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Immune correlates analysis of the ENSEMBLE 
single Ad26.COV2.S dose vaccine efficacy 
clinical trial

Measuring immune correlates of disease acquisition and protection 
in the context of a clinical trial is a prerequisite for improved vaccine 
design. We analysed binding and neutralizing antibody measurements 4 
weeks post vaccination as correlates of risk of moderate to severe-critical 
COVID-19 through 83 d post vaccination in the phase 3, double-blind 
placebo-controlled phase of ENSEMBLE, an international randomized 
efficacy trial of a single dose of Ad26.COV2.S. We also evaluated correlates 
of protection in the trial cohort. Of the three antibody immune markers 
we measured, we found most support for 50% inhibitory dilution (ID50) 
neutralizing antibody titre as a correlate of risk and of protection. The 
outcome hazard ratio was 0.49 (95% confidence interval 0.29, 0.81; 
P = 0.006) per 10-fold increase in ID50; vaccine efficacy was 60% (43%, 72%) 
at non-quantifiable ID50 (<2.7 IU50 ml−1) and increased to 89% (78%, 96%) 
at ID50 = 96.3 IU50 ml−1. Comparison of the vaccine efficacy by ID50 titre 
curves for ENSEMBLE-US, the COVE trial of the mRNA-1273 vaccine and 
the COV002-UK trial of the AZD1222 vaccine supported the ID50 titre as a 
correlate of protection across trials and vaccine types.

The ENSEMBLE trial (NCT04505722, https://clinicaltrials.gov/ct2/show/
NCT04505722) was carried out in Argentina, Brazil, Chile, Colombia, 
Mexico, Peru, South Africa and the United States to test the efficacy 
of a single dose of the replication-incompetent human adenovirus 
type 26 (Ad26)-vectored Ad26.COV2.S vaccine vs placebo to prevent 
moderate to severe-critical COVID-191,2. Estimated vaccine efficacy 
against COVID-19 with onset at least 28 d post injection was 66.1% (95% 
confidence interval (CI): 55.0% to 74.8%) in the primary analysis (median 
follow-up 2 months)1. The US Food and Drug Administration (FDA) 
granted an Emergency Use Authorization to the Ad26.COV2.S vaccine 
as a single primary vaccination dose for individuals aged ≥18 years and, 
more recently, as a single homologous or heterologous booster dose 
for individuals aged ≥18 years3. The Ad26.COV2.S vaccine has also been 
issued an Emergency Use Listing by the World Health Organization4, 
authorized by the European Commission5, and approved or authorized 
in more than 100 countries6.

A validated immune biomarker that correlates with protection7–9 
(a ‘correlate of protection’ or CoP) has several applications, includ-
ing providing evidence for approval of demonstrated-effective vac-
cines for populations underrepresented in the phase 3 trials (for 
example, young children10,11), aiding approval of refined versions of 
demonstrated-effective vaccines (for example, strain or schedule 
changes), aiding approval of candidate vaccines to test efficacy in phase 
3 trials and providing a study endpoint in early-phase trials for com-
parison and down-selection of candidate next-generation vaccines. A 
CoP also has population-level applications, including estimating the 
level of immunity of a population using sero-survey data12.

For most licensed vaccines against viral diseases where a CoP 
has been established, the CoP is either binding antibodies (bAbs) or 
neutralizing antibodies (nAbs)8. A growing body of evidence supports 
these immune markers as CoPs for COVID-19 vaccines. First, both bAbs13 
and nAbs14 acquired through infection have been shown to correlate 
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are reported in Supplementary Table 2. Of all participants in the immu-
nogenicity subcohort, 50.4% were ≥60 years old, 51.7% were considered 
at-risk for severe COVID-19 (defined as having one or more comor-
bidities associated with elevated risk of severe COVID-191) and 44.8% 
had been assigned female sex at birth. At US sites, 49.3% had minority 
status (defined as other than White Non-Hispanic). The immunogenic-
ity subcohort was 26.0% from Latin America, 23.9% from South Africa 
and 50.0% from the United States. Supplementary Tables 3–5 provide 
demographics and clinical characteristics of the immunogenicity sub-
cohort by geographic region.

COVID-19 endpoint
Correlates analyses were performed on the basis of adjudicated mod-
erate to severe-critical COVID-19. Onset was required to be ≥28 d post 
vaccination (the day of vaccination defines the D1 study visit) as well as 
≥1 d post D29 (the D29 study visit was not always 28 d post vaccination 
due to allowable study visit windows, as discussed above) through to 22 
January 2021 (the data cut-off date of the primary analysis)1. This COVID-
19 endpoint was selected to be as close as possible to the COVID-19  
endpoint used in the primary analysis1 (efficacies against the primary1 vs 
correlates analysis ‘moderate to severe-critical COVID-19’ endpoints were 
very similar), while also seeking inclusiveness of endpoints to aid statis-
tical precision. See Online Methods for details on the analysis databases 
and exact differences between the two endpoints. The last COVID-19  
endpoint included in the correlates analysis occurred 48 d post D29 
(Extended Data Fig. 1e). Of the 92 breakthrough cases with antibody 
data, 7 were severe-critical (using the same definition as in ref. 1),  
precluding correlates analyses restricted to severe-critical endpoints. 
Non-cases were defined as baseline seronegative per-protocol partici-
pants sampled into the immunogenicity subcohort with no evidence 
of SARS-CoV-2 infection up to the end of the correlates study period, 
which is up to 54 d post D29, the last day such that at least 15 such vac-
cine recipients were still at risk in the immunogenicity subcohort, but 
not later than the data cut-off of 22 January 2021.

SARS-CoV-2 lineages causing COVID-19 endpoints
Figure 1 in ref. 2 (which reports the results of the final efficacy analysis)  
shows the distribution of SARS-CoV-2 lineages among COVID-19  
endpoint cases for each country in the trial over time during the 
double-blind period of the trial (21 September 2020 through 9 July 
2021). Data in this figure through 22 January 2021 are relevant for the 
current work. With ‘reference’ referring to the Wuhan-Hu-1 strain har-
bouring the D614G point mutation and ‘other’ referring to sequences 
with substitutions departing from reference not resulting in another 
SARS-CoV-2 lineage or variant, the results show two lineages in the 
United States at approximately equal prevalence (reference, other); 
almost all lineages being Beta in South Africa; and lineages reference, 
Zeta and other in Latin America having similar proportions. For the US, 
most ‘other’ lineages were genetically close to the reference. These data 
are consistent with the preliminary sequencing data provided in ref. 1.

Lower D29 antibody marker levels in cases vs non-cases
At D29, 85.3% (95% CI: 82.0%, 88.0%) and 81.2% (77.7%, 84.3%) of vac-
cine recipient non-cases had a detectable spike IgG response (defined 
by IgG > 10.8424 binding antibody units (BAU) per ml) or detectable 
RBD IgG response (defined by IgG > 14.0858 BAU ml−1), respectively, 
whereas 56.4% (52.1%, 60.6%) had quantifiable ID50 nAb titre (Fig. 1 and 
Table 1). For each D29 marker, the response rate was lower in cases than 
in non-cases; this difference was largest for ID50 (response rate differ-
ence: −19.5% (95% CI: −29.7%, −8.2%)) (Table 1). For each D29 marker, the 
geometric mean value was also lower in cases than in non-cases, with 
ID50 again having the greatest difference (3.22 international units per 
ml (IU50 ml−1) (95% CI: 2.50, 4.15) in cases vs 4.95 (4.42, 5.55) in non-cases, 
ratio = 0.65 (0.52, 0.81)). The bAb markers had slightly higher case/
non-case geometric ratios, with 95% CI upper bounds close to 1. Similar 

with protection from reinfection, and adoptive transfer of purified con-
valescent immunoglobulin G (IgG) protected rhesus macaques from 
SARS-CoV-2 challenge15. Second, nAb titres elicited by DNA16, mRNA17 
and adenovirus-vectored18 COVID-19 vaccines all correlated with pro-
tection of rhesus macaques from SARS-CoV-2 challenge. Third, passive 
immunization with nAbs had protective efficacy in a phase 3 trial of 
high-risk individuals19. Fourth, bAbs and nAbs correlated with vaccine 
efficacy in meta-analyses of phase 3 randomized placebo-controlled 
clinical trials20,21. The evidence provided by correlates analyses of ran-
domized phase 3 trials carries extra weight in the evaluation of CoPs 
and is the gold standard for obtaining reliable unbiased evidence22.

The US Government COVID-19 Response Team, in public-private 
partnerships with vaccine developers, designed and implemented 
five harmonized phase 3 COVID-19 vaccine efficacy trials with a major 
objective to develop a CoP based on an IgG bAb or nAb assay23. The 
first correlates analysis in this programme evaluated the mRNA-1273 
COVID-19 vaccine in the COVE trial24, which showed that both IgG bAb 
and nAb markers measured 4 weeks post second dose were strongly 
correlated with the level of mRNA-1273 vaccine efficacy against symp-
tomatic COVID-19, with the nAb titre mediating about two-thirds of the 
vaccine efficacy25. These findings were consistent with those of the 
phase 3 COV002-UK trial of the AZD12222 (ChAdOx1 nCoV-19) vaccine, 
where vaccine efficacy against symptomatic COVID-19 increased with 
post-injection bAb and nAb markers26.

The ENSEMBLE trial was included in this US Government- 
coordinated effort to identify CoPs. Using the same approach as that 
used for COVE25, for one dose of the Ad26.COV2.S vaccine in ENSEMBLE 
we assessed IgG bAb and nAb markers measured 4 weeks post one dose of 
the Ad26.COV2.S vaccine in ENSEMBLE as correlates of risk of COVID-19  
and as correlates of protection against COVID-19. (We use ‘correlate 
of risk’ to indicate a post-vaccination immune marker associated with 
the rate of COVID-19, and ‘correlate of protection’ to indicate that a 
correlate of risk is also predictive of vaccine efficacy against COVID-19,  
which is quantified by estimating a causal parameter that links the 
marker in some fashion to vaccine efficacy (ref. 9 and the Statistical 
Analysis Plan (SAP) in ref. 27)). Three markers were studied: IgG bAbs 
against SARS-CoV-2 spike protein (spike IgG), IgG bAbs against the 
spike protein receptor binding domain (RBD IgG) and nAbs measured 
by a pseudovirus neutralization assay (50% inhibitory dilution, ID50). 
We report spike IgG and RBD IgG readouts in WHO (World Health 
Organization) international units (IU) and calibrated ID50 titres to a 
WHO international standard, which enables comparison of the results 
to those of the COVE and the COV002-UK trials.

Results
Immunogenicity subcohort and case-cohort set
The assessment of immune correlates was based on measurement of the 
antibody markers at D29 (hereafter, ‘D29’ denotes the day 29 study visit, 
with an allowable visit window of ±3 d around 28 d post injection) in the 
case-cohort set, comprising a stratified random sample of the study 
cohort (the ‘immunogenicity subcohort’) plus all vaccine recipients 
with the COVID-19 primary endpoint after D29 (‘breakthrough cases’) 
(Extended Data Fig. 1a). (The sampling design is further detailed in 
the SAP.) Extended Data Fig. 1b–d describe the case-cohort set overall 
and by the three geographic regions Latin America (Argentina, Bra-
zil, Chile, Colombia, Mexico and Peru), South Africa and the United 
States, with antibody data available from 48, 15 and 29 breakthrough 
cases, respectively, and from 212, 200 and 409 non-cases, respectively. 
All analyses of D29 antibody markers were restricted to per-protocol 
baseline SARS-CoV-2 seronegative participants in the case-cohort set 
(Supplementary Table 1 and Extended Data Fig. 2).

Participant demographics
The demographics and clinical characteristics of the immunogenicity 
subcohort (N = 826 in the vaccine group, N = 90 in the placebo group) 
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Fig. 1 | D29 antibody marker level by COVID-19 outcome status. a–c, Violin 
plots of anti-spike IgG concentration (a), anti-RBD IgG concentration (b) and 
PsV neutralization ID50 titre (c). Data points are from baseline SARS-CoV-2 
seronegative per-protocol vaccine recipients in the set (a–c: N = 92 cases,  
821 non-cases). In interior box plots, upper and lower horizontal edges show the 
25th and 75th percentiles of antibody level, the middle line indicates the 50th 
percentile, and vertical bars the distance from the 25th (or 75th) percentile of 
antibody level to the minimum (or maximum) antibody level within the 25th 
(or 75th) percentile of antibody level minus (or plus) 1.5 times the interquartile 
range. At both sides of the box, a rotated probability density curve estimated by a 
kernel density estimator with a default Gaussian kernel is plotted. Frequencies of 

participants with detectable responses were computed by weighting the inverse 
probability of sampling. Pos.cut, dectectability/positivity cut-off. Detectable 
responses for spike IgG and RBD IgG were defined by IgG > 10.8424 BAU ml−1 
and IgG > 14.0858 BAU ml−1, respectively. ULoQ, upper limit of quantitation. 
ULoQ = 238.1165 BAU ml−1 for spike IgG and 172.5755 BAU ml−1 for RBD IgG. LLoQ, 
lower limit of quantitation. Seroresponse for ID50 was defined by a quantifiable 
value >LLoQ (2.7426 IU50 ml−1). ULoQ = 619.3052 IU50 ml−1 for ID50. Cases are 
baseline SARS-CoV-2 seronegative per-protocol vaccine recipients with the 
primary COVID-19 endpoint (moderate to severe-critical COVID-19 with onset 
both ≥1 d post D29 and ≥28 d post vaccination) up to 54 d post D29 but not later 
than 22 January 2021.

Table 1 | D29 antibody marker response rates and geometric means by COVID-19 outcome status

COVID-19 cases1 Non-cases in immunogenicity subcohort2 Comparison

D29 marker N Proportion with 
antibody response3 
(95% CI)

Geometric mean 
(GM) (95% CI)

N Proportion with 
antibody response3 
(95% CI)

GM (95% CI) Response rate 
difference (cases 
– non-cases)

Ratio of 
GM (cases/
non-cases)

Anti-spike IgG 
(BAU ml−1)

92 79.3% (69.7%, 86.5%) 28.98 (23.09, 
36.39)

821 85.3% (82.0%, 
88.0%)

33.96% 
(31.04%, 
37.16%)

−5.9% (−16%, 1.9%) 0.85 (0.71, 
1.02)

Anti-RBD IgG 
(BAU ml−1)

92 73.9% (63.9%, 
82.0%)

27.54 (22.32, 
33.97)

821 81.2% (77.7%, 84.3%) 32.49% 
(29.95%, 
35.26%)

−7.3% (−17.8%, 1.5%) 0.85 (0.71, 1.01)

Pseudovirus-nAb 
ID50 (IU50 ml−1)

92 37.0% (27.6%, 47.4%) 3.22 (2.50, 4.15) 821 56.4% (52.1%, 60.6%) 4.95% (4.42%, 
5.55%)

−19.5% (−29.7%, 
−8.2%)

0.65 (0.52, 
0.81)

Analysis based on baseline SARS-CoV-2 seronegative per-protocol vaccine recipients in the case-cohort set. Median (interquartile range) days from vaccination to D29 was 29 (ref. 2). 1Cases are 
baseline SARS-CoV-2 seronegative per-protocol vaccine recipients with the primary COVID-19 endpoint (moderate to severe-critical COVID-19, with onset that was both ≥28 d post vaccination 
and ≥1 d post D29) up to 54 d post D29 but not later than the data cut-off (22 January 2021). 2Non-cases/controls are baseline seronegative per-protocol vaccine recipients sampled into the 
immunogenicity subcohort with no evidence of SARS-CoV-2 infection up to the end of the correlates study period, which is up to 54 d post D29 but not later than the data cut-off (22 January 
2021). See Extended Data Fig. 2. 3Antibody response defined by detectable IgG concentration above the antigen-specific positivity cut-off (10.8424 BAU ml−1 for spike, 14.0858 BAU ml−1 for RBD) 
or by quantifiable ID50 > LLoQ = 2.7426 IU50 ml−1.
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results were seen in each ENSEMBLE geographic region (Supplemen-
tary Table 6 and Extended Data Figs. 3–5), with D29 ID50 nAb titre in 
US participants having the greatest response rate difference (cases 
minus non-cases; −26.8% (−41.6%, −6.3%)) and the lowest geometric 
mean ratio (cases/non-cases; 0.55 (0.41, 0.72)) across all markers and 
geographic regions.

The D29 bAb markers were highly correlated with each other 
(Spearman rank r = 0.91) but were only moderately correlated with ID50 
(r = 0.55 for spike IgG and ID50; r = 0.54 for RBD IgG and ID50) (Extended 
Data Fig. 6). For each D29 marker, the reverse cumulative distribution 
function curve in the context of the overall vaccine efficacy estimate 
is shown in Supplementary Fig. 1.

As expected because the population is baseline seronegative, 
frequencies of placebo recipients with detectable or quantifiable 

responses at D29 were near zero (for example, for ID50, 0.6% and 0% for 
cases and non-cases, respectively) (Supplementary Fig. 2).

D29 antibody marker levels correlate with risk
The cumulative incidence of COVID-19 for vaccine recipient subgroups 
defined by D29 antibody marker tertile (Fig. 2a–c) shows that COVID-19 
risk decreased with increasing tertile. The hazard ratio (High vs Low 
tertile) was significantly less than one for ID50 (estimate of 0.41; 95% 
CI: 0.22, 0.75), and there were weak trends towards inverse correlates 
for the two IgG markers (estimates of 0.75 (0.42, 1.32) for spike IgG 
and 0.61 (0.34, 1.09) for RBD IgG). Only ID50 passed the pre-specified 
family-wise error rate (FWER) multiplicity-adjusted P value threshold 
for testing whether the hazard rate of COVID-19 differed across the Low, 
Medium and High tertiles (Table 2A; P = 0.003, FWER-adjusted P = 0.011) 
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COVID-19 endpoint or with any evidence of infection through D29. 
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Vaccine low (<1.4 IU50 ml–1)
Vaccine med (1.4–9.1 IU50 ml–1)
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Fig. 2 | COVID-19 risk by D29 antibody marker level. a–c, Plots showing 
covariate-adjusted cumulative incidence of COVID-19 by Low, Medium or 
High tertile of D29 antibody marker level in baseline SARS-CoV-2 seronegative 

per-protocol participants. a, Anti-spike IgG concentration. b, Anti-RBD IgG 
concentration. c, PsV neutralization ID50 titre. Baseline covariates adjusted for 
were baseline risk score and geographic region.
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(multiplicity adjustment was performed over the six categorical and 
quantitative markers). Evidence for the spike and RBD bAb markers as 
inverse correlates of risk across tertiles was weaker, with unadjusted  
P values of 0.50 and 0.16, respectively (Table 2A).

Similar results were observed for the D29 quantitative markers, 
with estimated hazard ratio per 10-fold increase in antibody marker 
level clearly indicating an inverse correlate of risk for ID50 (estimate 
of 0.49 (95% CI: 0.29, 0.81)), with estimates less than one for each IgG 
marker, yet with 95% CIs including 1.0 (estimates of 0.69 (0.41, 1.16) 
for spike IgG and 0.59 (0.33, 1.06) for RBD IgG) (Table 2B). Again, 
only ID50 passed the multiple testing correction (FWER-adjusted 
P = 0.016). (Supplementary Table 7 shows the hazard ratios per stand-
ard deviation-increase in each D29 marker.) An additional post-hoc 
analysis was done reporting Cox model fits for each antibody marker 
with a set of demographic factors also in the model (Supplementary 
Table 8). The results are similar; for example, the estimated hazard 
ratio per 10-fold increase in ID50 is 0.49 (0.30, 0.80). Extended Data 
Fig. 7 shows analogous results across pre-specified subgroups of vac-
cine recipients for RBD IgG and ID50, respectively. The point estimates 
indicate stronger correlates of risk for participants assigned female vs 
male sex at birth and for communities of colour vs White Non-Hispanics 
in the United States, generating potential hypotheses about the role of 
sex and race/ethnicity on vaccine-induced immunity. However, because 
the 95% CIs overlap, these apparent differences could be false positives.

When vaccine recipients were divided into subgroups defined by 
having an antibody marker level above a specific threshold and vary-
ing the threshold over the range of values, nonparametric regression 
showed that cumulative incidence of COVID-19 (from 1 to 54 d post 
D29) decreased as the ID50 threshold increased (Fig. 3a). This decrease 
in risk was steepest across increasing thresholds closer to the assay 
lower limit of quantitation (LLoQ = 2.74 IU50 ml−1) and was more gradual 
across higher increasing thresholds. The risk estimate for COVID-19 was 
0.009 (95% CI: 0.007, 0.012) for all vaccine recipients and decreased to 
0.006 (0.004, 0.009) for vaccine recipients with any quantifiable ID50 
titre, whereas at the highest threshold examined (>185 IU50 ml−1), the 
risk estimate was 0.004 (0.000, 0.009). The bAb markers also showed 
decreases in risk (although less pronounced) with increasing threshold 
value (Extended Data Fig. 8a,b).

Figure 3b and Extended Data Fig. 8c,d show the Cox model-
ling results in terms of estimated cumulative incidence of COVID-19 
(from 1 to 54 d post D29) across D29 marker levels. For each antibody 
marker, COVID-19 risk decreased as antibody marker level increased. 
Across the full range of D29 ID50 values examined (non-quantifiable 
ID50 < 2.74 IU50 ml−1 to 96.3 IU50 ml−1, the 97.5th percentile value), esti-
mated risk decreased from 0.016 (0.011, 0.021) to 0.004 (0.002, 0.008), 
a 4-fold reduction in risk (Fig. 3b). For D29 RBD IgG, estimated risk also 
decreased across the range of values examined, from 0.016 (0.010, 
0.025) at negative response (7 BAU ml−1) to 0.008 (0.004, 0.013) at 

Table 2 | Covariate-adjusted hazard ratio of COVID-19 across D29 antibody marker tertiles (A) or per 10-fold increase in D29 
quantitative marker (B)

A

D29 immunologic 
marker

Tertile* No. cases/
no. at risk**

Attack rate Hazard ratio (across tertiles) P value 
(2-sided)

Overall  
P value¶

FDR-adjusted 
P value†

FWER-adjusted  
P value†

Point est. 95% CI

Anti-spike IgG 
(BAU ml−1)

Low 55/6,098 0.0090 1 Not applicable 
(N/A)

N/A 0.498 0.499 0.493

Medium 44/6,141 0.0072 0.75 (0.42, 1.32) 0.316

High 41/6,158 0.0067 0.75 (0.42, 1.32) 0.316

Anti-RBD IgG (BAU ml−1) Low 58/6,082 0.0095 1 N/A N/A 0.162 0.189 0.255

Medium 41/6,186 0.0066 0.63 (0.35, 1.12) 0.118

High 41/6,129 0.0067 0.61 (0.34, 1.09) 0.095

Pseudovirus-nAb ID50 
(IU50 ml−1)

Low 87/7,884 0.0110 1 N/A N/A 0.003 0.015 0.011

Medium 23/4,442 0.0052 0.46 (0.24, 0.86) 0.016

High 30/6,071 0.0049 0.41 (0.22, 0.75) 0.004

Placebo 378/18,116 0.0209

B

D29 immunologic 
marker

No. cases/
no. at risk**

Hazard ratio (per 10-fold 
increase)

P value 
(2-sided)

FDR-adjusted 
P value†

FWER-adjusted  
P value†

Point est. 95% CI

Anti-spike IgG 
(BAU ml−1)

140/18,395 0.69 (0.41, 1.16) 0.162 0.189 0.255

Anti-RBD IgG (BAU ml−1) 140/18,395 0.59 (0.33, 1.06) 0.079 0.150 0.144

Pseudovirus-nAb ID50 
(IU50 ml−1)

140/18,395 0.49 (0.29, 0.81) 0.006 0.015 0.016

Analysis based on baseline SARS-CoV-2 seronegative per-protocol vaccine recipients in the case-cohort set. Baseline covariates adjusted for baseline risk score and geographic region. 
*Tertiles: spike IgG: Low is <23 BAU ml−1, Medium is 23–59 BAU ml−1, High is >59 BAU ml−1; RBD IgG: Low is <23 BAU ml−1, Medium is 23–52 BAU ml−1, High is >52 BAU ml−1; ID50: Low is <1.4 IU50 ml−1, 
Medium is 1.4–9.1 IU50 ml−1, High is >9.1 IU50 ml−1. **No. at risk = estimated number in the population for analysis, that is, baseline SARS-CoV-2 seronegative per-protocol vaccine recipients not 
experiencing the COVID-19 endpoint or with evidence of SARS-CoV-2 infection through D29; no. cases = numbers of this cohort with an observed COVID-19 endpoint (with onset ≥1 d post 
D29 and ≥28 d post vaccination). The total count across all tertiles for each marker (140) differs from the case numbers in Fig. 1 (92) because the former number is the estimated number of all 
vaccine breakthrough cases within each tertile, including ones without D1, D29 antibody marker data. ¶The overall P value is from a generalized Wald test of whether the hazard rate of COVID-19 
differed across the Low, Medium and High subgroups. †q-value and FWER were computed over the set of P values both for quantitative markers and categorical markers using the Westfall and 
Young permutation method (10,000 replicates).
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173 BAU ml−1 (the 97.5th percentile), a 2-fold reduction in risk (Extended 
Data Fig. 8d). Results for D29 spike IgG were similar (Extended Data 
Fig. 8c).

Vaccine efficacy increases with D29 antibody marker level
Figure 3c and Extended Data Fig. 8e,f show estimated vaccine efficacy 
(VE) against COVID-19 (from 1 to 54 d post D29) across a range of levels 
of a given D29 antibody marker. For each marker, estimated vaccine 
efficacy rose with increasing marker level. This increase was greatest for 
ID50 titre: at non-quantifiable D29 ID50, estimated vaccine efficacy was 
60% (43%, 72%); this increased to 78% (69%, 86%) at 9.9 IU50 ml−1 and to 
89% (78%, 96%) at 96.3 IU50 ml−1 (purple curve, Fig. 4c). Nonparametric 
estimation of the vaccine-efficacy-by-D29 ID50 curve suggests that 
vaccine recipients with non-quantifiable ID50 titre had an estimated 
vaccine efficacy of 60%, with a jump in vaccine efficacy just above the 
LLoQ to 79% (blue curve, Fig. 3c).

Two sensitivity analyses (see SAP for details) were performed to 
evaluate how strong unmeasured confounding would have to be to 
overturn an inference that D29 antibody marker impacted vaccine 

efficacy. The first sensitivity analysis, based on E-values28, assessed the 
robustness of the inference that vaccine efficacy is greater at High vs 
Low ID50 tertile. The results indicated some robustness to confound-
ing of this inference for ID50 but not for the bAb markers (Supplemen-
tary Table 9). The second sensitivity analysis ‘flattened’ the estimated 
vaccine-efficacy-by-D29 antibody marker level curve by assuming a 
certain amount of unmeasured confounding. Estimated vaccine effi-
cacy still increased with D29 ID50 titre (Extended Data Fig. 9).

Vaccine efficacy rises with D29 ID50 titre in each region
Vaccine efficacy increased with D29 ID50 titre in each geographic region 
(Fig. 4a). The US curve was shifted upwards compared with the South 
African curve, which was in turn shifted upwards compared with the 
Latin American curve. The curves also indicated higher vaccine efficacy 
at non-quantifiable ID50 in the United States (69%; 95% CI: 43%, 83%) 
compared with South Africa (60%; 16%, 82%) and Latin America (43%; 
5%, 64%); however, the confidence intervals overlapped. Extended Data 
Fig. 10 shows similar results for spike IgG and RBD IgG, where vaccine 
efficacy also increased with D29 bAb marker level (except that vaccine 
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Fig. 3 | Analyses of D29 ID50 titre as a correlate of risk and as a correlate of 
protection. Analyses were performed in baseline SARS-CoV-2 seronegative 
per-protocol vaccine recipients. a, Covariate-adjusted cumulative incidence of 
COVID-19 by 54 d post D29 by D29 ID50 titre above a threshold. Blue dots are point 
estimates at each COVID-19 primary endpoint linearly interpolated as shown by 
solid black lines; the grey shaded area indicates pointwise 95% CIs. The estimates 
and CIs were adjusted using the assumption that the true threshold-response is 
non-increasing. The upper boundary of the green shaded area is the estimate of 
the reverse cumulative distribution function (CDF) of D29 ID50 titre. The vertical 
red dashed line is the D29 ID50 threshold above which no COVID-19 endpoints 
occurred (in the time frame of 1–54 d post D29). b, Covariate-adjusted cumulative 
incidence of COVID-19 by 54 d post D29 by D29 ID50 titre, estimated using a Cox 
model (solid purple line) or a nonparametric method (solid blue line). Each point 
on the curve represents the covariate-adjusted cumulative COVID-19 incidence at 

the given D29 ID50 titre value. The dotted black lines indicate bootstrap pointwise 
95% CIs. The upper and lower horizontal grey lines are the overall cumulative 
incidence of COVID-19 from 1 to 54 d post D29 in placebo and vaccine recipients, 
respectively. c, Vaccine efficacy (solid purple line) by D29 ID50 titre, estimated 
using the Cox proportional hazards implementation of ref. 44. Each point on the 
curve represents the vaccine efficacy at the given D29 ID50 titre value. The dashed 
black lines indicate bootstrap pointwise 95% CIs. Vaccine efficacy (solid blue 
line) by D29 ID50 titre, estimated using a nonparametric implementation of ref. 
44 (described in the SAP). The blue shaded area represents the 95% CIs. In b and 
c, the green histograms are estimates of the densities of D29 ID50 titre and the 
horizontal grey line is the overall vaccine efficacy from 1 to 54 d post D29, with 
the dotted grey lines indicating the 95% CIs. Baseline covariates adjusted for were 
baseline risk score and geographic region. In b and c, curves are plotted over the 
range from LLoQ/2 to the 97.5th percentile =96.3 IU50 ml−1.
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efficacy appeared to remain constant in South Africa with increasing 
D29 RBD IgG concentration) and the lowest bAb levels were needed in 
the United States out of the three regions to mark a given level of vac-
cine efficacy. (Participant demographic characteristics of geographic 
region subgroups of the immunogenicity subcohort are shown in Sup-
plementary Tables 3–5; response rates and magnitudes are shown by 
case/non-case status for each geographic region in Supplementary 
Table 6 and Extended Data Figs. 3–5. Supplementary Fig. 3 shows the 
distribution of the number of days from D29 until COVID-19 endpoint 
occurrence or until right censoring, stratified by case/non-case status 
and by geographic region).

Vaccine efficacy by circulating-matched D29 ID50 titre
In the United States, the circulating strains during follow-up were 
Wuhan-like, being genetically and antigenically similar to the D614G 
strain against which neutralizing antibodies were measured. In contrast, 

in South Africa, Beta predominantly circulated and in Latin America, 
several variants circulated, such that for these regions the correlates 
analyses had a mismatch where antibodies were measured to D614G and 
vaccine efficacy was measured against circulating strains different from 
D614G. One model for a correlate of protection, the ‘variant-invariant 
CoP model’, states that the level of ID50 against a circulating strain 
required to achieve a certain vaccine efficacy value against that strain 
is constant across strains. To evaluate this model, we repeated the 
analysis of Fig. 4a using a new D29 ID50 marker for each of the three 
geographic regions, defined as the predicted geometric mean ID50 to 
the strains that circulated during follow-up in the given geographic 
region, with the prediction based on measurement of neutralization 
titres of Ad26.COV2.S vaccine recipients to a panel of variants (see Sup-
plementary Note 2). The vaccine efficacy curves for the United States 
and South Africa become closer when creating this greater match of 
the ID50 measurements to circulating strains, providing some support 
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Fig. 4 | Vaccine efficacy by D29 ID50 titre for each ENSEMBLE geographic 
region and for United States participants in ENSEMBLE compared to two 
other efficacy trials. a–c, Vaccine efficacy (solid lines) in baseline SARS-CoV-2 
seronegative per-protocol vaccine recipients by D29 PsV-nAb ID50 titre to D614G 
in ENSEMBLE by geographic region (US, United States; Lat Am, Latin America; S 
Afr, South Africa) (a); D29 predicted geometric mean PsV-nAb ID50 titre to strains 
that circulated during follow-up in each designated geographic region (see 
Supplementary Note 2) (b); and D57 ID50 titre to D614G in COVE, D29 ID50 titre 
to D614G in ENSEMBLE (US), D56 ID50 titre to D614G in COV002, all estimated 
using the Cox proportional hazards implementation of ref. 44 (c). The dotted 
lines indicate bootstrap pointwise 95% CIs. The follow-up periods for the VE 
assessment were: a, ENSEMBLE-US, 1–53 d post D29; ENSEMBLE-Lat Am, 1–48 d 

post D29; ENSEMBLE-S Afr, 1–40 d post D29; b, COVE (doses D1, D29), 7–10 d post 
D57; ENSEMBLE-US, 1–53 d post D29; COV002 (doses D0, D28; VE defined as  
1 − relative risk of whether or not an event occurred =28 d post D28 until the 
end of the study period). The histograms are an estimate of the density of D29 
ID50 titre in ENSEMBLE (including by geographic region in a and b). The blue 
histograms are estimates of the densities of ID50 titres in baseline SARS-CoV-2 
negative per-protocol vaccine recipients in COVE. Curves are plotted over the 
range from 10 IU50 ml−1 to the 97.5th percentile of the marker for COVE and from 
the 2.5th percentile to the 97.5th percentile for ENSEMBLE. Baseline covariates 
adjusted for were: ENSEMBLE: baseline risk score and geographic region; COVE: 
baseline risk score, comorbidity status and community of colour status; COV002: 
baseline risk score.
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for the model (Fig. 4b). For example, VE for South Africa is 81% (57%, 
98%) at ID50 = 10 IU50 ml−1 averaged to the South African circulating 
strains (Beta variant), compared to the United States where VE is 86% 
(75%, 95%) at ID50 = 10 IU50 ml−1 to D614G that circulated in the United 
States. In contrast, for Latin America, the VE curve based on ID50 to 
circulating strains did not change noticeably compared to the curve 
based on ID50 to D614G. This is explained by the fact that more than 
90% of the placebo arm COVID-19 endpoints in Latin America through 
22 January 2021 were of the ancestral lineage.

Cross-trial cross-platform comparison of ID50 titre as a CoP
We next compared the vaccine efficacy-by-ID50 titre curves for three 
double-blind, placebo-controlled COVID-19 vaccine efficacy trials: 
ENSEMBLE (one dose: D1; VE curve by D29 ID50 titre), COVE (two 
doses: D1, D29; VE curve by D57 ID50 titre) and the COV002 (United 
Kingdom) trial29 of the AZD1222 (ChAdOx1 nCoV-19) chimpanzee 
adenoviral-vectored COVID-19 vaccine (two doses: D0, D28; VE curve 
by D56 ID50 titre). In this comparison for ENSEMBLE, we restricted to 
the United States (ENSEMBLE-US) to match COVE in its restriction to 
the United States.

In each trial, vaccine efficacy rose with increasing ID50 titre  
(Fig. 4c). Comparison at high and at low ID50 titres is hindered by the 
limited overlap of adenovirus-vectored and mRNA vaccine-elicited ID50 
titres, with span of values (IU50 ml−1) from 2.5th to 97.5th percentile of 1.4 
to 96.3 in ENSEMBLE (the span in ENSEMBLE-US is 1.4–98) vs 32 to 1,308 
in COVE. In the intersection of these ID50 titre spans (32–96.3 IU50 ml−1) 
(the only titre spans where vaccine efficacy levels can be directly com-
pared), the point estimates of vaccine efficacy are similar and the con-
fidence bands show large overlap. While the confidence intervals of the 
curves in ENSEMBLE-US are wide, the lower overall vaccine efficacy in 
ENSEMBLE-US compared with COVE could be explained by the lower 
ID50 titres, consistent with results of meta-analyses21,30.

Discussion
We report that each D29 antibody marker evaluated was an inverse 
correlate of risk of moderate to severe-critical COVID-19 over 83 d post 
Ad26.COV2.S vaccination, with strongest evidence for ID50 titre, passing 
the pre-specified multiple testing correction bar. We found that vaccine 
efficacy increased with higher D29 antibody marker levels, with results 
supporting the importance of achieving quantifiable antibodies; nega-
tive binding antibody response and non-quantifiable neutralization 
corresponded to moderate vaccine efficacy of about 60%. We found 
that the risk of COVID-19 decreases incrementally with D29 neutrali-
zation titres (Fig. 3) and that non-zero risk remains at highest titres, 
and estimated vaccine efficacy increases incrementally from 60% at 
non-quantifiable titres to 90% at highest titres, which supports a rela-
tive, not an absolute, correlate of protection. The moderate vaccine 
efficacy in vaccine recipients with non-quantifiable neutralizing anti-
bodies indicates that this marker did not fully mediate vaccine efficacy: 
other immune responses or immune markers at other time points or 
not quantifiable in serum must have contributed to vaccine efficacy. 
Memory B cells, Fc effector functions, CD4+ and CD8+ T cells (at least 
for severe disease) all probably contribute to protection31. Overall, our 
findings are a step towards establishing an immune marker surrogate 
endpoint for adenovirus-vectored COVID-19 vaccines, and potentially 
a surrogate endpoint that might prove useful across vaccine platforms.

Strengths of our study include the fact that analyses were 
pre-specified; the fact that the data come from the double-blind 
follow-up period of a randomized placebo-controlled phase 3 vac-
cine efficacy trial; and the restriction to SARS-CoV-2-naïve individuals, 
ensuring that only vaccine-elicited immune responses are studied as 
correlates. (The latter restriction could also be viewed as a limitation, 
as a correlate of protection may be altered by previous infection and/or 
vaccination and the global proportion of SARS-CoV-2-naïve individuals 
is declining32.) In the continuing follow-up of ENSEMBLE, participants 

who experienced the COVID-19 endpoint have been receiving vaccina-
tions, and future analyses are planned to assess the same antibody 
markers as immune correlates in these individuals. The degree to which 
each evaluated D29 antibody marker predicts vaccine efficacy against 
SARS-CoV-2 strains other than those circulating during the trial period, 
as well as over longer follow-up periods will be important for informing 
the use of any of these biomarkers as a surrogate endpoint in practice.

The estimated relationship between ID50 titre and vaccine efficacy 
differed among the United States, Latin America and South Africa, 
which might be explained by the greater match of the vaccine strain 
to the reference strain in the United States compared with the dif-
ferent strains that circulated in Latin America and South Africa. In 
support of this hypothesis, Ad26.COV2.S efficacy against moderate 
to severe-critical COVID-19 with onset ≥28 d post vaccination was 
reported to be higher against the reference strain (58.2% (95% CI: 35.0%, 
73.7%)) than against non-reference lineages (44.4% (34.6%, 52.8%)), par-
ticularly against Gamma (36.5% (14.1%, 53.3%)), over a median follow-up 
of 121 d post vaccination2. Another potential explanation for the appar-
ent difference in the estimated relationship between ID50 titre and 
vaccine efficacy by geographic region is that COVID-19 cases tended to 
occur earlier in South Africa than in the other two geographic regions, 
and the longer follow-up in the United States. This longer follow-up 
may have allowed expansion of neutralizing antibody breadth, which 
is associated with improved coverage of SARS-CoV-2 variants over 
time33. An additional potential explanation may be a lower placebo 
arm attack rate in the United States (as greater antibody levels may 
be needed to protect against greater exposure8). However, a post-hoc 
interaction test in a marginalized Cox model for whether the associa-
tion of quantitative D29 ID50 titre with COVID-19 differed across the 
three geographic regions yielded P = 0.83, indicating no statistical 
evidence for a differential correlate by region.

We found that in ENSEMBLE, the pseudovirus neutralization assay 
readout (D29 ID50 titre) had stronger evidence as a correlate than either 
of the binding antibody assay readouts. However, given that the haz-
ard ratio estimates per 10-fold increase of each of the D29 binding 
antibody markers were less than 1.0, the binding and pseudovirus 
neutralization assay readouts were substantially correlated, and the 
fact that both assays were strong inverse correlates of risk (of similar 
strength as ID50 nAb titre) in the COVE25 and COV002 (Ad-vectored)26 
trials, we believe it is likely that both binding antibody markers are also 
correlates (albeit weaker ones) for the Ad26.COV2.S vaccine. However, 
even the two Ad-vectored vaccines (Ad26.COV2.S and AZD1222) differ 
(one vs two doses, with one implication being potentially increased 
avidity of post-dose two antibodies; pre-fusion stabilized vs native-like 
spike; human vs chimpanzee adenovirus). Moreover, different vari-
ants (B.1.177 and B.1.1.7 (Alpha)) were circulating at the sites where 
the COV002 trial was conducted26. Future correlates analyses should 
help clarify whether the binding antibody markers are also correlates 
for Ad26.COV2.S.

In the range of overlapping titres, similar vaccine efficacy by nAb 
ID50 curves were observed in ENSEMBLE-US and COVE. In both trials, 
the vast majority of circulating strains were similar to the reference 
strain1,2,34 (used in the nAb assay). Thus, the most transportable cor-
relate across vaccine platforms may involve assessing nAbs against 
circulating strains, which can be evaluated in the future.

Our study has limitations. First, other Ad26.COV2.S-induced 
immune responses (for example, spike-specific T-cell responses35, 
Fc effector antibody functions36) were not assessed. Analyses of D29 
spike-specific antibody-dependent cellular phagocytosis (ADCP) are 
underway; future work will address how ADCP and other immune 
markers may work together with bAb and/or nAb markers as correlates 
of protection. A second limitation is the relatively short follow-up 
(slightly over 2 months post D29), which prevented assessment of D29 
antibody marker correlates over longer-term risk. Measurement of 
the D29 markers in vaccine breakthrough COVID-19 events occurring 
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after the cut-off of the primary analysis will enable a future analysis of 
correlates for COVID-19 through 6–7 months. The primary analysis of 
ENSEMBLE showed waning of overall vaccine efficacy from 67% at 2–3 
months post vaccination1 to 53% at 6–7 months post vaccination, with 
the waning evidently restricted to variants of concern2, yet antibody 
levels did not decrease from 2 to 7 months. The future analyses may 
help understand these results by directly assessing D29 antibodies as 
correlates for COVID-19 through 6–7 months. A third limitation is that 
the study took place before the emergence of the Delta and Omicron 
variants (with analysis pooled over all SARS-CoV-2 strains that were 
mainly reference, Beta, Zeta and other1,2) and before any boosters 
were given. Future work is being planned to assess ENSEMBLE levels 
of post vaccination nAbs against spike-pseudotyped viruses of each 
sufficiently prevalent variant of concern as correlates of risk and pro-
tection against COVID-19 with the matched variant of concern: these 
include Beta in South Africa and Gamma, Lambda and Mu in Latin 
America. The region-specific differences in circulating strains comprise 
a fourth limitation in that it is not possible to assess whether strain and/
or geographic region had isolated impacts on the correlates of risk and 
protection. A fifth limitation is that the comparison of vaccine efficacy 
by antibody marker curves across efficacy trials did not use a common 
reference covariate distribution in the adjustment for prognostic fac-
tors, and the estimates of vaccine efficacy by antibody marker can be 
biased if a confounder of the effect of the marker on COVID-19 risk was 
not accounted for. Additionally, the primary endpoints differed among 
studies (COVE, COV002: symptomatic COVID-19 of any severity vs 
ENSEMBLE: moderate to severe-critical COVID-19; all 14 d post second 
dose/vaccination in baseline seronegative participants). However, in 
the ENSEMBLE primary efficacy analysis, only 1 case was mild out of 117 
symptomatic COVID-19 events in the vaccine group and only 3 of 351 
in the placebo group1, supporting similarity of the endpoints across 
the three trials.

Our study evaluated antibody levels measured 4 weeks post 
vaccination (D29) as correlates of COVID-19 occurrence over the 
subsequent 54 d, whose results can be approximately interpreted 
as outcome-proximal correlates for vaccine recipients’ aver-
age antibody level during follow-up for 54 d after D29. Alternative 
‘outcome-proximal’ correlates analyses measure antibody levels over 
time and assess their association with the instantaneous hazard of 
COVID-19 occurrence, which account for the fact that antibody lev-
els change over time; these two types of analyses address distinct 
questions. Antibody levels of one-dose Ad26.COV2.S recipients do 
not decrease from D29 to D71 and slightly increase37, suggesting that 
antibody dynamics do not play a major role in complicating the inter-
pretation of the current results, given the short-term follow-up of 54 d.

Considering the interest in assessing correlates against severe 
COVID-19 and the fact that many Ad26.COV2.S-induced antibody 
responses show increased magnitude and affinity maturation over 
time post D2933,38, our study’s scope of a single clinical endpoint 
(moderate to severe-critical COVID-19) and a single antibody meas-
urement time point (D29) are further limitations. Currently, antibody 
responses are being assayed in D29 and D71 samples from the remain-
ing ~300 vaccine breakthrough COVID-19 events during the entire 
double-blinded period. Planning is underway to assess correlates for 
COVID-19 over longer-term follow-up for severe COVID-19, for asymp-
tomatic SARS-CoV-2 infection and for viral load.

Another important question is how vaccine efficacy depends on 
SARS-CoV-2 spike features (for example, amino acid motifs, distances 
to the vaccine insert, neutralization sensitivity scores) and whether/
how the immune correlates depend on these spike features. Future 
work is planned to address these questions, with the overarching objec-
tive of building a general model for predicting vaccine efficacy across 
SARS-CoV-2 strains/spike features and time since vaccination, on the 
basis of D29 and possibly also D71 antibody markers. The data from the 
additional vaccine breakthrough cases discussed above will provide an 

opportunity to construct and evaluate such a model. In the meantime, 
the contributions of the current correlates study are to: (1) establish 
that pseudovirus neutralization assay readouts are a correlate of risk 
for COVID-19 for the Ad26.COV2.S vaccine and (2) provide proof of 
concept that this marker is probably also a correlate of protection for 
this vaccine. After the additional evidence about this marker as a cor-
relate of protection is gathered as indicated above, it should be possible 
to define whether and how to use this marker as a surrogate endpoint 
for predicting vaccine efficacy.

Methods
Trial design, study cohort, COVID primary endpoints and 
case/non-case definitions
Enrolment for the ENSEMBLE trial began on 21 September 2020. A total 
of 44,325 participants were randomized (1:1 ratio) to receive a single 
injection of Ad26.COV2.S or placebo on D1. Serum samples were taken 
on D1 and on D29 for potential antibody measurements. Antibody 
measurements were evaluated as correlates against the moderate to 
severe-critical COVID-19 endpoint defined in the main text.

While the correlates analysis only included COVID-19 primary end-
points up to 22 January 2021 (the cut-off date of the primary analysis1), 
the correlates analysis was performed using the analysis database of 
the final analysis2. Compared to the analysis database of the primary 
analysis, the analysis database of the final analysis includes changes 
to the SAP and protocol, as well as information that became available 
only after the database lock date on cases up to 22 January 2021. Spe-
cifically, for the primary analysis, the definition of the moderate to 
severe-critical COVID-19 endpoint was algorithmically programmed 
according to the protocol definition (with only severe-critical being 
assessed by the Case Severity Adjudication Committee). After the 
primary analysis, severity was assessed by the (blinded) adjudication 
committee for all case definitions. This also includes central confirma-
tion results which were obtained after the primary analysis on COVID-19 
primary endpoints with an onset before 22 January. Other differences 
between the moderate to severe-critical COVID-19 endpoint for the 
correlates analysis vs that for the primary analysis are: (1) both analyses 
included endpoints that occurred at least 28 d post vaccination, where 
the correlates analysis additionally required that endpoints occurred 
after the D29 visit (which could have occurred ±3 d around 28 d post 
vaccination, on the basis of the allowable study visit windows), when 
the markers were measured; (2) the correlates analysis only required 
RT–PCR SARS-CoV-2 positivity of a nasal swab at a local laboratory 
(with or without central confirmation), whereas the primary analysis 
required that participants with RT–PCR SARS-CoV-2 positivity of a nasal 
swab at a local laboratory must also have a respiratory tract sample 
confirmed to be RT–PCR SARS-CoV-2 positive at a central laboratory 
using the m-2000 SARS-CoV-2 real-time RT–PCR assay (Abbott)1.

Correlates analyses were performed in baseline SARS-CoV-2 
seronegative participants in the per-protocol cohort, with the same 
definition of ‘per-protocol’ as in ref. 1. Within this correlates analysis 
cohort, cases were COVID-19 primary endpoints in vaccine recipients 
starting at both ≥1 d post D29 and ≥28 d post vaccination up to the end 
of the correlates study period, which is up to 54 d post D29 but not later 
than the data cut-off (22 January 2021). Participants with any evidence 
of SARS-CoV-2 infection, such as a positive nucleic acid amplification 
test or rapid antigen test result, up to D29 were excluded. Correlates 
analyses were also done by counting endpoints starting at 7 d after 
D29 or later through the same data cut-off, under the rationale that 
the D29 antibody marker measurements in participants who were 
diagnosed with the COVID-19 endpoint between 1–6 d post D29 might 
have been influenced by SARS-CoV-2 infection. The point estimates 
of both analyses were similar; we report only the results that started 
counting COVID-19 endpoints at both ≥1 d post D29 and ≥28 d post 
vaccination, given the greater precision (approximately 35% more 
vaccine breakthrough cases).
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Within the correlates analysis cohort, non-cases/controls were 
vaccine recipients sampled into the immunogenicity subcohort with 
no evidence of SARS-CoV-2 infection up to the end of the correlates 
study period, which is up to 54 d post D29 but not later than the data 
cut-off (22 January 2021).

Solid-phase electrochemiluminescence S-binding IgG 
immunoassay
Serum IgG binding antibodies against spike and serum IgG binding 
antibodies against RBD were quantitated using a validated solid-phase 
electrochemiluminescence S-binding IgG immunoassay and the MSD 
Discovery Workbench software (version 4.0) as previously described25. 
Within an assay run, each human serum test sample was added to the 
precoated wells in duplicates in an 8-point dilution series. Antibodies 
bound to spike or to RBD were detected using an MSD SULFO-TAG 
anti-human IgG detection antibody (Meso Scale Diagnostics, R32AJ-1,  
goat polyclonal) diluted to 1X from a 200X vendor-provided stock. 
Conversion of arbitrary units per ml (AU ml−1) readouts to bAb units per 
ml (BAU ml−1) was based on the WHO 20/136 anti-SARS-CoV-2 immu-
noglobulin international standard39 also as previously described25. 
Antibody response was defined by detectable IgG concentration above 
the antigen-specific positivity cut-off (10.8424 BAU ml−1 for spike, 
14.0858 BAU ml−1 for RBD).

Pseudovirus neutralization assay
Neutralizing antibody activity was measured at Monogram in a formally 
validated assay (detailed in ref. 40) that utilized lentiviral particles 
pseudotyped with full-length SARS-CoV-2 spike protein. The lentiviral 
particles also contained a firefly luciferase reporter gene, enabling 
quantitative measurement (via relative luminescence units) of infection 
of HEK 293T cells transiently transfected to express human ACE2 cell 
surface receptor protein and the TMPRSS2 protease. Supplementary 
Table 10 provides the assay limits. Readouts from the Monogram assay 
(also used in the immune correlates analysis of the COV002 trial of the 
ChAdOx1 nCoV-19 (AZD1222) vaccine26) had been calibrated to those 
from the Duke pseudovirus neutralization assay (used in the immune 
correlates analysis of the COVE trial of the mRNA-1273 vaccine25) on the 
basis of the WHO 20/136 anti-SARS-CoV-2 immunoglobulin interna-
tional standard39 and conversion to IU50 ml−1, enabling direct compari-
son of vaccine efficacies at a given ID50 titre in ENSEMBLE to the same 
ID50 titre in COVE or in COV002. Neutralizing antibody seroresponse 
was defined by quantifiable ID50 greater than the LLoQ, 2.7426 IU50 ml−1.

Ethics
All experiments were performed in accordance with the relevant guide-
lines and regulations. All participants whose serum samples were 
assayed in this work provided informed consent.

Statistical methods
All data analyses were performed as pre-specified in the SAP (avail-
able as a supplementary file), with one exception. We had originally 
pre-specified to include COVID-19 primary endpoints through the last 
COVID-19 primary endpoint with antibody data in the vaccine arm, and 
to let the time of this COVID-19 primary endpoint set the total duration 
of follow-up for the correlates analyses. However, after learning that 
the marginalized Cox modelling method yielded confidence inter-
vals about the vaccine-efficacy-by-D29 marker level curve that were 
wider than they should be based on statistical theory (precipitated by 
only a few vaccine recipients in the immunogenicity subcohort being 
at-risk for COVID-19 at 66 d, the time of the last COVID-19 primary 
endpoint with antibody data in the vaccine arm), we revised this rule 
to set follow-up through to the last time point at which there were still 
15 participants from the immunogenicity subcohort still at risk, which 
corresponded to 54 d post D29. Consequently, two COVID-19 primary 
endpoints and some non-cases beyond 54 d post D29 were excluded 

from the analysis. The point estimates of the vaccine-efficacy-by-D29 
marker level curve were very similar for the two choices (follow-up 
through 54 vs 66 d post D29).

Case-cohort set included in the correlates analyses. A case-cohort41 
sampling design was used to randomly sample participants for D1 and 
D29 antibody marker measurements. This random sample was strati-
fied by the following baseline covariates: randomization arm, baseline 
SARS-CoV-2 serostatus and 16 baseline demographic covariate strata 
defined by all combinations of: underrepresented minority (URM) 
within the United States vs non-URM within the United States vs Latin 
America vs South Africa participant, age 18–59 vs age ≥60, and presence 
vs absence of comorbidities (see the SAP for details, also Extended Data 
Fig. 2 and Supplementary Table 1).

Covariate adjustment. All correlates analyses were adjusted for the 
logit of predicted COVID-19 risk score built from machine learning of 
data from placebo arm participants (see Supplementary Note 1 and 
Table 11) and geographic regions (United States, South Africa, Latin 
America).

Correlates of risk in vaccine recipients. All correlates of risk and pro-
tection analyses were performed in per-protocol baseline seronegative 
participants with no evidence of SARS-CoV-2 infection or right censoring 
up to D29. For each of the three D29 markers, the covariate-adjusted 
hazard ratio of COVID-19 (either across marker tertiles or per 10-fold 
increase in the quantitative marker) was estimated using inverse prob-
ability sampling-weighted Cox regression models with 95% CIs and 
Wald-based P values. These Cox model fits were also used to estimate 
marker-conditional cumulative incidence of COVID-19 through 54 d 
post D29 in per-protocol baseline seronegative vaccine recipients, with 
95% CIs computed using the percentile bootstrap. The Cox models were 
fit using the survey package42 for the R language and environment for 
statistical computing43. The same marker-conditional cumulative inci-
dence of COVID-19 parameter was also estimated using nonparametric 
dose-response regression with influence-function-based, Wald-based 
95% CIs44. Point and 95% CI estimates about marker-threshold-conditional 
cumulative incidence were computed by nonparametric targeted mini-
mum loss-based regression45.

Correlates of protection. Controlled vaccine efficacy. For each 
marker, vaccine efficacy by marker level was estimated by a causal 
inference approach using both Cox proportional hazards estimation 
and nonparametric monotone dose-response estimation44. The causal 
parameter being estimated is one minus the probability of COVID-19 
by 54 d for the vaccine group, supposing the D29 marker was set to a 
given level for all vaccine recipients, divided by this probability for 
the placebo arm (see SAP section 12.3.2, 15.1 for details). Two sensi-
tivity analyses of the robustness of results to potential unmeasured 
confounders of the impact of antibody markers on COVID-19 risk were 
also conducted, which specified a certain amount of confounding 
that made it harder to infer a correlate of protection (see the SAP for 
details). One of the sensitivity analyses was based on E-values28 and 
assessed the robustness of the inference that vaccine efficacy is greater 
for the upper marker tertile compared with the lower marker tertile. 
The other sensitivity analysis estimated how much vaccine efficacy 
increases with quantitative D29 antibody marker despite the specified 
unmeasured confounder.

Hypothesis testing. For hypothesis tests for D29 marker correlates of 
risk, Westfall-Young multiplicity adjustment46 was applied to obtain 
false-discovery rate (FDR)-adjusted P values and FWER-adjusted  
P values. Permutation-based multi-testing adjustment was performed 
over both the quantitative marker and tertilized marker CoR analyses. 
All P values were two-sided.
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Cross-trial comparisons. Calibration of ID50 nAb titres between the 
Duke neutralization assay (COVE trial samples) and the Monogram 
PhenoSense neutralization assay (COV002 and ENSEMBLE trial sam-
ples), performed using the WHO anti-SARS-CoV-2 immunoglobulin 
international standard (20/136) and Approach 1 of ref. 40 (with arithme-
tic mean as the calibration factor), is described in the supplementary 
material of ref. 25.

Software and data quality assurance. The analysis was implemented 
in R version 4.0.343; code was verified using mock data.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
The data sharing policy of Janssen Pharmaceutical Companies of John-
son & Johnson is available at https://www.janssen.com/clinical-trials/
transparency. The data supporting the findings of this study may be 
obtained from the authors upon reasonable request. Source data are 
provided with this paper.

Code availability
All analyses were done reproducibly on the basis of publicly available 
R scripts hosted on the GitHub collaborative programming platform 
(https://github.com/CoVPN/correlates_reporting2).
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Extended Data Fig. 1 | Case-cohort set and trial timeline. A) Case-cohort set. B-D) Distribution of participants in the case-cohort set by geographic region: B) Latin 
America, C) South Africa, D) US. E) Phases of the ENSEMBLE trial, timing of Ad26.COV2.S dose and serum sampling, and time period for diagnosis of the COVID-19 endpoint.
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Extended Data Fig. 2 | Flowchart of study participants. The diagram shows the study participant flow from enrollment to the case-cohort set of baseline SARS-CoV-2 
seronegative per-protocol participants.
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Extended Data Fig. 3 | D29 antibody marker level in participants in Latin 
America by COVID-19 outcome status. (A) Anti-spike IgG concentration,  
(B) anti-receptor binding domain (RBD) IgG concentration, and (C) pseudovirus 
(PsV) neutralization ID50 titer. Data points are from the Latin America subgroup 
of baseline SARS-CoV-2 seronegative per-protocol vaccine recipients in the set 
[(A-C): N = 48 cases, 212 non-cases]. The violin plots contain interior box plots 
with upper and lower horizontal edges the 25th and 75th percentiles of antibody 
level and middle line the 50th percentile, and vertical bars the distance from 
the 25th (or 75th) percentile of antibody level and the minimum (or maximum) 
antibody level within the 25th (or 75th) percentile of antibody level minus  
(or plus) 1.5 times the interquartile range. Each side shows a rotated probability 

density (estimated by a kernel density estimator with a default Gaussian kernel) 
of the data. Positive response rates were computed with inverse probability 
of sampling weighting. Pos.Cut, Positivity cut-off. Positive response for spike 
IgG was defined by IgG > 10.8424 BAU/ml and for RBD IgG was defined by IgG > 
14.0858 BAU/ml. ULoQ, upper limit of quantitation. ULoQ = 238.1165 BAU/ml for 
spike IgG and 172.5755 BAU/ml for RBD IgG. LLoQ, lower limit of quantitation. 
Positive response for ID50 was defined by value > LLoQ (2.7426 IU50/ml). ULoQ 
= 619.3052 IU50/ml for ID50. Cases are baseline SARS-CoV-2 seronegative per-
protocol vaccine recipients with the primary COVID-19 endpoint (moderate to 
severe-critical COVID-19 with onset both ≥ 1 day post D29 and ≥ 28 days post-
vaccination) up to 54 days post D29 but no later than January 22, 2021.
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Extended Data Fig. 4 | D29 antibody marker level in participants in South 
Africa by COVID-19 outcome status. (A) Anti-spike IgG concentration,  
(B) anti-receptor binding domain (RBD) IgG concentration, and (C) pseudovirus 
(PsV) neutralization ID50 titer. Data points are from the South Africa subgroup of 
baseline SARS-CoV-2 seronegative per-protocol vaccine recipients in the set  
[(A-C): N = 15 cases, 200 non-cases]. The violin plots contain interior box plots 
with upper and lower horizontal edges the 25th and 75th percentiles of antibody 
level and middle line the 50th percentile, and vertical bars the distance from 
the 25th (or 75th) percentile of antibody level and the minimum (or maximum) 
antibody level within the 25th (or 75th) percentile of antibody level minus (or 
plus) 1.5 times the interquartile range. Each side shows a rotated probability 

density (estimated by a kernel density estimator with a default Gaussian kernel) 
of the data. Positive response rates were computed with inverse probability 
of sampling weighting. Pos.Cut, Positivity cut-off. Positive response for spike 
IgG was defined by IgG > 10.8424 BAU/ml and for RBD IgG was defined by IgG > 
14.0858 BAU/ml. ULoQ, upper limit of quantitation. ULoQ = 238.1165 BAU/ml for 
spike IgG and 172.5755 BAU/ml for RBD IgG. LLoQ, lower limit of quantitation. 
Positive response for ID50 was defined by value > LLoQ (2.7426 IU50/ml). ULoQ 
= 619.3052 IU50/ml for ID50. Cases are baseline SARS-CoV-2 seronegative per-
protocol vaccine recipients with the primary COVID-19 endpoint (moderate to 
severe-critical COVID-19 with onset both ≥ 1 day post D29 and ≥ 28 days post-
vaccination) up to 54 days post D29 but no later than January 22, 2021.
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Extended Data Fig. 5 | D29 antibody marker level in participants in the United 
States by COVID-19 outcome status. (A) Anti-spike IgG concentration,  
(B) anti-receptor binding domain (RBD) IgG concentration, and (C) pseudovirus 
neutralization ID50 titer. Data points are from the United States subgroup of 
baseline SARS-CoV-2 seronegative per-protocol vaccine recipients in the set  
[(A-C): N = 29 cases, 409 non-cases]. The violin plots contain interior box plots 
with upper and lower horizontal edges the 25th and 75th percentiles of antibody 
level and middle line the 50th percentile, and vertical bars the distance from 
the 25th (or 75th) percentile of antibody level and the minimum (or maximum) 
antibody level within the 25th (or 75th) percentile of antibody level minus (or 
plus) 1.5 times the interquartile range. Each side shows a rotated probability 

density (estimated by a kernel density estimator with a default Gaussian kernel) 
of the data. Positive response rates were computed with inverse probability 
of sampling weighting. Pos.Cut, Positivity cut-off. Positive response for spike 
IgG was defined by IgG > 10.8424 BAU/ml and for RBD IgG was defined by IgG > 
14.0858 BAU/ml. ULoQ, upper limit of quantitation. ULoQ = 238.1165 BAU/ml for 
spike IgG and 172.5755 BAU/ml for RBD IgG. LLoQ, lower limit of quantitation. 
Positive response for ID50 was defined by value > LLoQ (2.7426 IU50/ml). ULoQ 
= 619.3052 IU50/ml for ID50. Cases are baseline SARS-CoV-2 seronegative per-
protocol vaccine recipients with the primary COVID-19 endpoint (moderate to 
severe-critical COVID-19 with onset both ≥ 1 day post D29 and ≥ 28 days post-
vaccination) up to 54 days post D29 but no later than January 22, 2021.
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Extended Data Fig. 6 | Correlations of D29 antibody markers in baseline SARS-CoV-2 seronegative per-protocol vaccine recipients in the immunogenicity 
subcohort. A) Scatterplot of receptor binding domain (RBD) IgG and spike IgG; B) Scatterplot of RBD IgG and PsV-nAb ID50; C) Scatterplot of spike IgG and PsV-nAb 
ID50. Cor = Spearman rank correlation.
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Extended Data Fig. 7 | Covariate-adjusted hazard ratios of COVID-19 per 10-fold increase in each Day 29 antibody marker in baseline SARS-CoV-2 seronegative 
per-protocol vaccine recipients in subgroups. The error bars show the 95% confidence intervals. Baseline covariates adjusted for were baseline risk score and 
geographic region.
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Extended Data Fig. 8 | Analyses of spike IgG and receptor binding domain 
(RBD) IgG as correlates of risk and as correlates of protection. Analyses 
were performed in baseline SARS-CoV-2 seronegative per-protocol vaccine 
recipients. A, B) Covariate-adjusted cumulative incidence of COVID-19 by 54 
days post D29 by vaccinated baseline SARS-CoV-2 seronegative per-protocol 
subgroups defined by D29 (A) anti-spike IgG or (B) anti-RBD IgG concentration 
above a threshold, with reverse cumulative distribution function (CDF) of 
D29 marker level overlaid in green. The blue dots are point estimates at each 
COVID-19 primary endpoint linearly interpolated by solid black lines; the gray 
shaded area is pointwise 95% confidence intervals (CIs). The estimates and 
CIs were adjusted using the assumption that the true threshold-response is 
nonincreasing. The upper boundary of the green shaded area is the estimate 
of the reverse cumulative distribution function (CDF) of D29 marker level in 
baseline SARS-CoV-2 seronegative per-protocol vaccine recipients. The vertical 
red dashed line is the D29 marker threshold above which no COVID-19 endpoints 
were observed (in the time frame of 1 through 54 days post D29). C, D) Covariate-
adjusted cumulative incidence of COVID-19 by 54 days post D29 by D29 (C) 
anti-spike IgG or (D) anti-RBD IgG concentration, estimated using (solid purple 
line) a Cox model or (solid blue line) a nonparametric method. Each point on the 

curve represents the covariate-adjusted cumulative COVID-19 incidence at the 
given D29 ID50 titer value. The dotted black lines indicate bootstrap point-wise 
95% CIs. The upper and lower horizontal gray lines are the overall cumulative 
incidence of COVID-19 from 1 to 54 days post D29 in placebo and vaccine 
recipients, respectively. E, F) Vaccine efficacy (solid purple line) by D29 (E) anti-
spike IgG or (F) anti-RBD IgG concentration, estimated using a Cox proportional 
hazards implementation of Gilbert et al44. Each point on the curve represents 
the vaccine efficacy at the given D29 ID50 titer value. The dashed black lines 
indicate bootstrap point-wise 95% CIs. Vaccine efficacy (solid blue line) by D29 (E) 
anti-spike IgG concentration or (F) anti-RBD IgG concentration, estimated using 
a nonparametric implementation of Gilbert et al.44 (see SAP). Each point on the 
curve represents the vaccine efficacy at the given D29 ID50 titer value. The blue 
shaded area represents the 95% CIs. In C-F, curves are plotted over the range from 
Positivity Cut-off/2 to the 97.5th percentile = (C, E) 238 BAU/ml for Spike IgG or 
(D, F) 173 BAU/ml for RBD IgG; In C-F, the green histogram is an estimate of the 
density of D29 marker and the horizontal gray line is the overall vaccine efficacy 
from 1 to 54 days post D29, with the dotted gray lines indicating the 95% CIs. 
Baseline covariates adjusted for were baseline risk score and geographic region.
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Extended Data Fig. 9 | Vaccine efficacy with sensitivity analysis by D29 (A) 
anti-spike IgG concentration, (B) anti-receptor binding domain (RBD) IgG 
concentration, or (C) pseudovirus (PsV) neutralization ID50 titer. Vaccine 
efficacy estimates were obtained a Cox proportional hazards implementation 
of Gilbert et al.44. The upper boundary of the green shaded area is the estimate 
of the reverse cumulative distribution function of the marker in baseline 
SARS-CoV-2 seronegative per-protocol vaccine recipients. The pink solid line 
is point estimates assuming no unmeasured confounding; the dashed lines are 

bootstrap point-wise 95% CIs. The red solid line is point estimates assuming 
unmeasured confounding in a sensitivity analysis (dashed lines are bootstrap 
point-wise 95% CIs); see the SAP section 15.1 for details of the sensitivity analysis. 
The horizontal gray line is the overall vaccine efficacy from 1 to 54 days post D29, 
with the dotted gray lines indicating the 95% CIs. All curves are plotted over the 
range from (A, B) Positivity Cut-off/2 to the 97.5th percentile = 238 BAU/ml for 
Spike IgG or 173 BAU/ml for RBD IgG; (C) LLOQ/2 to the 97.5th percentile = 96.3 
IU50/ml for PsV nAb ID50.
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Extended Data Fig. 10 | See next page for caption.

http://www.nature.com/naturemicrobiology


Nature Microbiology 

Article https://doi.org/10.1038/s41564-022-01262-1

Extended Data Fig. 10 | Vaccine efficacy (solid lines) in baseline SARS-CoV-2 
seronegative per-protocol vaccine recipients by A) D29 spike IgG or B) D29 
receptor binding domain (RBD) IgG in ENSEMBLE by geographic region (US, 
United States; Lat Am, Latin America; S Afr, South Africa), estimated using 
the Cox proportional hazards implementation of Gilbert et al.44. The dashed 
lines indicate bootstrap point-wise 95% CIs. The follow-up periods for the VE 

assessment were: A) ENSEMBLE-US, 1 to 53 days post D29; ENSEMBLE-Lat Am, 1 to 
48 days post D29; ENSEMBLE-S Afr, 1 to 40 days post D29. The green histograms 
are an estimate of the density of D29 marker level by geographic region. Baseline 
covariates adjusted for were baseline risk score and geographic region. Curves 
are plotted over the range from Positivity Cut-off/2 to the 97.5th percentile = (A) 
238 BAU/ml for Spike IgG; (B) 173 BAU/ml for RBD IgG.
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Methods
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As stated in Section 6 of the Statistical Analysis Plan (available in the Supplementary Material): The correlates analyses are initiated by the
availability of (a) a data set defined at or after the primary analysis data set triggered by the accrual of a certain number of primary endpoints
(approximately 150); and (b) Day 1, 29 antibody marker data from correlates-eligible COVID primary endpoint cases from at least 25 baseline
seronegative vaccine recipients. The latter requirement ensures that there are enough endpoint cases to achieve worthwhile precision for
CoR analyses. The HVTN 505 trial serves as a precedent where 25 evaluable vaccine recipient cases provided enough data to reasonably
characterize correlates of risk for a preventive candidate HIV vaccine (Janes et al., 2017; Fong et al., 2018; Neidich et al., 2019; Gilbert et al.,
2020b). In addition, simulation studies show that correlates analyses at 20 endpoints have notably lower precision.

Table 4 shows the minimum number of baseline seronegative vaccine recipient endpoints evaluable for correlates analyses that are required
before conducting the various planned correlates analyses.

Table 4: Minimum Numbers of Evaluable Endpoints in baseline seronegative Vaccine Recipients to Initiate Correlates Analyses

CoRs (Risk Prediction Modeling)

a. (Semi)parametric models with strongly parametrized associations: Cox, hinge/threshold logistic regression N=25

b. Flexible parametric models: Generalized additive model N=35

c. Nonparametric thresholds: Donovan et al. (2019)/van der Laan et al. (2021) N=35

d. Superlearner estimated optimal surrogate Price et al. (2018) N=35

CoP: Correlates of VE, Controlled VE, Stochastic Interventional VE, Mediators of VE Each N=50

For the binding antibody assay: plates and samples that did not meet the following quality control criteria were excluded:

Plate calibrator curve fit r2  0.98; calibrator replicate signal CV (coefficient of variation)  20%.

Plate controls signal CV (coefficient of variation)  20%; recoveries of plate controls within +/-20% of the nominal values.

Sample replicate CVs  20%.

For the immune correlates analyses: Correlates analyses included COVID-19 endpoints starting both  1 day post-D29 and  28 days post-
vaccination through January 22, 2021 (excluding cases with any evidence of SARS-CoV-2 infection, such as a positive nucleic acid amplification
test or rapid antigen test result, up to D29). This exclusion criterion was prespecified as stated in the Statistical Analysis Plan, section 3.2.

For the binding antibody assay, reproducibility was ensured by running high, medium, low, and negative controls on all plates assayed.

All of the immune correlates analyses are implemented in automated and reproducible press-button fashion. The analyses code are hosted in
a github repo that is open to the public (https://github.com/CoVPN/correlates_reporting2).

In the ENSEMBLE trial, participants were randomized in parallel in a 1:1 ratio to receive intramuscular (IM) injections

of Ad26.COV2.S or placebo (as described in Sadoff et al. 2022 NEJM). Randomization was done with the use of randomly permuted blocks in
an interactive Web-response system.

The ENSEMBLE trial was a double-blinded phase 3 efficacy trial. The treatment arm assignment was blinded to the labs running the assays for
the correlates analyses.
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Antibodies
Antibodies used

Validation

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s)

Authentication

Mycoplasma contamination

Commonly misidentified lines
(See ICLAC register)

Human research participants
Policy information about studies involving human research participants

Population characteristics

Recruitment

MSD SULFO-TAGTM anti-human IgG detection antibody. Meso Scale Diagnostics, LLC. Catalog number R32AJ-1. Goat polyclonal
antibody. Diluted to 1X from a 200X vendor-provided stock.

Certificates of analysis and technical notes are available at https://www.mesoscale.com/en/products/msd-gold-sulfo-tag-nhs-ester-
r91ao/

HEK-293 T; source: Master Cell Bank established by Monogram Biosciences circa 1996

No formal authentication. Cell line in continuous use since establishment of Master Cell Bank.

Mycoplasma testing is routinely performed per MGRM SOP.

None.

The demographics and clinical characteristics of the immunogenicity subcohort (N=826 in the vaccine group, N=90 in the
placebo group) are shown in Supplementary Table 2. Of all participants in the immunogenicity subcohort, 50.4% were  60
years old, 51.7% were considered at-risk for severe COVID-19 (defined as having one or more comorbidities associated with
elevated risk of severe COVID-191), and 44.8% had been assigned female sex at birth. At U.S. sites 49.3% had minority status
(defined as other than White Non-Hispanic). The immunogenicity subcohort was 26.0% Latin America, 23.9% South Africa,
and 50.0% United States. Supplementary Tables 3-5 provide demographics and clinical characteristics of the immunogenicity
subcohort by geographic region.

To ensure diversity and inclusion in the ENSEMBLE trial and based on years of clinical trial experience, Janssen implemented a
multifaceted plan for recruitment and enrollment of participants from underrepresented communities. The approach
included intentional site selection, community engagement and awareness building, and educational and training support for
investigators. Janssen also took steps to remove barriers clinical trial participants often face, including the use of
demographic data to identify and utilize clinical trial sites located in underrepresented communities.

“We are committed to developing medicines and therapies that meet the needs of all people, and we know that diseases and
drugs may impact people differently based on their race and ethnicity, so the alignment of clinical trial enrollment with
patient population demographics is key,” said Staci Hargraves, Vice President of Patient and Portfolio Solutions, Janssen
Research & Development, LLC, and Executive Sponsor of Janssen’s Diversity, Equity & Inclusion in Clinical Trials program.
“Simple yet impactful decisions, such as making sure trial sites were located in accessible places within historically
underserved communities, made a big difference in our ability to reach more participants.”

Once Janssen selected the ENSEMBLE sites and began recruitment efforts, Janssen’s employees built relationships with trial
site investigators and staff to provide cultural competency training to help stimulate dialogue about diversity and maintain
focus on enrolling and supporting underrepresented groups. These close collaborations with site leaders allowed Janssen to
identify any roadblocks in real time and make changes to the recruitment efforts as needed.

Identifying clinical trial sites in diverse communities was only the first step, because other barriers to recruitment and
enrollment also exist. Clinical research in the U.S. has a complicated history when it comes to marginalized populations. Past
events such as the Tuskegee Syphilis Study, combined with ongoing systemic disparities in the healthcare system, have
contributed to distrust in clinical research among many people. Building trust is critical, particularly given the urgency the
pandemic presented.

“We felt it was our role to help people understand how clinical trials work — and how trials have evolved to ensure that
participant safety and human rights are protected today,” said Hargraves.

To build trust with communities of color, Janssen worked with both local and national organizations, including prominent
community advocacy groups and leaders, along with healthcare professional organizations. These groups helped Janssen
identify trusted voices within communities who could disseminate information about ENSEMBLE and clinical research in
general. Janssen also used its Research Includes Me patient education program to conduct local outreach, including the
consumer-facing website ResearchIncludesMe.com, and the dispatch of mobile units of bilingual educators to large
community events. These tools helped to dispel misinformation about present-day medical research by providing accessible
and empowering education about the clinical trial process and the protections given to participants’ rights and privacy.

source: https://www.jnj.com/our-company/janssen-takes-multifaceted-approach-to-ensuring-diversity-equity-and-inclusion-
in-its-covid-19-vaccine-trial

The fact that the trial was a randomized trial, with careful allocation concealment, minimizes the potential for selection bias.
As stated in the Protocol (available with Sadoff et al. NEJM 2021): A placebo control was used to establish the frequency and
magnitude of changes in clinical and immunological endpoints that may occur in the absence of active vaccine.
Randomization was used to minimize bias in the assignment of participants to vaccine groups, to increase the likelihood that
known and unknown participant attributes (eg, demographic and baseline characteristics) were evenly balanced across
vaccine groups, and to enhance the validity of statistical comparisons across vaccine groups. Blinded study vaccine was used
to reduce potential bias during data collection and evaluation of study endpoints. Blinding was guaranteed by the
preparation of the study vaccine by an unblinded pharmacist or other qualified study-site personnel with primary
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Ethics oversight

responsibility for study vaccine preparation and dispensing, and by the administration of vaccine in a masked syringe by a
blinded study vaccine administrator. Participants were randomly assigned to 1 of the groups based on a computer-generated
randomization schedule prepared before the study by or under the supervision of the sponsor and using the interactive web
response system.

The COV3001 (ENSEMBLE) study was reviewed and approved by the following local ethics committees and IRBs:

Argentina: ANMAT - Administración Nacional de Medicamentos, Alimentos y Tecnologia Médica (Capital Federal, La Plata,
Ramos Mejia – Buenos Aires; Ciudad Autonoma de Buenos Aires), Comite de Etica Dr Carlos Barclay (Capital Federal, Buenos
Aires; Ciudad Autonoma de Buenos Aires), Comision Conjunta de Investigacion en Salud – CCIS (La Plata, Ramos Mejia -
Buenos Aires), Comite de Bioetica de Fundacion Huesped (Ciudad Autonoma de Buenos Aires), Comité de Docencia e
Investigación DIM Clínica Privada (Ramos Mejia, Buenos Aires), Comité de Ética en Investigación Clínica y Maternidad Suizo
Argentina (Ciudad Autonoma de Buenos Aires), Comité de Ética en Investigación de CEMIC (Ciudad Autonoma de Buenos
Aires), Comite de Etica en Investigacion DIM Clinica Privada (Ramos Mejia, Buenos Aires), Comite de Etica Hospital Italiano de
La Plata (La Plata, Buenos Aires), Comite de Etiica en Investigacion Hospital General de Agudos J.M. Ramos Mejia (Ciudad
Autonoma de Buenos Aires), Comitéde ética del Instituto Médico Platense (CEDIMP) (La Plata, Buenos Aires), IBC Fundacion
Huesped (Ciudad Autonoma de Buenos Aires), IBC Helios Salud (Ciudad Autonoma de Buenos Aires), IBC Hospital General de
Agudos J.M. Ramos Mejia (Ciudad Autonoma de Buenos Aires)

Brazil: ANVISA – Agência Nacional de Vigilância Sanitária (Salvador, Bahia; Barretos, Campinas, São Paulo, São Jose Rio Preto,
Ribeirão Preto, São Caetano do Sul – São Paulo; Santa Maria, Porto Alegre – Rio Grande do Sul; Natal, Rio Grande do Norte;
Para, Pará; Belo Horizonte, Minas Gerais; Rio de Janeiro, Nova Iguaçu – Rio de Janeiro; Curitiba, Paraná; Brasília, Distrito
Federal; Campo Grande, Mato Grosso do Sul; Criciúma, Santa Catarina; Cuiabá, Mato Grosso), CONEP - Comissão Nacional de
Ética em Pesquisa (Salvador, Bahia; São Paulo, São Paulo; Santa Maria, Rio Grande do Sul; Para, Pará;), CAPPESq – Comissão
de Ética de Análise para Projetos de Pesquisa – HCFMUSP (São Paulo, São Paulo), CEP da Faculdade de Medicina de São José
do Rio Preto – FAMERP (São Jose Rio Preto, São Paulo), CEP da Faculdade de Medicina do ABC/SP (São Paulo, São Paulo), CEP
da Fundação Pio XII - Hospital do Câncer de Barretos/SP (Barretos, São Paulo), CEP da Liga Norteriograndense Contra o
Câncer (Natal, Rio Grande do Norte), CEP da Pontificia Universidade Catolica de Campinas / PUC Campinas (Campinas, São
Paulo), CEP da Real Benemérita Associaçao Portuguesa de Beneficência - Hospital São Joaquim (São Paulo, São Paulo), CEP da
Santa Casa de Misericórdia de Belo Horizonte (Belo Horizonte, Minas Gerais), CEP da Secretaria Municipal De Saúde do Rio de
Janeiro – SMS/RJ (Rio de Janeiro, Rio de Janeiro), CEP da Universidade de São Caetano do Sul (CEP da Universidade de São
Caetano do Sul, São Paulo), CEP da Universidade Federal de Mato Grosso do Sul – UFMS (Campo Grande, Mato Grosso do
Sul), CEP da Universidade Federal de Minas Gerais (Belo Horizonte, Minas Gerais), CEP do Centro de Referência e
Treinamento DST/AIDS (São Paulo, São Paulo), CEP do do INI-Ipec/Fiocruz (Rio de Janeiro, Rio de Janeiro), CEP do Grupo
Hospitalar Conceição / RS (Porto Alegre, Rio Grande do Sul), CEP do Hospital das Clínicas da Faculdade de Medicina de
Ribeirão Preto/USP (Ribeirão Preto, São Paulo), CEP do Hospital de Clinicas da Universidade Federal do Parana - HCUFPR / PR
(Curitiba, Paraná), CEP do Hospital de Clínicas de Porto Alegre/HCPA (Porto Alegre, Rio Grande do Sul), CEP do Hospital Geral
de Nova Iguaçu (Nova Iguaçu, Rio do Janeiro), CEP do Hospital Municipal São José (Criciúma, Santa Catarina), CEP do Hospital
Pró-Cardíaco/RJ (Rio de Janeiro, Rio de Janeiro), CEP do Hospital Sírio Libanês (São Paulo, Sao Paulo), CEP do Hospital
Universitário Júlio Muller / MT (Cuiabá, Mato Grosso), CEP do Hospital Universitário Professor Edgard Santos – UFBA
(Salvador, Bahia), CEP do Instituto de Cardiologia do Distrito Federal (Brasília, Distrito Federal), CEP do Instituto de
Infectologia Emílio Ribas/SP (São Paulo, Sao Paulo), CEP do Instituto de Saude e Bem Estar da Mulher - ISBEM / SP (São Paulo,
Sao Paulo), CEP em Seres Humanos do HFSE - Hospital Federal dos Servidores do Estado (Rio de Janeiro, Rio de Janeiro),
CONEP - Comissão Nacional de Ética em Pesquisa (Brasília, Distrito Federal, Salvador, Bahia; Belo Horizonte, Minas Gerais;
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(Tijuana, Baja California Norte), Comite de Bioseguridad del Instituto Nacional de Salud Publica (Mexico, Distrito Federal;
Cuernavaca, Morelos), Comite de Etica en Investigacion del Instituto Nacional de Salud Publica (Mexico, Distrito Federal;
Cuernavaca, Morelos), Comité de Bioseguridad del Hospital La Misión S.A. de C.V. (Tijuana, Baja California Norte; Oaxaca,
Oaxaca; Merida, Yucatán; Tijuana, Baja California Norte), Comité de Bioseguridad de la Coordinación de Investigación en
Salud (IMSS) (Mexico, Estado de Mexico), Comité de Bioseguridad de Médica Rio Mayo (CLINBOR) (Mexico, Distrito Federal),
Comité de Bioseguridad del Hospital Universitario "Dr. José Eleuterio González" (Monterrey, Nuevo León), COFEPRIS
(Comisión Federal para la Protección contra Riesgos Sanitarios) (Cuernavaca, Morelos; Mexico, Distrito Federal; Monterrey,
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Jose Eleuterio Gonzalez" (Monterrey, Nuevo León), Comite de Etica en Investigacion de la Unidad de Atencion Medica e
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Coordinación de Investigación en Salud (IMSS) (Mexico, Estado do Mexico), Comite de Investigacion de la Unidad de Atencion
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Loreto; Lima, San Miguel – Lima), INS - Instituto Nacional de Salud (Peru) (Lima, San Miguel – Lima; Callao; Iquitos – Maynas,
Loreto)

South Africa: Department Agriculture, Forestry and Fisheries (DAFF) (Port Elizabeth, Mthatha – Eastern Cape; Cape Town,
Worcester – Western Cape; Durban, Ladysmith, Vulindlela – KwaZulu-Natal; Johannesburg, Pretoria, Mamelodi East, Soweto,
Tembisa – Gauteng; Rustenburg, Klerksdorp – North West; Bloemfontein, Free State; Middelburg, Mpumalanga; Dennilton,
Limpopo), Pharma Ethics (Port Elizabeth, Eastern Cape; Durban, Ladysmith – KwaZulu-Natal; Cape Town, Western Cape;
Pretoria, Mamelodi East, Johannesburg, Tembisa – Gauteng; Rustenburg, Klerksdorp – North West; Bloemfontein, Free State;
Middelburg, Mpumalanga; Dennilton, Limpopo), SAHPRA - South African Health Products Regulatory Authority (Port
Elizabeth, Mthatha – Eastern Cape; Cape Town, Worcester – Western Cape; Durban, Ladysmith, Vulindlela – KwaZulu-Natal;
Johannesburg, Pretoria, Mamelodi East, Soweto, Tembisa – Gauteng; Rustenburg, Klerksdorp – North West; Bloemfontein,
Free State; Middelburg, Mpumalanga; Dennilton, Limpopo), WIRB (Mamelodi East, Pretoria – Gauteng; Ladysmith, KwaZulu-
Natal; Bloemfontein, Free State; Cape Town, Western Cape; Dennilton, Limpopo), Wits Health Consortium (Soweto,
Johannesburg – Gauteng; Ladysmith, KwaZulu-Natal; Mthatha, Eastern Cape), Wits Institutional Biosafety Committee
(Soweto, Pretoria, Johannesburg, Tembisa – Gauteng; Rustenburg, Klerksdorp – North West; Mthatha, Eastern Cape),
University of Cape Town HREC (Cape Town, Worcester – Western Cape); University of Cape Town Institute of Infectious
Disease & Molecular Medicine (Cape Town, Worcester – Western Cape), University of Cape Town Institutional Biosafety
Committee (Cape Town, Worcester – Western Cape), SAMRC Human Research Ethics Committee Scientific Review (Durban,
KwaZulu-Natal), Sefako Makgatho University Research Ethics Committee (SMUREC) (Pretoria, Gauteng), University of
KwaZulu Natal Institutional Biosafety Committee (Durban, KwaZulu-Natal), University of KwaZulu-Natal Ethics (Durban,
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Medical Center IBC (Chicago, IL), Rutgers Institutional Biosafety Committee (New Brunswick, NJ), Saint Louis University IBC (St
Louis, MO), Saint Michael's Medical Center IRB (Newark, NJ), Southeast Louisiana Veterans Health Care System IBC (New
Orleans, LA), St. Jude Children’s Research Hospital IBC Committee (Memphis, TN), St. Jude Children's Research Hospital IRB
(Memphis, TN), Stanford University Administrative Panel on Human Subjects in Medical Research (Stanford, CA), Temple
University – IBC (Philadelphia, PA), The University of Chicago Institutional Biosafety Committee (Chicago, IL), UAMS IBC (Little
Rock, AS), UIC IBC (Chicago, IL), University of Alabama at Birmingham Institutional Biosafety Committee (Birmingham, AL),
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