Abstract
Microbial life represents the majority of Earth’s biodiversity. Across disparate disciplines from medicine to forestry, scientists continue to discover how the microbiome drives essential, macro-scale processes in plants, animals and entire ecosystems. Yet, there is an emerging realization that Earth’s microbial biodiversity is under threat. Here we advocate for the conservation and restoration of soil microbial life, as well as active incorporation of microbial biodiversity into managed food and forest landscapes, with an emphasis on soil fungi. We analyse 80 experiments to show that native soil microbiome restoration can accelerate plant biomass production by 64% on average, across ecosystems. Enormous potential also exists within managed landscapes, as agriculture and forestry are the dominant uses of land on Earth. Along with improving and stabilizing yields, enhancing microbial biodiversity in managed landscapes is a critical and underappreciated opportunity to build reservoirs, rather than deserts, of microbial life across our planet. As markets emerge to engineer the ecosystem microbiome, we can avert the mistakes of aboveground ecosystem management and avoid microbial monocultures of single high-performing microbial strains, which can exacerbate ecosystem vulnerability to pathogens and extreme events. Harnessing the planet’s breadth of microbial life has the potential to transform ecosystem management, but it requires that we understand how to monitor and conserve the Earth’s microbiome.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B. & Worm, B. How many species are there on earth and in the ocean? PLoS Biol. 9, e1001127 (2011).
Costello, M. J., May, R. M. & Stork, N. E. Can we name earth’s species before they go extinct? Science 339, 413–416 (2013).
Corlett, R. T. Plant diversity in a changing world: status, trends, and conservation needs. Plant Divers. 38, 10–16 (2016).
Baldrian, P., Větrovský, T., Lepinay, C. & Kohout, P. High-throughput sequencing view on the magnitude of global fungal diversity. Fungal Divers. 114, 539–547 (2022).
Taylor, D. L. et al. A first comprehensive census of fungi in soil reveals both hyperdiversity and fine-scale niche partitioning. Ecol. Monogr. 84, 3–20 (2014).
Locey, K. J. & Lennon, J. T. Scaling laws predict global microbial diversity. Proc. Natl Acad. Sci. USA 113, 5970–5975 (2016).
Schopf, J. W. Disparate rates, differing fates: tempo and mode of evolution changed from the Precambrian to the Phanerozoic. Proc. Natl Acad. Sci. USA 91, 6735–6742 (1994).
Seager, S., Huang, J., Petkowski, J. J. & Pajusalu, M. Laboratory studies on the viability of life in H2-dominated exoplanet atmospheres. Nat. Astron. 4, 802–806 (2020).
Halme, P., Holec, J. & Heilmann-Clausen, J. The history and future of fungi as biodiversity surrogates in forests. Fungal Ecol. 27, 193–201 (2017).
Arnolds, E. Decline of ectomycorrhizal fungi in Europe. Agric. Ecosyst. Environ. 35, 209–244 (1991).
Boddy, L. in The Fungi (eds Watkinson, S. C. et al.) 361–400 (Elsevier, 2016); https://doi.org/10.1016/B978-0-12-382034-1.00011-6
Zimmerman, M. The mushroom message. Sun 11A (1992).
Bader, P., Jansson, S. & Jonsson, B. G. Wood-inhabiting fungi and substratum decline in selectively logged boreal spruce forests. Biol. Conserv. 72, 355–362 (1995).
Weinbauer, M. G. & Rassoulzadegan, F. Extinction of microbes: evidence and potential consequences. Endanger. Species Res. 3, 205–215 (2007).
Chomicki, G., Kiers, E. T. & Renner, S. S. The evolution of mutualistic dependence. Annu. Rev. Ecol. Evol. Syst. 51, 409–432 (2020).
Blaser, M. J. The theory of disappearing microbiota and the epidemics of chronic diseases. Nat. Rev. Immunol. 17, 461–463 (2017).
Carthey, A. J., Blumstein, D. T., Gallagher, R. V., Tetu, S. G. & Gillings, M. R. Conserving the holobiont. Funct. Ecol. 34, 764–776 (2020).
Schapheer, C., Pellens, R. & Scherson, R. Arthropod-microbiota integration: its importance for ecosystem conservation. Front. Microbiol. 12, 2094 (2021).
Zhou, Z., Wang, C. & Luo, Y. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nat. Commun. 11, 3072 (2020).
Anthony, M. A., Stinson, K. A., Moore, J. A. M. & Frey, S. D. Plant invasion impacts on fungal community structure and function depend on soil warming and nitrogen enrichment. Oecologia 194, 659–672 (2020).
Lilleskov, E., Hobbie, E. A. & Horton, T. Conservation of ectomycorrhizal fungi: exploring the linkages between functional and taxonomic responses to anthropogenic N deposition. Fungal Ecol. 4, 174–183 (2011).
Gibbons, S. M. et al. Invasive plants rapidly reshape soil properties in a grassland ecosystem. mSystems 2, e00178-16 (2017).
Rillig, M. C. et al. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science 366, 886–890 (2019).
Certini, G., Moya, D., Lucas-Borja, M. E. & Mastrolonardo, G. The impact of fire on soil-dwelling biota: a review. For. Ecol. Manage. 488, 118989 (2021).
Caruso, T., Hempel, S., Powell, J. R., Barto, E. K. & Rillig, M. C. Compositional divergence and convergence in arbuscular mycorrhizal fungal communities. Ecology 93, 1115–1124 (2012).
Anthony, M., Frey, S. & Stinson, K. Fungal community homogenization, shift in dominant trophic guild, and appearance of novel taxa with biotic invasion. Ecosphere 8, e01951 (2017).
Guerra, C. A. et al. Global projections of the soil microbiome in the Anthropocene. Glob. Ecol. Biogeogr. 30, 987–999 (2021).
Enright, D. J., Frangioso, K. M., Isobe, K., Rizzo, D. M. & Glassman, S. I. Mega‐fire in redwood tanoak forest reduces bacterial and fungal richness and selects for pyrophilous taxa that are phylogenetically conserved. Mol. Ecol. 31, 2475–2493 (2022).
Anthony, M. A. et al. Forest tree growth is linked to mycorrhizal fungal composition and function across Europe. ISME J. 16, 1327–1336 (2022).
Crowther, T. W. et al. The global soil community and its influence on biogeochemistry. Science 365, eaav0550 (2019).
Ceballos, G. et al. Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).
Novacek, M. J. & Cleland, E. E. The current biodiversity extinction event: scenarios for mitigation and recovery. Proc. Natl Acad. Sci. USA 98, 5466–5470 (2001).
Guerra, C. A. et al. Tracking, targeting, and conserving soil biodiversity. Science 371, 239–241 (2021).
Guerra, C. A. et al. Blind spots in global soil biodiversity and ecosystem function research. Nat. Commun. 11, 3870 (2020).
Cameron, E. K. et al. Global mismatches in aboveground and belowground biodiversity. Conserv. Biol. 33, 1187–1192 (2019).
Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688 (2014).
Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018).
Delgado-Baquerizo, M. et al. A global atlas of the dominant bacteria found in soil. Science 359, 320–325 (2018).
Peixoto, R. S. et al. Harnessing the microbiome to prevent global biodiversity loss. Nat. Microbiol. https://doi.org/10.1038/s41564-022-01173-1 (2022).
Box, G. E. P. & Draper, N. R. Empirical Model-building and Response Surfaces (Wiley, 1987).
Box, G. E. P., Hunter, W. G. & Hunter, J. S. Statistics for Experimenters: an Introduction to Design, Data Analysis, and Model Building (Wiley, 1978).
Kothamasi, D., Spurlock, M. & Kiers, E. T. Agricultural microbial resources: private property or global commons? Nat. Biotechnol. 29, 1091–1093 (2011).
Davison, J. et al. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349, 970–973 (2015).
van der Linde, S. et al. Environment and host as large-scale controls of ectomycorrhizal fungi. Nature 558, 243–248 (2018).
Davison, J. et al. Temperature and pH define the realised niche space of arbuscular mycorrhizal fungi. New Phytol. 231, 763–776 (2021).
Ramirez, K. S. et al. Detecting macroecological patterns in bacterial communities across independent studies of global soils. Nat. Microbiol. 3, 189–196 (2018).
Wild, S. Quest to map Africa’s soil microbiome begins. Nature 539, 152 (2016).
Bissett, A. et al. Introducing BASE: the Biomes of Australian Soil Environments soil microbial diversity database. GigaScience 5, 21 (2016).
Pan, K., Guo, Z. & Liu, J. Building and materializing of China Soil Microbiome Data Platform. Acta Pedol. Sin. 56, 1023–1033 (2019).
Orgiazzi, A., Ballabio, C., Panagos, P., Jones, A. & Fernández‐Ugalde, O. LUCAS Soil, the largest expandable soil dataset for Europe: a review. Eur. J. Soil Sci. 69, 140–153 (2018).
Hinckley, E. S. et al. The soil and plant biogeochemistry sampling design for The National Ecological Observatory Network. Ecosphere 7, e01234 (2016).
Větrovský, T. et al. GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Sci. Data 7, 228 (2020).
Jackson, F. Sustainable agriculture and a low carbon future: are we missing out on mycelium? Forbes https://www.forbes.com/sites/feliciajackson/2021/12/02/sustainable-agriculture-and-a-low-carbon-future-are-we-missing-out-on-mycelium/?sh=3dc1a6d076ed (2021).
Gilbert, J. A., Jansson, J. K. & Knight, R. The Earth Microbiome project: successes and aspirations. BMC Biol. 12, 69 (2014).
Fedrowitz, K. et al. Can retention forestry help conserve biodiversity? A meta‐analysis. J. Appl. Ecol. 51, 1669–1679 (2014).
Schmidt, R., Mitchell, J. & Scow, K. Cover cropping and no-till increase diversity and symbiotroph:saprotroph ratios of soil fungal communities. Soil Biol. Biochem. 129, 99–109 (2019).
Status of the World’s Soil Resources: Main Report (FAO, 2015).
Aronson, J., Goodwin, N., Orlando, L., Eisenberg, C. & Cross, A. T. A world of possibilities: six restoration strategies to support the United Nation’s Decade on Ecosystem Restoration. Restor. Ecol. 28, 730–736 (2020).
Seymour, F. Seeing the forests as well as the (trillion) trees in corporate climate strategies. One Earth 2, 390–393 (2020).
Dinerstein, E. et al. A global deal for nature: guiding principles, milestones, and targets. Sci. Adv. 5, eaaw2869 (2019).
Philipson, C. D. et al. Active restoration accelerates the carbon recovery of human-modified tropical forests. Science 369, 838–841 (2020).
Coleman, E. A. et al. Limited effects of tree planting on forest canopy cover and rural livelihoods in Northern India. Nat. Sustain. 4, 997–1004 (2021).
Neuenkamp, L., Prober, S. M., Price, J. N., Zobel, M. & Standish, R. J. Benefits of mycorrhizal inoculation to ecological restoration depend on plant functional type, restoration context and time. Fungal Ecol. 40, 140–149 (2019).
Koziol, L. et al. Manipulating plant microbiomes in the field: native mycorrhizae advance plant succession and improve native plant restoration. J. Appl. Ecol. https://doi.org/10.1111/1365-2664.14036 (2021).
Wubs, E. R. J., van der Putten, W. H., Bosch, M. & Bezemer, T. M. Soil inoculation steers restoration of terrestrial ecosystems. Nat. Plants 2, 16107 (2016).
Bever, J. & Schultz, P. Prairie mycorrhizal fungi inoculant may increase native plant diversity on restored sites (Illinois). Ecol. Restor. 21, 311–312 (2003).
Vahter, T. et al. Co-introduction of native mycorrhizal fungi and plant seeds accelerates restoration of post-mining landscapes. J. Appl. Ecol. 57, 1741–1751 (2020).
Egan, C. P. et al. Restoration of the mycobiome of the endangered Hawaiian mint Phyllostegia kaalaensis increases its resistance to a common powdery mildew. Fungal Ecol. 52, 101070 (2021).
Wubs, E. R. J. et al. Single introductions of soil biota and plants generate long‐term legacies in soil and plant community assembly. Ecol. Lett. 22, 1145–1151 (2019).
Abrego, N. et al. Reintroduction of threatened fungal species via inoculation. Biol. Conserv. 203, 120–124 (2016).
Salomon, M. J. et al. Global evaluation of commercial arbuscular mycorrhizal inoculants under greenhouse and field conditions. Appl. Soil Ecol. 169, 104225 (2022).
Maltz, M. R. & Treseder, K. K. Sources of inocula influence mycorrhizal colonization of plants in restoration projects: a meta-analysis: mycorrhizal inoculation in restoration. Restor. Ecol. 23, 625–634 (2015).
Busby, P. E., Newcombe, G., Neat, A. S. & Averill, C. Facilitating reforestation through the plant microbiome: perspectives from the phyllosphere. Annu. Rev. Phytopathol. https://doi.org/10.1146/annurev-phyto-021320-010717 (2022).
van der Heijden, M. G. A., Martin, F. M., Selosse, M.-A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 205, 1406–1423 (2015).
Crowther, T. W. et al. Predicting the responsiveness of soil biodiversity to deforestation: a cross-biome study. Glob. Change Biol. 20, 2983–2994 (2014).
Lilleskov, E. A., Kuyper, T. W., Bidartondo, M. I. & Hobbie, E. A. Atmospheric nitrogen deposition impacts on the structure and function of forest mycorrhizal communities: a review. Environ. Pollut. 246, 148–162 (2019).
Smith, G. R., Steidinger, B. S., Bruns, T. D. & Peay, K. G. Competition–colonization tradeoffs structure fungal diversity. ISME J. 12, 1758–1767 (2018).
Ceballos, I. et al. The in vitro mass-produced model mycorrhizal fungus, Rhizophagus irregularis, significantly increases yields of the globally important food security crop cassava. PLoS ONE 8, e70633 (2013).
Buysens, C., César, V., Ferrais, F., de Boulois, H. D. & Declerck, S. Inoculation of Medicago sativa cover crop with Rhizophagus irregularis and Trichoderma harzianum increases the yield of subsequently-grown potato under low nutrient conditions. Appl. Soil Ecol. 105, 137–143 (2016).
Antunes, P. M. et al. Influence of commercial inoculation with Glomus intraradices on the structure and functioning of an AM fungal community from an agricultural site. Plant Soil 317, 257–266 (2009).
Emam, T. Local soil, but not commercial AMF inoculum, increases native and non‐native grass growth at a mine restoration site. Restor. Ecol. 24, 35–44 (2016).
Hoeksema, J. D. et al. A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol. Lett. 13, 394–407 (2010).
Policelli, N., Horton, T. R., Hudon, A. T., Patterson, T. R. & Bhatnagar, J. M. Back to roots: the role of ectomycorrhizal fungi in boreal and temperate forest restoration. Front. For. Glob. Change 3, 97 (2020).
Hoeksema, J. D. et al. Ectomycorrhizal plant-fungal co-invasions as natural experiments for connecting plant and fungal traits to their ecosystem consequences. Front. Glob. Change 3, 84 (2020).
Land Use Statistics and Indicators. Global, Regional and Country Trends 1990– 2019 FAOSTAT Analytical Brief Series No. 28 (FAO, 2021).
Stewart, W. M., Dibb, D. W., Johnston, A. E. & Smyth, T. J. The contribution of commercial fertilizer nutrients to food production. Agron. J. 97, 1–6 (2005).
Harlander, S. K. The evolution of modern agriculture and its future with biotechnology. J. Am. Coll. Nutr. 21, 161S–165S (2002).
Cooper, J. & Dobson, H. The benefits of pesticides to mankind and the environment. Crop Prot. 26, 1337–1348 (2007).
Zsögön, A., Peres, L. E. P., Xiao, Y., Yan, J. & Fernie, A. R. Enhancing crop diversity for food security in the face of climate uncertainty. Plant J. https://doi.org/10.1111/tpj.15626 (2021).
IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).
McDonald, B. A. & Stukenbrock, E. H. Rapid emergence of pathogens in agro-ecosystems: global threats to agricultural sustainability and food security. Phil. Trans. R. Soc. Lond. B 371, 20160026 (2016).
Avelino, J. et al. The coffee rust crises in Colombia and Central America (2008–2013): impacts, plausible causes and proposed solutions. Food Sec. 7, 303–321 (2015).
Goss, E. M. et al. The Irish potato famine pathogen Phytophthora infestans originated in central Mexico rather than the Andes. Proc. Natl Acad. Sci. USA 111, 8791–8796 (2014).
Ploetz, R. C. Panama disease: a classic and destructive disease of banana. Plant Health Prog. https://doi.org/10.1094/PHP-2000-1204-01-HM (2000).
Craven, D. et al. Multiple facets of biodiversity drive the diversity–stability relationship. Nat. Ecol. Evol. 2, 1579–1587 (2018).
Thibaut, L. M. & Connolly, S. R. Understanding diversity–stability relationships: towards a unified model of portfolio effects. Ecol. Lett. 16, 140–150 (2013).
Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015).
Prieto, I. et al. Complementary effects of species and genetic diversity on productivity and stability of sown grasslands. Nat. Plants 1, 15033 (2015).
Liang, J. et al. Positive biodiversity-productivity relationship predominant in global forests. Science 354, aaf8957 (2016).
Cornell, C. et al. Do bioinoculants affect resident microbial communities? A meta-analysis. Front. Agron. 3, 753474 (2021).
Manning, L. Groundwork BioAg raises $11m to expand mycorrhizal inputs business. AgFunder Network https://agfundernews.com/groundwork-bioag-raises-11m-to-expand-mycorrhizal-inputs-business (2021).
Egidi, E. et al. A few Ascomycota taxa dominate soil fungal communities worldwide. Nat. Commun. 10, 2369 (2019).
Olle, M. & Williams, I. H. Effective microorganisms and their influence on vegetable production—a review. J. Hortic. Sci. Biotechnol. 88, 380–386 (2013).
Mayer, J., Scheid, S., Widmer, F., Fließbach, A. & Oberholzer, H.-R. How effective are ‘Effective microorganisms® (EM)’? Results from a field study in temperate climate. Appl. Soil Ecol. 46, 230–239 (2010).
Kodippili, K. P. A. N. & Nimalan, J. Effect of homemade effective microorganisms on the growth and yield of chilli (Capsicum annuum) MI-2. AGRIEAST J. Agric. Sci. https://doi.org/10.4038/agrieast.v12i2.57 (2018).
de Araujo Avila, G. M., Gabardo, G., Clock, D. C. & de Lima Junior, O. S. Use of efficient microorganisms in agriculture. Res. Soc. Dev. https://doi.org/10.33448/rsd-v10i8.17515 (2021).
Saleem, M., Hu, J. & Jousset, A. More than the sum of its parts: microbiome biodiversity as a driver of plant growth and soil health. Annu. Rev. Ecol. Evol. Syst. 50, 145–168 (2019).
Bradford, M. A. et al. Thermal adaptation of soil microbial respiration to elevated temperature. Ecol. Lett. 11, 1316–1327 (2008).
Romero-Olivares, A. L., Allison, S. D. & Treseder, K. K. Soil microbes and their response to experimental warming over time: a meta-analysis of field studies. Soil Biol. Biochem. 107, 32–40 (2017).
Klironomos, J. N. Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84, 2292–2301 (2003).
Veen, C. G. F., Snoek, B. L., Bakx-Schotman, T., Wardle, D. A. & van der Putten, W. H. Relationships between fungal community composition in decomposing leaf litter and home-field advantage effects. Funct. Ecol. 33, 1524–1535 (2019).
Wang, Q., Zhong, M. & He, T. Home-field advantage of litter decomposition and nitrogen release in forest ecosystems. Biol. Fertil. Soils 49, 427–434 (2013).
Hawkes, C. V., Waring, B. G., Rocca, J. D. & Kivlin, S. N. Historical climate controls soil respiration responses to current soil moisture. Proc. Natl Acad. Sci. USA 114, 6322–6327 (2017).
Morriën, E. et al. Soil networks become more connected and take up more carbon as nature restoration progresses. Nat. Commun. 8, 14349 (2017).
Wagg, C., Bender, S. F., Widmer, F. & van der Heijden, M. G. A. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 111, 5266–5270 (2014).
Wittebolle, L. et al. Initial community evenness favours functionality under selective stress. Nature 458, 623–626 (2009).
de Graaff, M.-A., Adkins, J., Kardol, P. & Throop, H. A meta-analysis of soil biodiversity impacts on the carbon cycle. Soil 1, 257–271 (2015).
Gao, J. et al. Assessing the effect of leaf litter diversity on the decomposition and associated diversity of fungal assemblages. Forests 6, 2371–2386 (2015).
Selosse, M.-A., Bouchard, D., Martin, F. & Tacon, F. L. Effect of Laccaria bicolor strains inoculated on Douglas-fir (Pseudotsuga menziesii) several years after nursery inoculation. Can. J. Res. 30, 360–371 (2000).
Banerjee, S. et al. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J. 13, 1722–1736 (2019).
Acknowledgements
C.A. was supported by Ambizione grant no. PZ00P3_17990 from the Swiss National Science Foundation. T.W.C. was supported by grants from DOB Ecology and the Bernina Foundation.
Author information
Authors and Affiliations
Contributions
C.A. and T.W.C. conceived the project. C.A., E.H., F.F. and G.R.S. conducted the meta-analysis. C.A. and J.v.d.H. performed all mapping analyses. C.A., M.A.A., P.B., P.K., F.F., J.v.d.H., T.K., E.H., G.R.S. and T.W.C. contributed to the writing and revising of the manuscript.
Corresponding author
Ethics declarations
Competing interests
T.W.C. is the founder of Restor, a non-governmental organization that facilitates the global restoration movement. T.K. and C.A. are the founders of the Society for the Protection of Underground Networks, an organization that advocates for the protection of belowground network forming fungi. C.A. is the founder of Funga, an organization that facilitates the restoration of belowground fungal biodiversity.
Peer review
Peer review information
Nature Microbiology thanks David Relman, Brajesh Singh and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
A description of all methods used for analyses presented in the main text.
Supplementary Data 1
A table of all covariate layers and associated references used in creating the sampling uncertainty product.
Supplementary Data 2
All data used in the meta-analysis of plant biomass responses to soil microbiome restoration.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Averill, C., Anthony, M.A., Baldrian, P. et al. Defending Earth’s terrestrial microbiome. Nat Microbiol 7, 1717–1725 (2022). https://doi.org/10.1038/s41564-022-01228-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41564-022-01228-3
This article is cited by
-
Metabolic complexity drives divergence in microbial communities
Nature Ecology & Evolution (2024)
-
Decrease due to pollution in the rhizosphere microbial diversity can be amended by supplementation from adapted plants of another species
Scientific Reports (2024)
-
Quantitative principles of microbial metabolism shared across scales
Nature Microbiology (2024)
-
AM fungi reduce grass–legume competition by increasing nutrient access
Plant and Soil (2024)
-
Abiotic plant stress mitigation by Trichoderma species
Soil Ecology Letters (2024)