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Phenogenomics of Mycobacterium abscessus
Multidimensional phenotyping links sequencing data and bacterial phenotypic diversity to uncover crucial virulence 
pathways in the emerging pathogen Mycobacterium abscessus.

Iñaki Comas and Miguel Moreno-Molina

Identifying genomic determinants and 
their presence in circulating variants 
can have clinical and epidemiological 

applications (Fig. 1), and can help predict 
drug resistance in pathogens such as 
Mycobacterium tuberculosis at a large scale1. 
The unprecedented expansion of genomic 
sequencing over recent decades has not yet 
been matched by large-scale phenotypic 
diversity datasets, hampering our ability to 
link pathogen diversity with phenotypes for 
relevant traits such as drug resistance and 
virulence. Reporting in Nature Microbiology, 
Boeck and colleagues2 combine genomic 
and functional approaches to phenotypically 
characterize clinical Mycobacterium 
abscessus isolates and reveal key 
pathobiology determinants.

Traditional functional genomics 
approaches rely on in vitro generated mutant 
libraries of a reference strain that are used to 
link genotypes to phenotypes. Transposon 
mutagenesis, or CRISPR silencing-based 
libraries, allow the identification of domains, 
genes and pathways that interact to produce 
a phenotype. However, these approaches are 
limited by the use of reference strains and 
fail to integrate the genetic and phenotypic 
diversity of the ‘wild’ bacterial population in 
order to understand how traits are regulated 
in different strains of the same pathogen. 
Recent work has shown the benefits of 
combining high-throughput functional 
information and genomic data from 
clinical isolates to narrow down genomic 
determinants of antibiotic resistance and 
virulence3–5. As an alternative, large datasets 
of clinical strains can be sequenced, enabling 
the association between pathogen genomic 
diversity and phenotypic diversity when 
available. Bacterial genome-wide association 
studies (GWAS) are also useful, but present 
many limitations even when corrected 
by population structure6,7. Evolutionary 
approaches, such as the identification of 
convergent evolutionary events8 or signals 
of selection9, have helped to pinpoint 
candidate genomic determinants that can be 
later associated with phenotypes of interest. 
Alternative approaches based on machine 
learning or structure-based predictions have 

also been applied successfully10,11. Variation 
in bacteria is also defined by a diverse gene 
content across strains of the same species, 
known as the pangenome, and there are 
ways to link gene content to phenotypes. 
All of these approaches have intrinsic 
limitations, the most obvious one is that 
many traits are the result of the interaction 
of different mutations, a phenomenon called 

epistasis. Thus, individual approaches are 
limited to reveal the whole range of relevant 
genomic variants in a microbial pathogen 
even when large-scale and diverse associated 
phenotypic datasets exist, which is rarely  
the case.

Boeck and colleagues combined genomic, 
phenotypic and GWAS approaches to 
phenotypically characterize a large collection 
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Fig. 1 | Integrating data for genotype–phenotype association and forecasting. A robust framework 
to associate genetic and phenotypic diversity in microbial pathogens needs a multidimensional and 
systematic approach to obtain good quality data. The integration of experimental observations and clinical 
data with variants obtained by whole-genome sequencing can give meaningful insights into the pathogen 
biology, improving patient prognosis and pointing out pathogen genomic determinants of transmissibility, 
severity or new drug targets with the goal of improving diagnosis, treatment and surveillance.
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of 331 clinical M. abscessus isolates and to 
link those phenotypes to causal variants. 
This phenotyping was performed across 
five dimensions: planktonic growth using 
different carbon sources, antimicrobial 
resistance across several time points, 
in vitro infection of human macrophages, 
in vivo infection of Drosophila melanogaster 
and clinical outcomes of patients. Using 
correlation analysis, they revealed three 
phenotypic clusters with different virulence 
characteristics. One of these groups 
showed the fastest growth in culture and 
high mortality in both the macrophage 
and fly models, while another group had 
the opposite features. A third group had 
intermediate characteristics and was 
associated with the best clinical outcomes. 
As these three groups were independent of 
colony morphotype, subspecies and levels of 
macrolide resistance, Boeck and colleagues 
argue that they could represent different 
evolutionary trajectories and highlight the 
importance of assessing multiple phenotypic 
characteristics for patient prognosis.

The authors next deployed a GWAS 
analysis to delve into the genetic basis of 
the variation in M. abscessus pathobiology. 
Using corrected and uncorrected models 
for population structure, they identified 
previously known genetic resistance-related 
determinants, as well as other hits such 
as mycobactin synthesis genes that are 
responsible for intracellular iron intake. 
The authors performed proteome-wide 
computational structural modelling to 
assess the impact of non-synonymous 
variants, and found that one particular 
single-nucleotide polymorphism in 
the mycobactin polyketide synthetase 
(MbtD) gene was predicted to result in 
a loss of protein function, thus affecting 
bacterial access to iron during infection. 
They experimentally confirmed this with 
a MbtD knockout mutant that showed 
decreased growth in the macrophage 
infection model, showcasing this gene 
as a potential therapeutic target. The 
authors also explored potential epistatic 
interactions at the genome-wide scale to 
discover genes that might have co-evolved 

and to potentially uncover functionally 
linked protein networks. By applying 
correlation-compressed direct coupling 
analysis, they identified co-selection and 
established highly connected clusters, such 
as the mammalian cell entry gene family, 
genes involved in secretion systems or, 
again, the mycobactin synthesis genes 
previously flagged by the structural-guided 
GWAS analysis. To integrate the results of 
all previous analyses, the authors tested 
the effect of two homoplastic variants — 
a deletion in the MAB_0471 secretion 
system component, and a non-synonymous 
single-nucleotide polymorphism in the 
MAB_3317c non-ribosomal peptide 
synthase — in vivo in a Drosophila infection 
model. Both variants increased the survival 
of infected flies and were associated 
with more persistent clinical infection, 
suggesting a meaningful role of those two 
genes in M. abscessus virulence regulation.

Defining adequate phenotypes is not 
always straightforward when applying 
genotype–phenotype diversity mapping, 
and it is not clear which in vitro and 
in vivo models are more adequate for 
many pathogens. Boeck and colleagues’ 
work is a great example of how strains 
can be grouped into clinically relevant 
clades when combining different relevant 
in vitro and in vivo models. However, 
models cancel noise at the expense of 
reducing the complexity of real-world 
observations. Relevant phenotypes in 
clinical settings are multifactorial and rarely 
have correlates in the laboratory and thus 
need to be measured in the clinical setting. 
Recent studies combine paired microbial 
and host genomics to clinical data9, but 
linking pathogen diversity to clinical and 
epidemiological phenotypes is probably 
the last and more challenging frontier in 
genotype–phenotype diversity mapping.

In the past two years, predictions 
for severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) pathogenicity 
have advanced more than for any other 
pathogen. Deep mutation scanning coupled 
with antibody neutralization assays has 
allowed us to predict mutations associated 

with antibody escape12. Epidemiological 
and phylodynamic modelling have helped 
to predict the epidemiological fitness 
of variants and of individual residues11. 
For variants such as Omicron or Delta, 
researchers and public-health agencies 
have been able to predict and measure 
their impact on complex traits such as 
transmissibility, severity, immune responses 
or vaccine effectiveness.

The above is an unmet challenge for 
other pathogens with similar genome 
sizes, and for those with much bigger and 
more complex genomes, such as bacteria. 
The capacity to link variants to complex 
biological and clinical phenotypes in real 
time as shown for SARS-CoV-2 and by 
Boeck and colleagues for M. abscessus 
maps out one future direction for epidemic 
control. Importantly, it is also a blueprint 
for researchers to incorporate clinical and 
epidemiological data for other pathogens.

We believe that the work by Boeck and 
colleagues heralds the dawn of a large-scale 
genotype–phenotype diversity mapping era 
in microbial genomics. ❐
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