inflam-
mation in liver disease, a concept most studied in NAFLD but also in 
HCV8,28. We speculate that, in patients with HCVi with advanced fibro-
sis, higher portal long-chain FFA derived from A. hadrus potentiates 

hepatic injury due to impaired hepatic mitochondrial and peroxisomal 
function. Such a pathological role of microbial long-chain FFA is not 
well elucidated29–32.

Insights from re-evaluating the gut microbiome after SVR
Re-evaluating the gut microbiome after SVR uncovered a putative role 
of Methanobrevibacter smithii, dominant archaea for methane metab-
olism, in cirrhosis without HCV. Co-expressed microbial functional 
KO gene modules were correlated with liver disease severity markers 
after SVR (WGNCA) (Fig. 6a). Only ‘MEGreen’ inversely correlated 
with liver disease severity (fibrosis, Pearson correlation co-efficient 
−0.49, unadjusted P value 0.02; direct portal pressure, Pearson cor-
relation co-efficient −0.59, unadjusted P value 0.003). This module 
was most enriched in methane metabolism (over-representation 
analysis, FoldEnrichment 7.79, FDR P value <0.0001) (Fig. 6b). Of 18 
KO genes in ‘methane metabolism’, 16 KO genes taxonomically anno-
tated to M. smithii using BLASTN >99% identity and >95% coverage 
(Supplementary Table 8).
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Fig. 3 | Fibrosis was linked to decreased hepatic FA metabolism, and direct 
portal pressure to increased portal FFAs independent of HCV, n = 22.  
a, Correlation heat map of liver disease severity markers (x axis) and consensus 
WGCNA hepatic gene modules preserved at both timepoints, that is, hepatic 
genes co-expressed in both HCVi and SVR (y axis). ‘ME’ is a module or cluster 
of genes that are co-expressed, and each ME module is randomly assigned a 
colour. Within each cell, the upper row indicates the Pearson correlation co-
efficient and the lower row with parenthesis the two-sided Fisher’s asymptotic 
unadjusted P value. Cells greyed out indicate no consensus formed owing to 
opposite directions for Pearson correlation co-efficient in HCVi and SVR. Only 
one hepatic module ‘MEred’ inversely correlated with fibrosis in both HCVi 

and SVR. b, Correlation heat map of liver disease severity markers (x axis) and 
consensus WGCNA portal metabolite modules preserved in both HCVi and 
SVR (y axis) as in Fig. 3a. ‘ME’ is a module or cluster of metabolites that are most 
strongly correlated with each other, and each ME module is randomly assigned 
a colour. Only one portal module ‘MEyellow’ positively correlated with direct 
portal pressure in both HCVi and SVR. c, Over-representation analysis of hepatic 
genes in consensus WGCNA module ‘MEred’ (NetworkAnalyst, FDR P value <0.1). 
d, Individual FFA contained in the consensus WGCNA module ‘MEyellow.’ z-KME 
indicates z score for KME (eigengene-based connectivity or metabolite module 
membership), and P-KME indicates two-sided unadjusted P value calculated for 
each KME value.
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M. smithii is critical for intestinal energy homeostasis. By eliminat-
ing hydrogen it ensures glycan fermentation by saccharolytic bacteria 
maximizing energy harvest33,34. Relevance of inter-microbial linkages of 
Methanobrevibacter in SVR was exemplified by gut ecology analysis on 
16S rRNA using Sparse Correlations for Compositional data (SparCC)35 
(two-sided pseudo P value <0.05) (Fig. 6c). Most significant taxonomic 
linkages of Methanobrevibacter genus were with saccharolytic Clostridi-
ales. A beneficial role for Methanobrevibacter was also suggested by 
compelling anti-inflammatory associations of Methanobrevibacter 
16S rRNA genus abundance and M. smithii transcriptional activity 
with liver enzymes, cytokines and an unfavourable lipid profile in SVR 
(Supplementary Table 5).

We speculate that decreased M. smithii methane metabolism in 
advanced fibrosis after SVR alters the luminal pH, saccharolytic gut 
commensals, short-chain FFA availability and ultimately intestinal 
homeostasis; concepts with profound biological implications21.

Discussion
A comprehensive multi-omics integration including the major conduit 
for host–microbiome crosstalk, the portal vein, revealed energy metab-
olism in particular FA metabolism as the fundamental disturbance in 
the gut-liver axis in HCVi. Temporal study design (Fig. 1) showed that 
cirrhosis is a persistent state of metabolic dysregulation centred in 
peroxisomes even after SVR. We have laid out an atlas for liver disease 
alterations and uncovered authentic human pathophysiology.

Chronic inflammation is an energy-demanding state with a pro-
found impact on metabolism when occurring in the central metabolic 
organ, the liver36,37. Hepatic metabolic dysregulation, particularly 
mitochondrial FA metabolism, has been investigated across liver dis-
ease aetiologies38. Mitochondrial dysfunction impedes energy extrac-
tion from FAs and promotes intra-hepatic lipid accumulation, redox 
imbalance and inflammasome activation8. Our findings echo this with 
decreased hepatic mitochondrial FA catabolism in HCVi accentuated in 
cirrhosis. However, as important is the identification of peroxisomes 
as a major site of disrupted FA metabolism with worsening fibrosis in 
HCVi and SVR. Peroxisomes and mitochondria are co-dependent, and 
despite peroxisomes’ role in energy, lipid metabolism and redox bal-
ance, they remain under-appreciated in liver disease7,39,40. Peroxisome 
dysfunction in fibrosis may lead to FA-induced hepatic oxidative stress 
as PPAR signalling is crucial for hepatic FA utilization41. Therapeutic 
relevance of this concept is supported by use of PPAR agonists across 
liver disease aetiologies, including NAFLD and primary biliary chol-
angitis42,43. Thus, even though HCV can now be cured, our study adds 
biological insight into metabolically targeted therapies, highlights the 
importance of treating HCVi at earlier stages and offers a provocative 
therapeutic approach of peroxisome rescue in SVR cirrhosis.

To our knowledge, portal metabolites have been studied only in 
decompensated cirrhosis44–46. Characterization of the portal metabo-
lomic landscape in compensated liver disease was a critical element 
of our study. Unlike peripheral serum, portal metabolomics has 
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Fig. 4 | Only portal metabolomics clustered patients with HCVi into early and 
advanced fibrosis. HCVi disease severity was linked to increased microbial 
FA synthesis and glycan degradation driven by transcriptionally active 
A. hadrus and B. vulgatus. a, SNF and spectral clustering performed on 1,541 
metabolites in HCVi. SNF from portal (not peripheral) metabolomics clustered 
patients with HCVi into groups with significantly different mean Ishak fibrosis 
scores (SNF, Welch’s t-test, unadjusted two-sided P value) (n = 29). Peripheral 
metabolomics group 1: minimum and lower bound (25th percentile) 1, median 
(50th percentile) 3, maximum and upper bound (75th percentile) 6, no outliers; 
peripheral metabolomics group 2: minimum 1, lower bound (25th percentile) 
2.75, median (50th percentile) 5, maximum and upper bound (75th percentile) 
6, no outliers; portal metabolomics group 1: minimum and lower bound (25th 
percentile) 1, median (50th percentile) 2, maximum 6, upper bound (75th 
percentile) 3, no outliers; portal metabolites group 2: minimum 1, lower bound 
(25th percentile) 3.75, median (50th percentile) 6, maximum and upper bound 

(75th percentile) 6, no outliers. b, Within major metabolic categories, the HCVi 
patient network derived from portal (not peripheral) FFAs could cluster patients 
with HCVi into groups with significantly different mean Ishak fibrosis scores 
(spectral clustering, Welch’s t-test, unadjusted two-sided P value) (n = 29). 
Peripheral FFA group 1: minimum 1, lower bound (25th percentile) 2.25, median 
(50th percentile) 4.5, maximum and upper bound (75th percentile) 6, no outliers; 
peripheral FFA group 2: minimum 1, lower bound (25th percentile) 2, median 
(50th percentile) 3, maximum 6, upper bound (75th percentile) 5.5, no outliers; 
portal FFA group 1: minimum 2, lower bound (25th percentile) 3.75, median  
(50th percentile) 5.5, maximum and upper bound (75th percentile) 6, no outliers; 
portal FFA group 2: minimum and lower bound (25th percentile) 1, median  
(50th percentile) 2, maximum 6, upper bound (75th percentile) and 3, no outliers.  
c, Correlation of microbial KEGG functional modules with hepatic fibrosis in 
HCVi using SCCbg.adj., two-sided FDR P value <0.1 (n = 26).
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highlighted that in HCVi fibrosis higher gut-derived portal FFA may 
in fact accelerate liver injury, compounded with decreased hepatic 
mitochondrial and peroxisomal FA metabolism.

Studies on the gut microbiome in liver disease have combined 
aetiologies and inferred function from composition, and only few 
re-evaluated after eliminating the disease trigger47,48. Our study 
addressed these deficits by focusing on one aetiology, exploring 
microbial metatranscriptome and re-evaluating after SVR. Further-
more, associations between transcriptionally active microbial species 
and portal vein signals were mapped. Despite lack of association with 
microbial composition, distinct microbial functions were associated 
with HCVi fibrosis. Microbial FA synthesis was increased with fibrosis 
in HCVi as there was reduced hepatic FA metabolism. Transcriptionally 
active A. hadrus was responsible for this paradoxical rise in microbial 
FA synthesis. A. hadrus impacts human health via short-chain FA syn-
thesis; however, our inter-omics analysis suggests a direct contribu-
tion of A. hadrus to host long-chain FFA20,21. This underscores the 
yet undiscovered aspects of gut microbiome’s influence on human 
pathophysiology.

Contrary to our findings of a positive association between fibro-
sis and microbial FA synthesis, previous studies suggest a beneficial 
role of microbial long-chain FA in liver and intestinal injury31,32. This 
contrast may be due to difference in species, acuity and nature of 
injury, and sampling luminal, not portal, FAs. Another reason may be 
the context-specific nature of microbiome’s influence on host. For 
example, Lachnospiraceae-mediated lipid metabolism is beneficial 
for colonic health at a ‘local level’ but paradoxically harmful in hepatic 
dysfunction, that is, in IBD with and without primary sclerosing cholan-
gitis49. Given the pathological role of extra-hepatic FFA in liver disease, 
we suggest an opportunity for therapeutic manipulation of A. hadrus 
and microbial FA synthesis to reduce hepatic oxidative injury and 
ultimately slow fibrosis progression8,28.

We have identified B. vulgatus as the major transcriptionally active 
species responsible for most microbial functions linked to HCVi liver 
disease severity. B. vulgatus can become a mucin degrader during 
calorie imbalance and mediate gut inflammation and dysbiosis, best 
studied in IBD22–26. In HCVi, B. vulgatus was not only the major function-
ally active species for mucosal glycan degradation but directly linked 
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Fig. 5 | In HCVi, transcriptionally active A. hadrus and B. vulgatus were 
directly linked to portal FFA and glycan products, respectively. Microbially 
derived portal signals and disease-associated microbial functions correlated 
with enhanced circulatory and hepatic pathways of inflammation.  
a, Correlation heat map of inter-omics associations between transcriptionally 
active microbial species (CAGs) and portal metabolite WGCNA modules in 
HCVi. SCCbg.adj., Mann–Whitney U test, two-sided, FDR P value +, 0.05–0.1, 
*0.05–0.01, **0.01–0.001, ***<0.0001) (n = 26). Portal modules are numbered 
M01 through M08, annotated for most prevalent metabolic subpathway. 
PC, phosphatidylcholine; LPC, lysophosphatidylcholine; CE, ceramide; PE, 
phophatidylethanolamine. b, Correlation heat map between portal (upper) 
and peripheral (lower) serum FFAs and markers of liver disease severity 
and inflammation in HCVi (Spearman R, two-sided FDR P value +, 0.05–0.1, 

*0.05–0.01, **0.01–0.001, ***<0.0001) (n = 29). SCFA, short-chain FFA; MCFA, 
medium-chain FFA; LCFA, long-chain FFA; DPP, direct portal pressure; IF, Ishak 
fibrosis score. c, Transcriptionally active CAG007: B. vulgatus correlated with 
portal (left) and peripheral (right) N-acetylglucosamine-galactosamine (GlNAc-
GalNAc) (Spearman correlation co-efficient, two-sided) (n = 29). d, Compared 
with HCVi-NC, GlNAc-GalNAc was higher in HCVi-Cirr but only in portal serum 
(two-sided Mann–Whitney, HCVi-Cirr n = 13 versus HCVi-NC n = 16). Scatter 
plots with bars, data are presented as median ± IQR. e, Correlation heat map of 
inter-omics associations between microbial KEGG functional modules (x axis) 
and hepatic KEGG pathways (y axis). Displayed are only hepatic pathways and 
microbial functional modules that positively correlated with Ishak fibrosis score 
(IF), AST and GGT (FDR P value <0.1) as indicated by blue column on the left y axis 
(SCCbg.adj., Mann–Whitney U test, two-sided FDR P value as per a) (n = 26).
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to enhanced hepatic transcription of inflammatory pathways. Thus, we 
have demonstrated that functional predominance of B. vulgatus has 
negative effects on energy and immune homeostasis in HCVi, as studied 
in other liver disease aetiologies46,50. As there was no difference in rela-
tive abundance of microbial phyla, we propose that a functional change 
in B. vulgatus precedes compositional changes mostly described in 
decompensated cirrhosis47,48. Inhibition of B. vulgatus-mediated glycan 
degradation through manipulation of diet or intestinal immunity offers 
an earlier therapeutic intervention to preserve intestinal homeostasis 
in chronic liver disease.

Inferring directionality from longitudinal analysis, we hypothesize 
that hepatic metabolic dysfunction from HCV-induced inflammation 
leads to functional over-representation of ‘less favourable’ microbial 
metabolic pathways. This speculation is supported by studies linking 
B. vulgatus with altered hepatic lipids, bile acids and vitamin A51–53. Of 
note, this analysis is associative and portal long-chain FA and glycans 
may not be directly derived from the gut microbiome but share disease 
associations, a concept worthy of further exploration.

We acknowledge that, owing to the intrinsic nature of human stud-
ies, data presented here are observational and correlative. By virtue 
of this being a hypothesis-generating study, multiple test corrections 
were employed to minimize associations due to chance. Validity of the 
results was supported by the consistency in findings across biological 

compartments and patient subsets. A major strength of our study 
was the longitudinal design with paired data from the same patients 
before and after HCV elimination that allows inference of directional-
ity. Exploring authentic human biology in this manner is the first step 
in revealing processes that require mechanistic validation through 
future work. Specifically, concomitant alterations in hepatic, portal 
and microbial FA metabolism should be validated in an animal model 
of chronic liver disease. Microbial functions of FA synthesis and glycan 
degradation as well as the major transcriptionally active microbial 
species for these functions, that is, A. hadrus and B. vulgatus could 
be manipulated to assess for changes in liver disease severity. Simi-
larly, hepatic peroxisome and mitochondrial rescue, for example, with 
PPAR agonists, could be undertaken to explore changes in disease and 
disease-associated microbial functions. Animal-based experimental 
models would also address two limitations of using a human cohort. 
First, although a temporal analysis allowed us to compare HCV with a 
presumably improved state (SVR), we cannot confirm complete reso-
lution owing to the inability to obtain portal blood and/or liver tissue 
samples from healthy controls. Second, gut–liver axis components 
that would add further insight but were not sampled include intestinal 
lymphatics, bile and luminal microenvironment.

We have highlighted the central role of mitochondria and per-
oxisomes in hepatic metabolic dysregulation and identified enhanced 
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Fig. 6 | A beneficial role of Methanobrevibacter and methane metabolism 
reduced in fibrosis after SVR, n = 23. a, Correlation heat map of liver disease 
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‘MEGreen’ module using MicrobiomeAnalyst R package, Shotgun Data Profiling, 
unadjusted P < 0.05. c, Inter-microbial linkages of Methanobrevibacter in SVR 
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microbial FA biosynthesis and glycan metabolism driven by transcrip-
tionally active A. hadrus and B. vulgatus in HCVi liver disease. Only by 
evaluating the portal vein were these shared metabolic signals between 
the gut microbiome and liver shown to have a role in enhanced portal 
and hepatic inflammation, thus potentially accelerating liver disease. 
This global energy dysregulation in the gut–liver axis has clinical impli-
cations in liver disease manifestations such as hepatic steatosis, sarco-
penia, malnutrition and encephalopathy54. By performing temporal 
analysis, we have shown persistent hepatic metabolic disruption in 
advanced fibrosis even after elimination of the initial trigger (HCV). This 
study highlights the centrality of energy metabolism in cirrhosis and 
suggests its relevance in non-HCV aetiologies of cirrhosis. Concepts 
of microbial glycan metabolism and a therapeutic role for peroxisome 
rescue have been described in viral infections, including severe acute 
respiratory syndrome coronavirus 2 and metabolic syndrome, sug-
gesting universal mechanisms with therapeutic implications in chronic 
inflammation as it relates to the host and microbiome1,55–57.

Methods
Patient selection and study design
Before enrolment, we calculated the sample size as follows: sample size 
of seven patients per group will provide the study with a statistical power 
of 80% at a 95% confidence level, to detect a difference of 60% in portal 
vein microbial product detection rate between the two groups. The 
sample size was increased to 10 patients in the minimal fibrosis group 
and 20 patients in the advanced fibrosis group to allow for withdraw-
als and technical failures that might occur at a higher rate in cirrhotic 
patients. Thirty-six patients with chronic HCV infection were assessed 
at the National Institutes of Health Clinical Center, of whom 30 subjects 
(the accrual ceiling) were found eligible and agreed to participate. Major 
exclusion criteria for enrolment included other aetiologies of chronic 
liver disease, decompensated liver disease, carcinoma including hepa-
tocellular carcinoma, and alcohol use of more than seven drinks per 
week. One patient was excluded for incidental finding of hepatocellular 
carcinoma after signing consent. All patients signed informed consent 
for participation into The National Institute of Diabetes, Digestive and 
Kidney Diseases, and the National Institute of Arthritis and Musculo-
skeletal Diseases, Institutional Review Board at the National Institutes of 
Health approved protocol (NCT02400216). Patients were compensated 
for study participation. Of the initial 29 patients in HCVi, a total of 23 
patients completed every component of post-treatment evaluation as 
one patient died and four patients declined re-enrolment. One patient 
re-consented but did not complete sample collection after SVR and 
thus was excluded from all analysis at the SVR timepoint. All data were 
collected and processed at the National Institutes of Health Clinical 
Center. The recruitment began on 29 May 2015 and ended on 11 March 
2016. Data collection began on 1 June 2015 and ended on 14 February 2017.

This was not a randomized control trial. The study was a proof 
of concept. As such, the intent was not to perform a randomized con-
trolled study. Rather, the design of the study was aimed at comparing 
paired samples before and after an intervention (HCV treatment).

All patients had HCV RNA >5,000 IU ml−1 with genotype distribu-
tions recorded (Supplementary Table 1). Patients with cirrhosis had 
Child–Pugh score A (compensated liver disease). Medication use and 
pre-existing medical conditions are reported in Supplementary Table 9.  
No patient had used an anti-microbial agent within 3 months before 
enrolment, and only 3 of the 29 patients had been on a proton pump 
inhibitor at the time of initial enrolment. One patient had a previous 
diagnosis of diabetes mellitus. Between the HCVi and SVR time interval 
there was no significant change in body mass index or haemoglobin 
A1c (Supplementary Table 1).

Sample collection
Percutaneous ultrasound-guided puncture of the left or right hepatic 
lobe in proximity to a distal portal vein branch was performed with a 

17 G needle. Two hepatic core biopsy specimens were obtained with a 
coaxially introduced 18 G Temno needle (Temno Evolution, MeritMedi-
cal). The 17 G needle was then repositioned to puncture the proximate 
portal vein branch under ultrasound guidance. Catheterization of 
the portal vein under fluoroscopic guidance was accomplished with 
a Grebset (Teleflex) over a 0.018 inch guidewire. Portal pressures and 
venous blood samples were obtained through the 5 F braided sheath. 
The sheath was then withdrawn into the hepatic parenchyma and the 
puncture track embolized with Gelfoam pledgets (Pfizer Medical) for 
haemostasis (Supplementary Video).

Peripheral blood samples were obtained from an antecubital vein 
drawn into a 3.5 ml Z Serum Sep. Clot Activator (Ref 454067P, Greiner 
Bio-One). For each patient, this was performed at the same time as the 
portal vein sampling. Serum samples were processed by centrifugation 
at 2,000g for 10 min within 4 h of being drawn and subsequently stored 
at −80 °C until analysis.

Stool samples were collected in a sealable container within 2 days 
of serum sample collection, and stool container was stored at +4 °C 
immediately after collection. Samples were aliquoted into Eppendorf 
tubes and stored at −80 °C for further analysis within 8 h of initial 
collection.

Of note, blood, faecal and liver tissue samples were collected and 
analysed blinded in the HCVi cohort. As the same patients returned 
for SVR, the collection of the blood, faecal and liver tissue samples in 
SVR was not blinded. However, after collection, all SVR samples were 
coded and analysed blinded.

Dietary survey
Dietitians conducted a computer-assisted (Nutrition Data System for 
Research, Nutrition Coordinating Center) 24 h recall using the multiple 
pass method to determine dietary intake in the day preceding the fae-
cal samples. To assess chronic dietary habits, subjects were asked to 
electronically complete the Diet History Questionnaire II past year with 
portion size version, which is a 150-question food frequency question-
naire to determine the relative mass of 161 macro- and micronutrients 
consumed. In total, 28 patients with HCVi and 23 patients with SVR 
completed this analysis.

Sample size for each analysis
For all analysis on serum, plasma, whole blood and microbial 16S data 
at individual timepoints, 29 patients with HCVi and 23 with SVR were 
included. Patients were stratified using Ishak fibrosis score from liver 
biopsies corresponding to HCVi and SVR timepoints. Ishak fibrosis 
scores 0–4 were characterized as non-cirrhotic, and Ishak fibrosis 
scores 5 and 6 as cirrhotics. One patient had a change in Ishak score 
from ‘6’ to ‘0’ after SVR but with an inadequate sample size (9 mm) and 
an unchanged elevated direct portal pressure at the SVR timepoint. 
Thus, he was stratified as cirrhotic in SVR cohort on the basis of his 
original HCVi Ishak fibrosis score. This resulted in an overall distri-
bution of patients as HCVi-Cirr n = 13 and HCVi-NC n = 16; SVR-Cirr 
n = 9 and SVR-NC n = 14. Owing to failure of patient samples to meet 
quality-control parameters, analysis on liver transcriptome had HCVi 
n = 27 (HCVi-Cirr n = 12 and HCVi-NC n = 15) and SVR n = 23 (SVR-Cirr 
n = 9 and SVR-NC n = 14). Owing to data filtering, analysis on microbial 
transcriptome had HCVi n = 26 and SVR n = 23. Lastly, for paired analy-
sis on serum, plasma and microbial 16S rRNA data n = 23, and for liver 
transcriptomics and microbial metatranscriptomics n = 22 owing to 
data filtering as above.

Histological and RNA-sequencing analysis on liver biopsies
Liver biopsy samples were scored in a blinded manner by a hepato-
pathologist Dr David Kleiner. Fibrosis was scored on liver biopsy sam-
ples using Ishak fibrosis score, and inflammation was scored using the 
Hepatic Activity Index (HAI)6,58. For RNA-sequencing analysis, liver 
tissue sample (10 mg) was snap frozen and stored at −80 °C. Total 
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RNA extraction was performed simultaneously on the liver biopsies 
collected at HCVi and SVR timepoints. To minimize batch effect, sam-
ples were coded without regard to their respective timepoints and 
processed in a blinded manner. This was done using TRIzol (catalogue 
number 15596026) and Qiagen RNA Extraction Kit (catalogue number 
74104). A poly-A selection was performed on the total RNA samples 
using NEBNext Poly (A) Selection kit (catalogue number E7490S). The 
RNA library was prepared using the poly-A selected RNA and ScriptSeq 
RNA library Prep Kit (catalogue number SSV21106). All complementary 
DNA libraries were quantified using KAPA Biosystems Illumina qPCR 
Kit (Roche, catalogue number 07960140001), normalized and submit-
ted to the NIDDK Genomics Core for Illumina HiSeq 4000 sequencing. 
Raw sequencing files were aligned to the Homo sapiens hg38 reference 
genome using STAR in Partek Flow (Version 10.0) (Computer software, 
Partek Inc. 2020). Sequences were filtered using a cut-off threshold of 
<40 million reads with Phred scores <30 for all 50 bp sequenced. Of the 
24,380 genes identified, batch effect removal, pre-analysis data filter-
ing and differential gene expression were performed using DESeq2 R 
package. Two patients (from HCVi cohort) failed quality control and 
were excluded from analysis involving liver transcriptome data from 
HCVi, resulting in n = 27 for HCVi and n = 23 for SVR.

Clinical markers of liver disease
Biochemical assays were performed on a Cobas C 501 system to meas-
ure alanine aminotransferase (ALT), AST, albumin, and total and 
direct bilirubin. Complete blood counts were drawn in 3 ml K2 EDTA 
tubes (Ref 367856, Becton, Dickinson and Company), measured on 
Sysmex system.

Serum immune and microbial markers
In total, 65 serum markers were measured in HCVi cohort and 61 of the 
65 serum markers were measured again in SVR. IL-2, IL-4, IL-6, IL-8, IL-10, 
IL-12p70, IL-13 and TNFα were measured with the V-PLEX Proinflamma-
tory Panel 1 Human Kit (Meso Scale Diagnostics, catalogue number 
K15049D-1); GM-CSF, IL-1α, IL-5, IL-7, IL-12/IL-23p40, IL-15, IL-16, IL-17 
and TNFβ were assessed with the V-PLEX Cytokine Panel 1 Human Kit 
(Meso Scale Diagnostics, catalogue number K15050D-1); IL-18 was 
measured with Human IL-18 Kit (Meso Scale Diagnostics, catalogue 
number K151MCD-2); interferons (IFNα, IFNβ, IFNγ and IFNλ) were 
measured using U-PLEX Interferon Combo Human (Meso Scale Diag-
nostics, catalogue number K094K-1); VEGFR1, bFGF, PIGF, Tie2, VEGF-A, 
VEGF-C and VEGF-D were measured with the V-PLEX Angiogenesis Panel 
1 Human Kit (Meso Scale Diagnostics, catalogue number K15190D-1). 
E-selectin, P-selectin, sICAM3 and thrombomodulin were measured 
with the Human Vascular Injury Panel 1 Human Kit (Meso Scale Diag-
nostics, catalogue number K15135C-1). SAA, CRP, sVCAM1 and sICAM1 
were measured with the V-PLEX Vascular Injury Panel 2 Human Kit 
(Meso Scale Diagnostics, catalogue number K15198D-1). TGFβ was 
measured with Human TGF-β 1 Kit (Meso Scale Diagnostics, catalogue 
number K151IUC-1). Eotaxin, MDC, CCL26, MIP1α, MIP1β, TARC, MCP1, 
MCP4 and CXCL10 were measured with the V-PLEX Chemokine Panel 
1 Human Kit (R&D Systems, catalogue number K15047D-1); soluble 
CD163 (sCD163) and soluble CD14 (sCD14) were measured with a Quan-
tikine ELISA kit for human sCD163 and human sCD14 (R&D Systems, 
catalogue numbers DC1630, and DC140 respectively); PDGF-AA and 
PDGF-BB were measured with Human/Mouse PDGF-AA Quantikine 
Elisa Kit and Human PDGF-BB Quantikine Elisa Kit (R&D Systems, cata-
logue numbers DAA00B and DBB00, respectively). CCL5, CXCL4 and 
CXCL9 were measured with Human CCL5/RANTES Quantikine ELISA 
Kit, Human PF4/CXCL4 Quantikine ELISA Kit and Human CXCL9/MIG 
Quantikine ELISA Kit (R&D Systems, catalogue numbers DRN00B, 
DPF40 and DCX900, respectively); FGF19 with Human FGF-19 Quan-
tikine ELISA Kit (R&D Systems, catalogue number DF1900). Zonulin 
was measured using Mybiosource Human Zonulin ELISA Kit (cata-
logue number MBS706368). Lipopolysaccharide was measured with 

Lonza QCL-1000 120 Test Kit (catalogue number 50-647U); endotoxin 
with Lonza Kinetic-QCL 192 Test Kit (catalogue number 50-650U), 
lipoteichoic acid with General LTA ELISA Kit (catalogue number 
MBS288308), peptidoglycan with Mybiosource Human Peptidoglycan 
(PG) ELISA Kit (catalogue number MBS751887) and 1,3-β-d-glucan with 
Fungitell 1,3-β-d-Glucan ELISA Kit (Associates of Cape Cod Incorpo-
rated) (catalogue number FT001). HMGB1 was measured with ELISA 
HMGB1, 96DET Reagent, HMGB1 ELISA kit (Tecan, catalogue number 
ST51011). PDGFRa was measured with PDGFRa Human ELISA Kit (Cedar-
lane Labs, catalogue number SEC060HU), and iC3b was measured 
with Microvue iC3b (Quidel, catalogue number A006). Each assay 
was conducted following the respective manufacturers’ protocols. All 
assays were performed in serum and in duplicate.

Flow cytometry
EDTA anti-coagulated peripheral and portal blood samples were pro-
cessed for flow cytometry using a whole blood lysis method, stained 
with fluorescent antibodies, collected with a FACS Canto II (Becton 
Dickinson) and analysed using FCS Express software (De Novo). 
Lymphocytes were identified on the basis of a gate (Supplementary 
Fig. 2) established by forward and side angle scatter and confirmed 
using anti-CD45 and anti-CD14. B cells were identified by directly 
conjugated monoclonal antibodies: anti-CD20, anti-CD19, anti-CD5, 
anti-CD10, anti-IgM, anti-CD38 and anti-CD27. Irrelevant, directly 
conjugated, murine IgG1 was used to ascertain background staining. 
All monoclonal antibodies were obtained from Becton Dickinson, 
except for anti-Vβ-11 and anti-CD45RA (Beckman-Coulter), anti-IgM 
and anti-Vα-24 (BioLegend), anti-CD4, anti-CD45, anti-CD14, anti-CD19, 
anti-CD10 and anti-CD27 (Life Technologies) and anti- α4β7 (NIH AIDS 
Reagent Program, National Institute of Allergy and Infectious Dis-
eases (NIAID), NIH). For information on antibody dilutions/amounts, 
company names and catalogue numbers for antibodies used, refer to 
Supplementary Table 10.

Non-targeted global metabolite profiling
Metabolon conducted the global metabolomics assays in peripheral 
and portal serum at both timepoints as detailed below. Sample han-
dling, quality control and data extraction along with biochemical 
identification, data curation, quantification and data normalizations 
were performed as detailed below59.

The original HCVi metabolomic data from 29 patients contained 
a total of 1,541 metabolites and were used for metabolomic analy-
sis within HCVi (SourceData_Metabolites_IndividualCohorts). Simi-
larly, the SVR metabolomic data from 23 patients contained a total of 
1,786 metabolites and were used for metabolomic analysis within SVR 
(SourceData_Metabolites_IndividualCohorts). To perform paired analy-
sis on the 23 patients in both HCVi and SVR cohorts, 12 anchor samples 
or technical replicates from the HCVi cohort were re-submitted and 
analysed simultaneously with the SVR serum samples to facilitate merg-
ing of the two datasets. A 50% fill value was required for each metabolite 
for the purposes of merging, and consequently, metabolites that did 
not meet this criterion were excluded from the final merged dataset. 
This anchored analysis generated 1,256 metabolites to be used for 
paired analysis between HCVi and SVR cohorts (SourceData_Metabo-
lites_PairedCohorts). All samples were analysed on Metabolon’s global 
metabolic profiling (HD4) and complex lipid panel (CLP) platforms. 
The experimental samples were loaded in a balanced and equivalent 
manner across the analytical platforms and analysed without any 
further normalization.

Metabolites were extracted in methanol with vigorous shaking 
for 2 min (Glen Mills Genogrinder 2000) followed by centrifugation. 
The resulting extract was divided into aliquots, dried and then recon-
stituted in acidic or basis liquid chromatography (LC)-compatible 
solvents for analysis by four ultraperformance liquid chromatog-
raphy–tandem mass spectrometry (UPLC–MS/MS) methods60.  
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Two aliquots were analysed using acidic, positive ion conditions, chro-
matographically optimized for either hydrophilic or hydrophobic 
compounds, respectively. For detection of the hydrophilic compounds, 
the extract was gradient eluted from a C18 column (Waters UPLC BEH 
C18-2.1 × 100 mm, 1.7 µm) using water and methanol, containing 0.05% 
perfluoropentanoic acid and 0.1% formic acid. For the hydrophobic 
compounds, the extract was gradient eluted from the C18 column 
(Waters UPLC BEH C18-2.1 × 100 mm, 1.7 µm) using methanol, acetoni-
trile, water, 0.05% perfluoropentanoic acid and 0.01% formic acid and 
was operated at an overall higher organic content. A third aliquot was 
analysed using basic negative ion optimized conditions and gradient 
eluted using a separate dedicated C18 column (Waters UPLC BEH C18-
2.1 × 100 mm, 1.7 µm) using water and methanol containing 6.5 mM 
ammonium bicarbonate. A final aliquot was analysed via negative 
ionization following elution from a HILIC column (Waters UPLC BEH 
Amide 2.1 × 150 mm, 1.7 µm) using a gradient consisting of water and 
acetonitrile with 10 mM ammonium formate. The mass spectrometry 
(MS) analysis alternated between MS and data-dependent MS2 scans 
using dynamic exclusion, and the scan ranged from 80 to 1,000 m/z. 
Metabolites were identified by automated comparison of the ion fea-
tures in the experimental samples to a reference library of chemical 
standard entries that included retention time, molecular weight (m/z), 
preferred adducts and in-source fragments as well as associated MS 
spectra, and were curated by visual inspection for quality control using 
software developed at Metabolon61.

Measurement of circulating short-chain FAs
Detection and quantification of peripheral and portal plasma 
short-chain FAs were analysed and characterized by UPLC–MS/MS, uti-
lizing a Thermo Scientific Vanquish UPLC and a Thermo Scientific Altis 
triple quadrupole mass spectrometer with heated electrospray ioniza-
tion (ESI; HESI-II, Thermo Scientific) in negative ion mode (3,500 V). 
The internal standard (IS) solution was prepared in MeOH containing 
2-ethylbutyric acid. The short-chain FFA standards were mixed with 
acetic acid (C2), propionic acid (C3), butyric acid (C4), valeric acid 
(C5) and caproic acid (C6) at different ranges of concentrations. Fifty 
microlitres of mixed short-chain FFA standards was added to 300 µl of IS 
solution and vortexed for 5 min, then 250 µl of mixture was transferred 
into an LC–MS vial. Fifty microlitres of plasma sample was mixed with 
300 µl of IS solution, vortexed vigorously for 5 min, and centrifuged at 
4 °C, then 250 µl of clear supernatant was transferred into an LC–MS 
vial. The derivatization was carried out for both standards and samples 
by adding 20 µl of 200 mM 3-nitrophenylhydrazine, 20 µl of 320 mM 
N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide, HCl (EDAC) in 75% 
methanol and 20 µl of 16% pyridine in methanol. The derivatization reac-
tion was incubated at 4 °C for 24 h. Finally, the derivatization solutions 
(2 µl) were analysed by means of UPLC–ESI–MS/MS. A reverse-phase 
analysis was performed via an Acquity UPLC BEH C 18 column (1.7 µm, 
2.1 × 100 mm) at 40 °C, and the samples were maintained in the autosa-
mpler at 4 °C. The mobile phase consisting of solvent A (0.1% formic acid 
in water) and solvent B (0.1% formic acid in Acetonitrile) was delivered 
at a flow rate of 0.35 ml min−1, 12 min for each injection. The gradient 
elution was as follows: B% = 15, 15, 55, 100 and 15 (0, 0.25, 7.25, 8.75 and 
11.25 min). Quantitation of the short-chain FFA were based on MS/MS 
transitions. Standards were calibrated with R2 > 0.99.

Measurement of circulating lipoprotein particles
Portal and peripheral plasma lipids (total cholesterol, triglycerides and 
high-density lipoprotein (HDL)-C) were measured by the Cobas6000 
analyser (Roche Diagnostics). Plasma lipoprotein particles numbers 
were measured by nuclear magnetic resonance (NMR) on the Vantera 
Analyzer (LabCorp), which uses Lp4 deconvolution algorithm (LP4) 
to quantify lipoprotein subspecies. NMR has inherently high resolv-
ing power to discriminate HDL particles differing only slightly in size, 
but previous algorithms did not fully exploit this capability. The LP4 

algorithm measures seven different HDL subspecies with improved 
precision and corrects a prior systematic overestimation of the abso-
lute concentrations of HDL particles (responsible for apoA-1/HDL-P 
ratios that were improbably low)62. New HDL subclass signal to particle 
conversion factors were determined by regression of the NMR subclass 
signal areas against plasma apoA-1 concentrations, producing ‘cali-
brated’ HDL particle concentrations (cHDLP) that are ~30% lower than 
previous HDLP values. This platform quantified six HDL subspecies, 
H1P through H7P numbered from lowest HDL particle concentration 
(H1P) to highest HDL particle concentration (H7P). Also corrected 
was an aspect of prior deconvolution models that led to systematic 
underestimation of LDL particle concentrations (owing to imper-
fect modelling of the plasma protein background signal). As a result, 
calibrated LP4 LDL particle concentrations (cLDLP) are now higher by 
about 350 nmol l−1 while remaining highly correlated (r = ~0.95) with 
previous LDL-P values and retaining equivalently strong associations 
with cardiovascular outcomes. Finally, linear regressions of subclass 
signal areas against independent chemical measures of cholesterol, 
triglycerides and apolipoproteins from a large population sample have 
produced conversion factors enabling the reporting of NMR-derived 
lipid and apolipoprotein concentrations. The current software ver-
sion reports 45 parameters, while simultaneously measuring a novel 
NMR inflammation biomarker (GlycA)62 plus five multimarkers that 
combine selected NMR parameters into ‘scores’ for the assessment 
of diabetes risk or prediction of longevity. These include Lipoprotein 
Insulin Resistance Index (LP-IR), Insulin Resistance Diabetes Risk Factor 
Index (IRDRF), Short-term Diabetes Risk Factor Index (SDRF), 5-Year 
Diabetes Risk Factor Index (DRF5) and NMR Longevity Index (LGVX). 
We have reported these scores calculated from lipoprotein particles 
measured in both portal and peripheral plasma.

Bioinformatics and integrative analyses on omics data
SNF. We utilized SNF, developed by Wang et al.17, a data integration 
method that systematically captures both shared and complementary 
information from different data sources17. All computations were car-
ried out on R 4.0.2 (R Core Team 2020) with the R packages SNFtool 
and bnstruct (https://www.r-project.org).

HCVi metabolites. We first confirmed that the peripheral and portal 
datasets contain the same set of analytes. Within each dataset, 1,541 
metabolites spanned 25 pathway classes, for example, lipid, nucleotide, 
amino acid and so on. We performed the following steps on each data-
set, independent of each other. Each metabolite class was normalized 
using the standardNormalization function, which was then used to 
compute the distances between the patients (n = 29) using the dist2 
function. The resulting 29-by-29 distance matrix was transformed to 
an affinity matrix through a scaled exponential similarity kernel. We 
used the affinityMatrix (K = 10, σ = 0.5) function for the transforma-
tion. K represents the number of nearest neighbours, whereas σ is a 
hyperparameter that measures the variance of local model. The affinity 
matrix, W, describes a patient similarity network graph where the edge 
between patient i and j has an edge weight of W(i,j), the degree of simi-
larity between the patients. We repeated this process for all 25 pathway 
classes to obtain 25 affinity matrices. The matrices were fused using the 
SNF (K = 10, t = 25) function. K represents the number of neighbours in 
the k-nearest neighbours’ part of the SNF analysis algorithm, and t is the 
number of iterations in the fusion process. The fused matrix contains 
the comprehensive information of the 25 patient networks. Finally, 
we applied spectralClustering(C=2) function on the fused affinity 
matrix to cluster the patients into two groups. Using Welch’s t-test, we 
compared the mean Ishak scores of the groups.

HCVi cytokines. We first verified that the peripheral and portal data-
sets share the same set of analytes. There were 65 common cytokines 
across the datasets. Data pre-processing for the cytokine data involved 
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missing data omission and imputation. Following Wang et al., the 
cytokines with more than 20% missing data were omitted from the 
analyses (none met this cut-off). The remaining missing data were 
imputed using the k-nearest neighbours’ algorithm from the R package 
bnstruct. Unlike the metabolite datasets, where we were able to group 
the analytes on the basis of their pathway classes, there was no obvious 
way to group the cytokines. Thus, we produced only one affinity matrix 
for each dataset, and hence the fusion algorithm was not necessary 
in this case. We followed the steps described earlier to construct two 
affinity matrices, one for the peripheral and the other for the portal 
dataset, that convey the patient similarity information. Using spectral 
clustering, we obtained two groups. We used Welch’s t-test to compare 
the means of Ishak scores of the groups.

Logistic regression. For logistic regression modelling, we utilized the 
Python package Scikit-Learn (https://scikit-learn.org)63. All computa-
tions were performed with Python version 3.9.5. The patients’ Ishak 
scores were transformed to a binary variable. To evenly distribute the 
patients, Ishak scores less than or equal to 3 were labelled ‘0’, and the 
scores greater than 3 were labelled ‘1’. Following the algorithm of spec-
tral clustering, we obtained L, the normalized Laplacian of the affinity 
matrix, and constructed a 29-by-2 matrix whose columns are the eigen-
vectors associated with two smallest eigenvalues of L. We trained and 
tested logistic regression models on this 29-by-2 matrix. The models 
were trained and tested with 20 different combinations of train/test sets 
with 23 training samples and 6 testing samples. The model accuracy was 
evaluated with the mean precision and the mean F1 score of the test sets.

16S rRNA analysis on faecal samples
HCVi and SVR faecal samples were collected and flash frozen with stor-
age at −80 °C. PowerSoil DNA Isolation Kit (MO BIO, catalogue number 
12888-100) was used to extract total DNA following a modified protocol 
for DNA extraction from faeces64. Magnetic bead purification was used 
in place of column binding purification. The 16S region was amplified 
from total DNA using primers targeting the V4 region of 16S SSU rRNA 
(515f-806r). Paired-end sequencing of the 16S amplicons was con-
ducted by the NIDDK Genomics Core on the Illumina MiSeq (2 × 150 bp). 
Paired-end FASTQ files were processed and analysed with QIIME v1.9.1 
on the Nephele platform from the NIAID Office of Cyber Infrastructure 
and Computational Biology (OCICB) in Bethesda, MD https://nephele. 
niaid.nih.gov. For pre-processing, the minimum Phred quality score was 
19 and the Phred offset was 33. Reads were joined using the following 
parameters: max bad run length of 3, minimum overlap length of 10, and 
25% difference within overlap. For alignment, operational taxonomic 
units were matched to known bacterial sequences using the reference 
database Greengenes, used at 99% sequence similarity.

Gut ecology analysis on faecal 16S rRNA using SparCC. To infer 
the taxon–taxon correlations from the faecal 16S rRNA, we utilized 
SparCC35, a technique for estimating correlation values from compo-
sitional data. The computations were carried out on Python 3.9.5 with 
the Python module SparCC (https://github.com/JCSzamosi/SparCC3). 
Firstly, the correlation between the relative abundance of microbial 
genera derived from faecal 16S rRNA were computed (342 genera in 
total). Then we generated 100 shuffled datasets, as described by Fried-
man et al., and computed correlations for each of the shuffled dataset. 
Finally, for each component pair, pseudo P values were calculated to 
determine statistical significance of the correlations with two-sided 
comparison. Pseudo P value for each component pair is defined as 
proportion of shuffled datasets for which the corresponding correla-
tion value at least as extreme as the original data.

Microbial metatranscriptomics analysis on faecal samples
Using the same faecal samples as noted in the 16S rRNA analysis section, 
total RNA extraction was performed using TRIzol (catalogue number 

15596026) and Qiagen RNA Extraction Kit (catalogue number 74104). 
A DNAase (Ambion Turbo DNA Free Kit; Invitrogen, catalogue number 
AM1907) was added to digest DNA, leaving RNA to form a cDNA library. 
All cDNA libraries were quantified using KAPA Biosystems Illumina 
qPCR kit (Roche, catalogue number 07960140001). The cDNA librar-
ies were normalized and submitted to the NIDDK Genomics Core for 
Illumina HiSeq 4000 sequencing. Every faecal sample had a minimum 
of 40 million single-end reads trimmed to have minimum Phred quality 
score of 30 for each base pair.

Generation of a non-redundant metatranscriptomics reference 
gene catalogue and quantification of metatranscriptomics sam-
ples. Illumina raw metatranscriptomics data from 26 faecal samples in 
HCVi and 23 faecal samples in SVR were processed using MOCAT2 pipe-
line65. In brief, raw sequence reads were trimmed and quality filtered 
(MOCAT.pl rtf) with a length of 30 bp and quality of 20 bp cut-offs using 
FastX program (http://hannonlab.cshl.edu/fastx_toolkit/). High-quality 
reads were screened (MOCAT.pl -s hg19) for human contamination 
against provided human genome database (hg19, Genome Reference 
Consortium Human Reference37) using SOAPAligner (version 2.21). The 
screened reads were assembled into contiguous sequences (contigs) 
(MOCAT.pl -a -r hg19) with a minimum length of 500 bp using SOAPDe-
novo software (version 2.04). The construction of the non-redundant 
gene catalogue (MOCAT.pl -make_gene_catalog -assembly_type assem-
bly -r hg19) was achieved by, first, predicting genes from long contigs 
(MOCAT.pl -sf samples -gp assembly -r hg19) by MetaGeneMark soft-
ware (version 3.38), and then clustering them into non-redundant gene 
sets using CD-HIT.

High-quality reads were mapped to the annotated gene catalogue 
with 95% identity cut-off (MOCAT.pl -s samples.padded -r hg19 -identity 
95) using SOAPAligner (version 2.21), where all uniquely mapped 
sequences were used to quantify microbial transcripts65.

De novo assembly of metatranscriptome by co-abundance clus-
tering; taxonomical annotation. The gene catalogue was clustered 
by co-abundance19. Briefly, canopy clustering algorithm performs a 
perpetual iteration of points (predicted genes) in multi-dimensional 
Pearson correlation space until the data converges, https://github. 
com/fplaza/mgs-canopy-algorithm. This method allows to perform 
de novo assembly of the metatranscriptome. The co-abundance clus-
tering resulted in 696 CAGs in HCVi and 642 CAGs in SVR. For the down-
stream analysis only the largest CAGs with more than 700 genes in 
each, further referred to as transcriptionally active microbial species 
were selected: 24 CAGs in HCVi and 14 CAGs in SVR. To taxonomically 
annotate the transcriptionally active microbial species, catalogue 
genes from each CAG were mapped to known reference genomes using 
BLASTN (version 2.10.0+, NCBI nt database, March 2020 release https:// 
blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastHome) 
at a threshold of 95% identity and filtered for genes with longer than 
100 bp alignments. The transcriptionally active microbial species 
were assigned to a given genome with the most abundant species. 
Major driver species count table was constructed using the median 
gene transcription expression throughout the samples. For M. smithii 
correlations in SVR, microbial mRNA sequence reads were mapped to 
NCBI database, and the transcriptional activity was quantified based 
on NCBI taxonomic levels.

Profiling and taxonomic annotation of functional orthologues. For 
creating microbial functional profiles from KO genes, we used MetaHIT 
Consortium catalogue of over 3 million distinct nucleic acid sequences 
as a reference66. In total, 889,668 individual nucleotide sequences from 
MetaHit were aligned to the samples’ trimmed reads using Bowtie in 
Partek Flow (Version 10.0) (Computer software, Partek 2020). The dis-
tinct nucleotide sequences were then summarized into 4,718 microbial 
KO genes. These KO genes were then summarized into microbiome 
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functional KEGG modules67 based on annotations downloaded on 14 
January 2014 to form metatranscriptomics functional potentials for 
the downstream analysis. Individual functional orthologues were taxo-
nomically annotated using BLASTN (version 2.10.0+, NCBI nt database. 
March 2020 release) at a threshold of 99% identity and 95% coverage.

Driver-species analysis or leave-one-out analysis on the transcrip-
tionally active microbial species. To identify the transcriptionally 
active microbial species that have the most contribution to the asso-
ciation between KEGG functional modules and the clinical pheno-
type, leave-one-out analysis was performed18,68. In each iteration, the 
phenotype–KEGG functional module association was calculated after 
excluding the genes from a given transcriptionally active microbial spe-
cies. The importance of a given species was then defined as the highest 
change in median Spearman correlation coefficient between KOs and 
the clinical phenotype resulting from removing the genes from a given 
transcriptionally active microbial species.

Data dimensionality reduction
Knowledge-driven dimensionality reduction. Up-to-date human 
KEGG pathway gene sets were generated using kegg.gsets function 
from GAGE R package (version 2.201) (ref. 69). A total of 19,960 hepatic 
genes were grouped into KEGG pathways67 with a total number of 319 
pathways. Microbial KO genes were mapped into KEGG functional 
modules as noted above.

Data-driven clustering. To evaluate which hepatic genes or portal 
metabolites are co-expressed in similar clusters both at HCVi and SVR 
timepoints, consensus clustering was performed on hepatic transcrip-
tome and 600 Human Metabolome Database mapped portal metabo-
lites using WGCNA (version 1.69) framework70 available as an R package. 
Consensus clusters were assigned using modules constructed from 
paired samples at the two timepoints HCVi and SVR following WGCNA 
standards as described70,71. The parameter selection for consensus 
WGCNA construction on liver transcriptome included soft threshold 
β/power 16, minModuleSize 30, deepSplit 2; and for portal metabo-
lites soft threshold β/power 12, minModuleSize 30, deepSplit 2. The 
consensus WGCNA modules were labelled by colours70,71.

WGCNA was also utilized for clustering portal metabolomics and 
microbial KO genes for independent analyses in HCVi and SVR. A total of 
600 Human Metabolome Database mapped portal metabolites in HCVi 
and microbial metatranscriptome KOs genes generated from alignment 
to the MetaHIT Consortium database in SVR were used to generate six 
portal metabolite modules and nine microbial KO modules, respec-
tively. Co-expression correlations were calculated using bicor function, 
which performs biweight midcorrelations (a median-based correlation 
measure that is more robust to the presence of the outliers in the data). 
A signed, weighted metabolite network was constructed by applying 
the scale-free topology criterion to choose the soft threshold β = 6. 
Modules or clusters of densely inter-connected portal metabolites 
and microbial KO genes were determined by implementing a dynamic 
branch cutting method71, using deepSplit of 4 for portal metabolites 
and deepSplit of 2 for microbial KO; and minModuleSize of 30 for 
both datasets. The metabolite and microbial KO profiles constituting 
a given cluster are summarized by the cluster eigenvectors (the first 
principal component of the metabolite abundances). To distinguish 
from consensus WGCNA modules, the single-timepoint WGCNA portal 
metabolite modules were labelled as numbers from M01 through M08 
(Source Data Fig. 5).

Modules were then tested for association with markers of liver dis-
ease at HCVi and SVR timepoints, including Ishak fibrosis score, direct 
portal pressure, HAI, ALT, AST, ALP, GGT, total bilirubin, prothrombin 
time (PT), prothrombin time international normalized ratio (PT INR) 
and albumin using Pearson correlation, Fisher’s asymptotic two-sided 
unadjusted P value <0.05.

Pathway enrichment and data visualization
Pathway enrichment on liver transcriptome comparing HCVi and 
SVR. To identify pathways altered in HCVi compared with SVR, we used 
the DEGs with FDR P value <0.1 obtained from DeSeq2 paired analysis 
comparing HCVi and SVR (2,743 upregulated and 2,380 downregulated 
DEGs). NetworkAnalyst https://www.networkanalyst.ca was used to 
perform over-representation analysis on the DEGs, and pathways were 
annotated to KEGG database using hypergeometric tests to compute 
FDR-corrected P values for enrichment. Fold enrichment for each 
pathway was calculated as the ratio of actual/expected gene hits. We 
also performed gene set enrichment on the above DEGs using GAGE R 
package (version 2.201) (ref. 69) using curated gene sets from the KEGG 
database67. Pathways significantly altered (FDR P value <0.1) were then 
visualized using PathView R package (version 1.20.1).

Identification of predominant cellular location for hepatic path-
ways comparing HCVi and SVR. To identify the predominant cel-
lular location for the hepatic DEGs downregulated in HCVi compared 
with SVR, we used GO by cellular component database. Specifically, 
over-representation analysis was performed with Homo sapiens refer-
ence database in PANTHER, Fisher’s exact test with FDR P value <0.1  
(ref. 72). This cellular location enrichment was also utilized to group the 
42 metabolic pathways inversely correlating with fibrosis in HCVi. Any 
pathway that had at least one hit in mitochondria and/or peroxisomes 
with FDR <0.1 in GO cellular component pathway analysis were classi-
fied as mitochondria and/or peroxisome. Pathways with no mitochon-
dria and/or peroxisome hits were classified as ‘Other’.

GSEA to determine hepatic pathways altered on the basis of fibro-
sis. To determine hepatic functional alterations in cirrhosis, we also 
performed gene set enrichment analysis (GSEA) on the HCVi liver tran-
scriptome (n = 27) using enrichment methods previously published73. 
Pre-ranked analysis with cirrhosis as disease phenotype was performed 
on the DeSeq2 output comparing HCVi-Cirr and HCVi-NC subgroups 
(HCVi-Cirr n = 12 and HCVi-NC n = 15). Formula for pre-ranking was per 
GSEA protocol (−log10 unadjusted P value × sign (log fold change)]. The 
reference gene sets were curated from Baderlabs AllPathways_Go_
noiea_keggappended (updated April 2019). Enrichment parameters 
to generate enrichment networks in Cytoscape included weighted 
analysis with 1,000 permutations, enrichment networks filtered for 
gene set size of 15–200, enrichment-unadjusted P < 0.005 and FDR 
P value <0.05, Jaccard overlap combined co-efficient of 0.375 and 
constant of 0.5. Owing to the large number of gene sets upregulated in 
HCVi-Cir, we further organized the 4,434 genes in the 379 upregulated 
pathways in HCVi-Cirr using ClusterMaker, WordCloud annotation, 
and then manually grouping the gene sets on the basis of fundamental 
biological processes to obtain a final summary network73.

GSEA was also utilized to perform pathway enrichment analysis 
between HCVi and SVR within subgroups stratified by cirrhosis, that is, 
non-cirrhotic and cirrhotic subgroups. In this case, pre-ranked analysis 
was performed on the DeSeq2 output for the paired analysis between 
HCVi-NC versus SVR-NC and HCVi-Cirr versus SVR-Cirr. Of note, among 
the 22 patients who completed both timepoint evaluations, 2 patients 
were excluded from this analysis as they had a change in fibrosis cat-
egory between the HCVi and SVR timepoints, that is, HCVi-Cirr and 
SVR-Cirr based on Ishak fibrosis scores 5–6, n = 7 and HCVi-NC versus 
SVR-NC based on Ishak fibrosis scores 0–4, n = 13. Enrichment network 
visualization of the pathways downregulated in HCVi compared with 
SVR subgroups was illustrated using Cytoscape with the same param-
eters as noted above.

Pathway enrichment on microbial metatranscriptome in SVR. Path-
way enrichment on microbial functional KO gene module ‘MEgreen’ 
constructed using WGCNA in SVR was performed using a publicly avail-
able software, MicrobiomeAnalyst (MicrobiomeAnalystR package). 

http://www.nature.com/naturemicrobiology
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The list of KO genes in MEgreen was used as input in the Shotgun Data 
Profiling pipeline that revealed statistically significant KEGG functional 
pathways enriched in MEgreen (https://www.microbiomeanalyst.ca).

Statistical analysis for subgroup comparisons
Statistical analysis was performed using GraphPad Prism 8.0 (GraphPad 
Software) and R software (versions 3.5.0 and 4.0.2). Non-parametric 
tests were exclusively used for correlations and comparisons. All P val-
ues were two-sided and adjusted using FDR when applicable. Descrip-
tive characteristics were summarized using median and inter-quartile 
range (IQR). Correlations between parameters of interest were assessed 
using Spearman correlation. Paired comparisons were performed using 
two-sided Wilcoxon matched-pairs signed-rank test and unpaired 
comparisons based on disease severity using two-sided Mann–Whitney 
U test. For all statistical analysis, the data distribution was assumed to 
be normal, but this was not formally tested.

Statistical analysis for data integration
All statistical analyses were carried out using R (version 3.5.0). Tran-
scriptionally active driver species (CAGs), hepatic genes and microbial 
KOs present in fewer than three individuals were excluded from the 
analysis. The integration of different omics data types was achieved 
by using the pipeline18,68. In summary, after constructing the modules 
for hepatic KEGG pathways and microbiome KEGG functional modules, 
the dataset was filtered by choosing only features significantly (Ben-
jamini–Hochberg FDR <0.1) associated with the clinical phenotype, 
that is, Ishak fibrosis score, and/or liver enzymes (ALT, AST, ALP and 
GGT). The phenotype correlation analyses were conducted with a 
Spearman rank correlation test corrected for background distribu-
tion in hepatic pathways and microbial modules using the SCCbg.adj. 
reported by Pedersen et al.18. Cross-omics associations on a cluster 
level were calculated using Mann–Whitney U- test, where the ranks 
of hepatic genes and microbial KOs within a given KEGG pathway or 
KEGG functional module were compared with the ranks of the rest of 
hepatic genes or KOs.

Additional resources
Clinical trial registry number for the protocol is NCT02400216.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Please note that the microbial and liver transcriptome sequence and 
microbial 16S rRNA sequence dataset has been made available in the 
BioProject repository. The accession number for this repository is 
PRJNA727609. The serum metabolomics data have been uploaded as 
source data (SourceData_Metabolites_IndividualCohorts and Source-
Data_Metabolites_PairedCohorts). Additional minimum input data 
necessary to interpret the figures and findings have been provided 
as source data where appropriate. Homo sapiens hg38 reference 
genome was sourced from https://www.ncbi.nlm.nih.gov/assembly/ 
GCF_000001405.26/. Source data are provided with this paper.

Code availability
There was no custom code or mathematical algorithm utilized in  
this study.
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Extended Data Fig. 1 | Graphical Abstract. Hepatic metabolism in peroxisomes 
and mitochondria is decreased in chronic HCV infected patients (HCVi) 
compared to SVR. Fibrosis and necroinflammation in HCVi were linked to 
increased transcriptional activity of Anaerostipes hadrus mediated fatty acid 
synthesis and Bacteroides vulgatus mediated intestinal glycan degradation. 
Microbial-derived fatty acids and glycan products are elevated in portal 

circulation and linked to enhanced portal and hepatic inflammation in HCVi. 
Despite decreased hepatic and portal inflammation six months after SVR, hepatic 
metabolism and peroxisome function remains decreased in SVR with advanced 
fibrosis. Methanobrevibacter smithii showed decreased function in SVR fibrosis 
and may have anti-inflammatory properties.
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Extended Data Fig. 2 | Biochemical and histological markers of inflammation 
were elevated in HCVi compared to SVR. Wilcoxon matched pairs signed rank 
test, two-sided unadjusted p-value. Compared to SVR, HCVi patients had elevated 
serum markers of hepatocellular inflammation (ALT, alanine aminotransferase 
p < 0.0001; AST, aspartate aminotransferase p < 0.0001; GGT, gamma-glutamyl 

transferase p = 0.0001); histological marker of inflammation (HAI, Hepatic 
Activity index) p < 0.0001; and elevated serum total bilirubin p = 0.0010. HCVi 
showed no significant difference in fibrosis p = 0.2483, direct portal pressures 
p = 0.8175, or alkaline phosphatase p = 0.1172. Scatter plots with bars, data is 
presented as median values + /- IQR. n = 22.
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Extended Data Fig. 3 | Decreased hepatic fatty acid degradation in HCVi 
when compared to SVR. Graphical representation using GAGE R of the hepatic 
KEGG functional pathway ‘Fatty Acid Degradation’ significantly downregulated 

in HCVi compared to SVR (FDRp < 0.1). Within each pathway significant DEGs 
are highlighted blue for fold-change >0 and red for fold-change<0 in HCVi when 
compared with SVR (FDRp < 0.1). n = 22.

http://www.nature.com/naturemicrobiology


Nature Microbiology

Article https://doi.org/10.1038/s41564-022-01273-y

Extended Data Fig. 4 | No significant difference in gut microbial composition 
at phylum level based on presence of cirrhosis in HCVi or SVR. Fecal 16 S rRNA 
analysis was performed on fecal samples. Relative abundance of phyla plotted 

in pie-charts for patient subgroups based on cirrhosis. a) HCVi-Cirr (n = 13) and 
HCVi-NC (n = 16). b) SVR-Cirr (n = 9) and SVR-NC (n = 14). Analysis performed 
using QIIME.
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Extended Data Fig. 5 | Microbial metatranscriptome analysis revealed distinct microbial functions associated with hepatocellular injury in HCVi. Within 
HCVi cohort, AST (a) and GGT (b) significantly correlated with microbial KEGG functional modules for glycan degradation including heparan and dermatan sulfate 
degradation (SCCbg.adj, two-sided, FDRp<0.1). n = 26.
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Extended Data Fig. 6 | Serum markers of gut dysbiosis and intestinal 
dysfunction elevated in HCVi when compared to SVR. Paired comparison of 
serum IL18 (marker of dysbiosis) and zonulin (marker of gut epithelial integrity) 

between HCVi and SVR cohorts (two-sided Wilcoxon matched pairs signed rank 
test, HCVi vs. SVR). Scatter plots with bars, data is presented as median values + /- 
IQR. Relative quantification of metabolites per Metabolon protocol. n = 23.

http://www.nature.com/naturemicrobiology
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection There was no custom code or mathematical algorithm utilized in this study. See Methods for details of the commercial and publicly available 
software utilized in this study.

Data analysis The following commercial and publicly available softwares were utilized in this study: R software (versions 3.5.0 and 4.0.2); Softwares Partek® 
Flow® (Version 10.0); DESeq2 R package (version 1.34.1); SNFtool and bnstruct R packages on R 4.0.2; Python package Scikit-Learn (version 
3.9.5); Python module SparCC (Python 3.9.5); SOAPAligner (version 2.21); SOAPDenovo software (version 2.04); MetaGeneMark software 
(version 3.38); BLASTN (version 2.10.0+); GAGE R package (version 2.201); WGCNA (version 1.69); NetworkAnalyst (version 2019); PathView R 
package (version 1.20.1); and MicrobiomeAnalystR package.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Please note that the microbial and liver transcriptome sequence dataset has been made available in the BioProject repository. The DOI URL is https://
www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA727609. The serum metabolomics data has been uploaded as Source Data 
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(SourceData_Metabolites_IndividualCohorts and SourceData_Metabolites_PairedCohorts). Additional minimum input data necessary to interpret the figures and 
findings has been provided as Source Data where appropriate. Homo sapiens hg38 reference genome was sourced from https://www.ncbi.nlm.nih.gov/assembly/
GCF_000001405.26/.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Prior to enrollment, we calculated the sample size as follows: sample size of 7 patients per group will provide the study with a statistical 
power of 80% at a 95% confidence level, to detect a difference of 60% in portal vein microbial product detection rate between the two 
groups. The sample size was increased to 10 patients in the minimal fibrosis group and 20 patients in the advanced fibrosis group to allow for 
withdrawals and technical failures that might occur at a higher rate in cirrhotic patients. 

Data exclusions During the first evaluation of the 30 patients that signed informed consent, one patient was excluded for incidental finding of HCC after 
signing consent, n=29 in the HCVi cohort. During the second time-point evaluation, of the 24 patients that re-signed consent, one patient re-
consented but did not complete sample collection after SVR, thus was excluded from all analysis at the SVR time-point, n=23 in SVR cohort. 
Due to failure of patient samples to meet quality control parameters (as described in the Methods), the hepatic transcriptome had n=27 in 
HCVi cohort, and n=23 for the SVR cohort. Similarly due to data filtering parameters, the microbial transcriptome had n=26 in HCVi cohort and 
n=23 in SVR cohort. For all paired analysis between HCVi and SVR, n=22. Please refer to the details in Methods Section.

Replication Given the nature of the clinical trial and limited samples collected (esp. portal vein cannulation) replication of experiments was not possible.

Randomization This was not a randomized control trial. The study was a proof-of-concept. As such, the intent was not to perform a randomized controlled 
study. Rather, the design of the study was aimed at comparing paired samples before and after an intervention (HCV treatment).

Blinding The collection and final data analysis was performed unblinded as all samples were labeled to ensure accuracy and the final analysis required 
grouping patients by disease severity or HCV treatment status. However, all experimental techniques were performed blinded with the 
samples coded and randomized. The key for the codes was only broken after data acquisition to perform final analysis.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used EDTA anticoagulated peripheral and portal blood samples were processed for flow cytometry using a whole blood lysis method, 

stained with fluorescent antibodies, collected with a FACS Canto II (Becton Dickinson [BD], San Jose, CA.) and analyzed using FCS 
Express software (De Novo, Glendale, CA). Lymphocytes were identified based on a gate established by forward and side angle 
scatter and confirmed using anti-CD45 and anti-CD14. B-cell were identified by directly conjugated monoclonal antibodies. B cells 
were identified with the following antibodies: anti-CD20, anti-CD19, anti-CD5, anti-CD10, anti-IgM, anti-CD38, and anti-CD27. 
Irrelevant, directly conjugated, murine IgG1 was used to ascertain background staining. All monoclonal antibodies were obtained 
from Becton Dickinson (San Jose, CA), except for anti-Vβ-11 and anti-CD45RA (Beckman-Coulter, Brea, CA), anti-IgM and anti-Vα-24 
(BioLegend, San Diego, CA), anti-CD4, anti-CD45, anti-CD14, anti-CD19, anti-CD10, and anti-CD27 (Life Technologies, Carlsbad, CA), 
and anti- α4β7 (NIH AIDS Reagent Program, NIAID, NIH). Refer to SuppTable5 for information on antibody dilutions/amounts, 
company names, and catalog numbers for antibodies used.
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Validation  All antibodies are validated running 40 healthy controls in the same format (cell population) as in patient protocol.

Human research participants
Policy information about studies involving human research participants

Population characteristics Please refer to Manuscript Table 1 for the covariate-relevant population characteristics and to Supplementary Table 2 for the 
relevant past and current diagnoses. Briefly, 29 patients with chronic hepatitis C were enrolled with a median age of 59, 18 of 
which were males, 19 Caucasians, 5 African American, 2 Asian, and 3 Hispanics. After HCV treatment, 23 patients with a 
median age of 58 completed re-evaluation after SVR, 14 of whom were males, 15 Caucasians, 5 African American, 1 Asian, 
and 2 Hispanics. 

Recruitment Patients were recruited to the study from the Hepatology Clinic at the National Institutes of Health Clinical Center. A total of 
36 consecutive newly referred patients with hepatitis C were initially approached for enrollment. Of these, 2 did not meet 
eligibility criteria, and 4 declined enrollment. If patients were agreeable, the study was explained in detail and informed 
consent was obtained. Of the 30 that signed consent, 1 patient was excluded due to HCC detected only after signing consent. 
As patients were enrolled consecutively from a general Hepatology Clinic, self-selection bias was minimized. We did not 
recognize any other major biases that might have a significant impact on the results particularly as the design was a proof-of-
concept non-randomized study.

Ethics oversight The National Institute of Diabetes, Digestive and Kidney Diseases, and the National Institute of Arthritis and Musculoskeletal 
Diseases, Institutional Review Board at the National Institutes of Health.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data
Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration NCT02400216

Study protocol The full trial protocol is appended in the Supplementary Information.

Data collection All data was collected and processed at the National Institutes of Health Clinical Center. The recruitment began on 5/29/2015 and 
ended on 3/11/2016.  Data collection began on 6/1/2015 and ended on 2/14/2017.

Outcomes As the design was a proof-of-concept non-randomized study, there were no relevant measures for clinical outcomes. Of note, all 29 
patients from initial recruitment responded to direct acting antiviral therapy for HCV and achieved sustained virologic response.

Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation EDTA anti-coagulated peripheral and portal blood samples were processed for flow cytometry using a whole blood lysis 
method. See Online Methods for details.

Instrument  FACS Canto II (Becton Dickinson [BD]

Software FCS Express software (De Novo, Glendale, CA)

Cell population abundance Lymphocytes

Gating strategy A back gating method is employed using CD45 vs CD14 to identify lymphocytes. Subsequently, a FSC vs SSC gate is used to 
identify the cell population and then gate on CD45 population.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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