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The potential of genomics for infectious 
disease forecasting

Jessica E. Stockdale    , Pengyu Liu     and Caroline Colijn     

Genomic technologies have led to tremendous gains in understanding 
how pathogens function, evolve and interact. Pathogen diversity is now 
measurable at high precision and resolution, in part because over the past 
decade, sequencing technologies have increased in speed and capacity, 
at decreased cost. Alongside this, the use of models that can forecast 
emergence and size of infectious disease outbreaks has risen, highlighted by 
the coronavirus disease 2019 pandemic but also due to modelling advances 
that allow for rapid estimates in emerging outbreaks to inform monitoring, 
coordination and resource deployment. However, genomics studies have 
remained largely retrospective. While they contain high-resolution views 
of pathogen diversification and evolution in the context of selection, 
they are often not aligned with designing interventions. This is a missed 
opportunity because pathogen diversification is at the core of the most 
pressing infectious public health challenges, and interventions need 
to take the mechanisms of virulence and understanding of pathogen 
diversification into account. In this Perspective, we assess these converging 
fields, discuss current challenges facing both surveillance specialists and 
modellers who want to harness genomic data, and propose next steps for 
integrating longitudinally sampled genomic data with statistical learning 
and interpretable modelling to make reliable predictions into the future.

The development of high-throughput sequencing has transformed 
biology and medicine. It is now possible to analyse thousands of 
genomes in a single study, and sequencing-derived technologies have 
had tremendous impact: detecting alleles associated with cancer or 
genetic disorders, characterizing and detecting antimicrobial resist-
ance (AMR), studying microbial diversity and more1. Sequence data 
present a high-resolution view of the processes of diversification and 
adaptation, the origins of phenotypes of interest and the myriad ways 
that diversity may be acquired, lost or maintained. Phylogenetic tools 
allow inference of patterns of ancestry from observed diversity, and 
sampling and sequencing through time reveal how measurably evolving 
organisms have changed and adapted on observable timescales. When 
this change has happened in the presence of selection, environmen-
tal variation, genetic drift and population bottlenecks, sequencing 
technology and temporal sampling provide the opportunity to learn 
about evolution.

Pathogen diversification presents health challenges, with the 
rising burdens of AMR being a clear example. Since antibiotics were 
first introduced, clinical resistance has consistently followed the intro-
duction of new antimicrobials within one to two decades2. Viral evolu-
tion is rapid, and treatment of fast-evolving infections such as human 
immunodeficiency virus (HIV) is challenging due to the speed at which 
some viruses can acquire resistance3. Influenza viruses evolve through 
patterns of antigenic drift and periodic antigenic shift; seasonal vac-
cines need to be updated regularly, and pandemic strains can emerge 
repeatedly4. The issue of pathogen diversification has come to the 
forefront during the coronavirus disease 2019 (COVID-19) pandemic, 
with the continued emergence of severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) variants of concern driving epidemic 
waves5. Even in slowly evolving pathogens such as Mycobacterium 
tuberculosis, extensively resistant variants have been reported world-
wide6. In Plasmodium falciparum, a eukaryotic organism that causes 
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Resource Integration Center (PATRIC) database29 collates genomes 
of pathogenic bacteria, with available year and country data and 
some antibiotic resistance information. The quantity of documented 
sequences has been exponentially increasing over time30.

There are a number of projects providing genomic data for the 
detection, comparison and study of AMR genes and isolates. Major 
databases include the Comprehensive Antibiotic Resistance Data-
base31, MEGARes32, DeepARG33, and the broader-purposed Uniprot34. 
Knowledge of the emergence and origins of AMR is essential in pre-
venting and mitigating its damages. However, large collections of 
AMR genes, with differing sampling strategies, without the organ-
isms’ context and without information about antibiotic-sensitive 
counterparts, are not directly amenable to forecasting and modelling 
pathogen ecology and evolution. Continual sampling as part of surveil-
lance programmes may close this gap to some extent, particularly if 
sampling also includes non-resistant and ‘background’ isolates and 
organisms. In this vein, the European Antimicrobial Resistance Sur-
veillance Network project (https://www.ecdc.europa.eu/en/about-us/
partnerships-and-networks/disease-and-laboratory-networks/
ears-net) is focused on AMR surveillance, collecting data from inva-
sive isolates originating from national surveillance programmes and 
laboratory networks. The US Antibiotic Resistance Laboratory Network 
(https://www.cdc.gov/drugresistance/ar-lab-networks/domestic.html) 
spans 50 states and Puerto Rico, and reports AMR to the US Centers for 
Disease Control and Prevention, which runs the Antibiotic Resistance 
Solutions Initiative. The World Health Organization’s (WHO’s) Global 
Antimicrobial Resistance Surveillance System (https://www.who.int/
initiatives/glass) is promoting the development of additional national 
surveillance systems to collect, analyse and share data.

There are ambitious long-term sequencing projects underway, 
some linked to surveillance programmes. The Comprehensive Resist-
ance Prediction for Tuberculosis: An International Consortium project 
(http://www.crypticproject.org/) is sequencing 100,000 genomes for 
tuberculosis from five continents, and both England and the United 
States use routine whole-genome sequencing for tuberculosis. The 
Wellcome Trust Sanger Institute’s Parasites and Microbes programme 
has an ongoing commitment to sequencing a range of organisms and 
making data available (Table 1). There are many clinical, reference and 
public health laboratories around the world that have stored isolates 
over many years; these isolate collections could be sequenced. In all, 
including existing datasets, upcoming projects and the decreasing cost 

human malaria, resistance to antimalarial agents is a key factor driving 
global malaria increases7.

There are increasing efforts to compile genomic data in publicly 
accessible databases, with a focus on resistance. With large bacterial 
sequence datasets, researchers have characterized recombination 
pathways8, capsule switching and resistance acquisition following 
human intervention in Streptococcus pneumoniae9, identified resist-
ance determinants in M. tuberculosis and Escherichia coli10,11 and 
characterized global patterns of cholera dissemination12, to name 
a few. Recently, over 2,000 whole-genome sequences of Neisseria 
gonorrhoeae were analysed alongside epidemiological data, reveal-
ing a novel resistant clone and transmission among distinct contact 
networks13. Researchers have identified mutations that confer drug 
resistance in HIV14 and hepatitis C virus15 and key differences in within- 
and between-host evolution that affect the development of resistance16. 
Many COVID-19 studies leveraged large volumes of sequence data: 
more than six million SARS-CoV-2 genomes were analysed to identify 
mutations associated with transmissibility of the virus17. Since the 
conception of ‘viral phylodynamics’ in 200418, models can estimate 
underlying parameters using likelihoods for phylogenetic trees, link-
ing mechanistic models of diversity with genomic data. Estimated 
parameters can be used in forward-time models to make predictions 
of the relevant population dynamics. This approach effectively sum-
marizes the information in a set of pathogen sequence data as one or 
several real parameters.

In contrast, models used for infectious disease forecasting often 
cannot incorporate pathogen diversity and cannot typically be com-
pared with genomic data. These models include the susceptible–infec-
tious–recovered compartmental model and its myriad extensions (for 
example, latent periods, age structure and vaccination status). Although 
recent work links birth–death and coalescent phylogenetic models to 
compartmental models and projections19–22, many modelling frame-
works used for forecasting disease do not yet lend themselves to model-
ling diverse pathogens. For example, a report23 estimates that by 2050, 
AMR will cost up to US$100 trillion and cause 10 million deaths per year, 
based on an assumption that all bacterial infections will be resistant. But 
in many of the most prevalent bacteria causing human disease, resist-
ance has remained at stable intermediate frequencies for many years24,25. 
Modelling even this single fact about bacterial diversity (resistant and 
sensitive types can coexist for long periods) has proved challenging25, 
but if models do not correctly describe standing, stable diversity, they 
have poor prospects for making good forecasts into the future.

In this Perspective, we outline the need and opportunity for 
stronger links between forecasting and genomic data. Sequencing 
technologies have matured to the point where sampling in a consist-
ent manner over time is feasible, and this gives us the opportunity to 
observe the evolution of our most important pathogens in response 
to our interventions. If we could incorporate these data into predictive 
models—building, testing and refining them against high-resolution 
data on evolution through time—we would stand a much better chance 
of assessing risks of immune escape, AMR and other evolutionary 
changes, and mitigating these risks. We describe several recent efforts 
in this direction, the availability of relevant data and the remaining 
challenges. We call on modellers and genomics experts to create the 
data, models, benchmarking and refinements that will be required to 
bring genomic data together with forecasting efforts.

Rapid increase in genomic data
Large volumes of pathogen sequence data have been collected and 
made available online (Table 1). The Genomes Online Database (GOLD)26 
links studies and metadata, sourced from the National Center for 
Biotechnology Information (NCBI), the Department of Energy Joint 
Genome Institute and others. Other databases host large amounts of 
viral sequence data (for example, NCBI’s Virus portal27 and the Global 
Initiative on Sharing All Influenza Data [GISAID]28). The Pathosystems 

Table 1 | A selection of sequence databases containing 
pathogen genomes

Database/
project

Collection or aim Reference

GOLD >460,000 organisms (primarily 
pathogenic), collated from 
multiple sources

26

NCBI Virus >1.3 million viral sequences, 
spanning RNA, DNA and 
unclassified viruses

27

GISAID >365,000 influenza and >10.8 
million SARS-CoV-2 sequences

28

PATRIC >570,000 genomes of pathogenic 
bacteria

29

Global 
Pneumococcal 
Sequencing 
Project

>26,000 pneumococcal genomes https://www.
pneumogen.net/gps/

Los Alamos 
HIV sequence 
database

>980,000 records and >16,000 
complete HIV genomes

95

Quantities are correct as of 17 May 2022.
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of sequencing existing collections of isolates, there are rich opportuni-
ties to build the data to capture, at a high level of resolution, ongoing 
pathogen evolution.

Epidemiology and genomic data
The rapid accumulation of genomic data has provided insight into 
epidemiological and evolutionary processes and stimulated the 
development of a number of methods18. These have been applied to 
inferring epidemiological parameters, investigating transmission 
patterns35, determining the spatial, temporal and zoonotic origin of 
pathogens36, understanding acquisition and transmission of AMR37, 
and modelling fitness38.

Pathogen genomic data encode information for inferring epide-
miological parameters including the basic and effective reproduc-
tion numbers and the effective population size through time. Several 
inference methods have been developed for large-scale models with 
relatively sparse sampling, for example, to estimate the basic reproduc-
tion number using Bayesian inference with a birth–death model for 
HIV-1 virus in Switzerland39, and with a structured coalescent model for 
SARS-CoV-240. Recent extensions to these approaches have allowed for 
differences between lineages, inter-strain interactions and geographic 
movements41–43. Multi-type branching process models allow for rapidly 
evolving or co-circulating pathogens and host populations with het-
erogeneous contact structures. Tree comparison approaches estimate 
parameters by comparing phylogenetic trees from simulations with 
those from data, via approximate Bayesian computation (ABC)44 or via 
mathematical representations of phylogenetic trees45–47.

Efforts have also been made to reconstruct outbreak transmission 
trees from genomic data in outbreak settings with dense sampling48,49. 
Genomic data are also used to understand contact networks, for exam-
ple, using ABC for HIV genomic data to estimate structural parameters 
of contact networks50, and to identify transmission risk factors, for 
example, through clustering or viral diversification rates51. At much 
larger scales, genomic data have been used in influenza virus research 
to predict evolutionary change38, with the potential to inform vac-
cine design. This is enabled in part by routine collection of influenza 
sequences, linked to geographic and epidemiological information.

Pathogen genomic data can be more informative for predictive 
models when linked to metadata. Epidemiological models exploit-
ing linked genomic data have been developed for a limited number 
of pathogens due to the availability of metadata. Methods that unify 
classic infectious disease compartmental models and population 
dynamics from genomic sequences19,52 have gained popularity, as 
they allow description of phylogenetic clustering patterns in addi-
tion to epidemiological parameter estimation. Methods combining 
epidemiological and genomic data have been used to reconstruct 
early transmission trees of foot-and-mouth disease outbreaks53 and 
to infer likely infection times and heterogeneity in infection54. With 
locations of sampled genomic sequences, phylogeographic methods 
help characterize the emergence of a pathogen, identify importation 
and local circulation, and evaluate factors driving transmission. With 
a structured coalescent model and Bayesian inference, genomic data 
and their sampling locations have been used to reconstruct transmis-
sion histories, migration patterns and outbreak origins43,55. Although 
not directly predictive, this has policy applications: it has been shown 
that many regional outbreaks of SARS-CoV-2 virus (in New York City, 
Israel and others) were initiated by multiple introductions, highlighting 
the highly porous nature of borders56,57.

Currently, these methods have been mainly retrospective or 
descriptive. We propose that it is possible, and it is time, to develop 
models with genomic data that produce results relevant to predic-
tion. Data availability to support this effort is improving. Linkage of 
genomic data to metadata and other epidemiological information 
remains limited, although it would render genomic data far more 
informative and improve forecasting efforts58. Estimation of model 

parameters and incorporation of some epidemiological structure19,22 
has been a clear step towards prediction, and strengthening models 
with additional epidemiological data would allow genomic methods 
to be more effectively linked with current forecasting efforts.

The potential of genomic data for forecasting in 
public health
Non-genomic mathematical models for infectious disease forecast-
ing are widely applied in public health. There is a demand for models 
that allow public health agencies to prepare for expected demands on 
health services, vaccine stocks, mobilization of healthcare workers and 
communication campaigns59. Estimates of disease burden produced by 
the WHO60 and others are used to compare the relative importance of 
different diseases and to determine where to allocate limited resources. 
Although progress was at first mostly limited to retrospective analyses 
using agent-based, compartmental or time-series models, over the past 
20 years the implementation of epidemiological models for forecasting 
has become more commonplace. Three key factors driving progress 
have been the collection of high-resolution spatio-temporal data61, 
the incorporation of more complex model features such as popula-
tion structure and seasonal forcing, and computational advances in 
methods such as Markov chain Monte Carlo (MCMC)62 and ABC63.

We argue that the same steps towards forecasting should be 
taken with analyses incorporating genomic data. This need has pre-
viously been recognized64, but with the collection of more longitu-
dinal genomic data, there is increased opportunity. The application 
of genomic data to real-time analyses is currently limited, despite a 
marked increase in forecasting and ‘nowcasting’ analyses65. Although 
the COVID-19 pandemic has seen a plethora of research in forecast-
ing65,66 and genomic epidemiology67,68, these analyses have remained 
largely separate. In other contexts, real-time sequencing of viruses is 
facilitating prediction from genomic data69,70, although so far analyses 
have largely been descriptive.

The importance of forecasting in public health has been widely 
argued71 and further emphasized during the COVID-19 pandemic with 
many public health organizations turning to mathematical models for 
regular jurisdictional forecasts, despite uncertainties. Incorporating 
genomic data into predictive models will offer new opportunities. 
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Fig. 1 | Data, models, predictions and outcomes may cover multiple levels of 
resolution. For example, data may comprise sequences, from which we wish to 
model sequence types or genotypes, to forecast global disease trends and thereby 
design an efficient resource deployment strategy. Alternatively, the composition 
of the pathogen population by larger sub-populations (for example, serotype or 
variant) may be the focal level for genetic diversity. There are myriad combinations, 
from which the scientist must determine the optimum scale at each step.
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For example, existing mathematical models for malaria incorporate 
population structures and immune selection to design drug resistance 
control strategies72. Genomics would seem a natural tool to extend 
this, although existing analyses have been more focused on genome 
description and identification of vaccine candidate antigens73.

On the other hand, some findings in epidemiological models have 
been at odds with observations in genomics. Compartmental epide-
miological models often predict competitive exclusion by the ‘fittest’ 
strains59,74. However, genomic studies have observed consistent strain 
diversity even in competing pathogen populations, such as long-term 
coexistence of drug-sensitive and drug-resistant strains of S. pneumo-
niae75 and apparent frequency-dependent selection in S. pneumoniae 
and E. coli76,77. Further incorporation of genomics into epidemiological 
modelling could help to reconcile these contradictory perspectives 
and ensure that models can capture realistic diversity.

Early in the West African Ebola virus outbreak of 2013–2016, phylo-
genetic tools were used to trace the outbreak source and to characterize 
transmission patterns78. However, the majority of collected sequences 
could not be linked to individual case records79, limiting applicability to 
modelling or forecasting, and studies that did include this were largely 
descriptive rather than predictive80. With pre-planned collection of 
genomic data during outbreaks and the goal of epidemiological analy-
sis in mind, we could more fully incorporate the additional information 
that genomic data offer. A major difficulty with analyses of outbreaks is 
that the epidemic process is usually only partially observed: rarely do 
we know when individuals are infected or who infected whom. Genomic 
data can give us insight to these unobserved processes. However, this 
comes with ethical concerns, particularly around source attribution 
where this may have legal consequences or lead to stigmatization or 
social harm, as with HIV81. There is a growing base of ethical guidelines 
specifically concerning genomic research, but phylogenetic recon-
struction studies must still make careful decisions around the costs 
and benefits of their findings81. The use of genomic data to reconstruct 
outbreaks also brings logistical challenges, for example, in rapid data 
collection and processing82.

Genomic data also offer opportunities to improve vaccine design 
through increased understanding of pathogen diversity dynamics, 
as is underway for influenza38. Epidemiological models have been 
widely used, for example, in estimations of herd immunity thresholds74 
and to formulate vaccine development and deployment strategies83.  

In HIV research, anti-retroviral therapies have been analysed using 
compartmental epidemiological models84. However, this modelling 
has been focused at serotype and genotype levels, remaining somewhat 
separate from the field of phylodynamics despite seeking to answer 
similar questions. As non-genomic models for intervention strategies 
are not purely retrospective but also predictive, if we could integrate 
the rich information contained in now readily collected genomic data, 
we would be much better placed to make accurate forecasts incorporat-
ing evolutionary change.

Outlook
There are key challenges facing both surveillance specialists and mod-
ellers for progress in forecasting from genomic data. Longitudinally 
collected genomic data are critical to study how patterns of evolution 
and transmission are changing in time. Genomic and epidemiological 
data can be challenging to link, particularly when these are collected by 
different groups with different goals. Understandably, sharing genomic 
data and linking individual-level data (genomic, epidemiological, 
clinical) raise ethical and privacy questions, among many barriers to 
data sharing in public health85. All of the above will require dialogues 
between data collectors, data users and methods developers.

For modellers, finding the right level of abstraction is a challenge 
(Fig. 1). In most cases we do not wish to predict sequences, but rather 
the abundance or prevalence of different subgroups or types, or to 
understand selection and quantify the risk of emergence of new phe-
notypes and the impact of disease. Aims might include projecting the 
rate of spread of resistance, the emergence of new resistance or vari-
ants of concern, how strongly selection may favour new phenotypes, 
whether there are existing mutational profiles that could combine to 
confer advantages and so on. This will require finding an appropriate 
balance in the trade-off between simple and complex models, as well 
as useful summary statistics or descriptions of genomic data and the 
relationships between genomes. Methods that use genomes to infer 
population structure have been developed in recent years86, but meth-
ods that characterize interactions across these structures have not yet 
really been explored.

Similarly, a challenge of existing phylogenetic and phylodynamic 
approaches, such as those using birth–death and coalescent models, 
is that they usually assume that genetic diversity is phenotypically 
neutral and are therefore not well suited to forecast resistance or 
antigenic evolution. There are modelling approaches that account 
for different growth or death rates in different lineages, includ-
ing multi-strain epidemiological models, genome-scale negative 
frequency-dependent selection models76,77, multi-type birth–death 
models41, the binary-state speciation and extinction framework87 and 
its extensions, and estimates of selection coefficients or fitness using 
genomic data17,88. These may group sequences into types or variants 
and proceed with an assumption of phenotypic neutrality within these 
types or focus on identifying mutations that confer an advantage. In 
our view, methods that directly incorporate selection strengthen links 
between genomic data and forecasting, even where their main focus is 
not making forward-time projections.

Although machine learning methods have become widely used 
tools in modern statistical analysis, their application to forecasting 
given genomic and epidemiological data is not straightforward. In 
addition to the drawbacks of difficult-to-interpret ’black box’ meth-
ods89, machine learning approaches have been shown to struggle with 
genome-wide association studies90 despite a larger amount of training 
data than generally available in forecasting analyses. One key problem 
is that of hidden population structures in genomic data: complex inter-
acting and evolving populations are likely to have complex dependence 
structures. These structures, if not accounted for in the mathematical 
model, can cause confounding91. Selection bias in which isolates are col-
lected and which are included in sequencing studies is also a challenge, 
which must be accounted for or avoided. For example, prioritizing 
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Fig. 2 | Depiction of current research directions and the opportunities 
highlighted in this work. We primarily focus on mechanistic models for 
forecasting, but these approaches can also include statistical or empirical 
models. Tree reconstruction methods include Bayesian Evolutionary Analysis 
Sampling Trees (BEAST) and maximum likelihood (ML).
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outbreaks for sequencing could lead to spurious conclusions of higher 
transmissibility if sampling strategy is not accounted for.

In both public health and evolution, we will require interpret-
able models that contain explanations of the predictions they make. 
This has ethical motivations in medical fields—patient safety, trust, 
concerns over unintended sociodemographic biases—and has been 
legally mandated, for example, by the European General Data Protec-
tion Regulation, which states that when personal data are used, the 
decision-making system of a model must be traceable and explain-
able92. This motivates the use of mechanistic and/or statistical models 
rather than, or in combination with, machine learning models and ties 
in with identified challenges in explainable AI93. The dimension of time, 
not present in genome-wide association studies or the vast majority 
of existing genomics applications in mathematics and statistics, also 
introduces complexities. We now require understanding of the inter-
actions between organisms at different scales, including competition, 
horizontal gene transfer, synergy and niche differentiation. Over long 
periods where the drifting dynamics of these interactions may not yet be 
well understood, forecasting may not be feasible. However, mechanistic 
approaches offer the opportunity to model these behaviours at differ-
ent levels and allow interpretation of the interactions between them.

The ‘curse of dimensionality’ is particularly challenging with 
genomic data—for example, the number of potential genotypes 
increases exponentially with the number of loci considered. It is not 
possible to sample every combination, resulting in limitations to the 
feasibility of prediction, and increasing the potential for population 
stratification confounding and the computational complexity. Factors 
affecting the success of different pathogen genotypes may depend on 
complex interactions between large numbers of loci and numerous 

environmental factors94. The dependence structures may not be known 
in advance, and the set of possible dependencies is large. Computa-
tional techniques will therefore need to infer or otherwise account for 
unknown dependence structures and overcome the dimensionality 
problems they introduce.

Throughout this Perspective, we have discussed areas of research 
that would benefit from incorporation of genomic data for forecasting. 
From existing forecasting approaches in infectious disease modelling 
to existing approaches in phylogenetics and other genomic research 
that have had limitations when it comes to prediction, further com-
bining approaches and developing new methods at the intersection 
will unlock new possibilities, particularly with the ever-increasing 
availability of longitudinally sampled pathogen genomic data  
(Fig. 2). Many research efforts are already moving in this direction, but 
we take a more speculative view in Table 2 of where future research 
could focus, for what purpose, what the data and sampling challenges 
will be and where this may be most applicable to public health.

Conclusions
We propose that there are high potential benefits to developing fore-
casting methods that can combine genomic data with epidemiologi-
cal, clinical and surveillance system data. This will require combining 
existing techniques in novel ways (Fig. 2 and Table 2) and developing 
new approaches. If we can incorporate pathogen dynamics and evolu-
tion into existing forecasting approaches, there is scope to make more 
robust predictions. Similarly, methods that fit models to genomic 
data to estimate epidemiological parameters can be extended for 
forecasting by incorporating knowledge of the underlying generative 
processes. Although the application of machine learning methods to 

Table 2 | Areas for further predictive applications of pathogen genomic data

Target of prediction Purpose Data and sampling requirements Public health applications

Future patterns of lineage 
growth, dominance and 
coexistence

Infer competition and synergy among 
lineages and within and between hosts

Representative and longitudinal but not 
necessarily dense sampling

Measure impact of interventions 
targeting one lineage, for example, 
with antibiotic resistance

Identify patterns of geographic spread Representative and longitudinal but not 
necessarily dense sampling

Estimate likely impact of border 
measures; identify geographic sources 
and sinks

Estimate selection coefficients and 
thereby predict population composition 
over time

Fractions of samples that are the 
different sub-populations, over time

Timescale to potential change of 
clinical impact, for example, time 
until particular variant of concern 
dominance in SARS-CoV-2

Phenotypic change Changes in transmission, immune evasion, 
propensity to cause severe disease; 
clinical impact

Genomic data linked to phenotypes 
of interest (epidemiological or clinical 
data)

Changing symptoms and severity by 
SARS-CoV-2 variant

Resistance, acquired and 
inherited

Emergence and development of AMR Resistant and sensitive ‘background’ 
sequences (through time); fitness 
estimates

Order and pace of emergence of 
resistance to antibiotics

Incidence and prevalence over 
time

Estimate parameters of a population-level 
model, then use that model to forecast 
prevalence and incidence

Genomic data to inform multi-strain 
models

Scenarios for future burden, 
syndemics, economic and wider 
impacts

Identify outbreaks and patterns 
of transmission in outbreak 
settings

Inference for outbreaks in less densely 
sampled settings or with more complex 
population structure

Linked epidemiological and genomic 
data, relatively densely sampled in the 
setting

Transmission timescales inform 
intervention timing; likely transmission 
contacts inform effective interventions

Transmission prediction based on 
outbreak reconstruction, given 
phenotypic traits

Linked epidemiological and genomic 
data, relatively densely sampled in the 
setting

Identify risk factors for transmission; 
forecast outbreak sizes

Impacts of future public health 
intervention

Impacts of antibiotic usage on resistance Data informing emergence and spread 
of resistance; validated models relating 
this to policy and usage data

Implications for antibiotic stewardship

Impact of polyvalent vaccines on 
pathogen population composition

Longitudinal representative data, in the 
context of interventions

Design interventions to leave a more 
benign pathogen population, lower 
disease burden

We list some of the areas of inference, along with illustrative purposes, comments about data needs and example applications. This is by no means an exhaustive list, and descriptions are 
necessarily brief.
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genomic epidemiological analyses has limitations, there is scope to 
further integrate them. Linking mechanistic models to machine learn-
ing approaches can help to motivate their structure, interpret their 
outputs or gain intuition about the mechanistic behaviours behind 
forecasts. All of the above has been made possible by tremendous 
efforts to collect and compile genomic data into publicly available 
repositories and would be further facilitated by (1) more longitudinally 
collected and representative sequences and (2) linkage to epidemio-
logical, demographic and clinical information where feasible. Over 
the past 20 years, the rich information that genomic data contain has 
been successfully applied to retrospective epidemiological analyses. 
The next step is for genomic data to help us understand more about 
possible futures to come.
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