Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Viral biogeography of the mammalian gut and parenchymal organs

This article has been updated

Abstract

The mammalian virome has been linked to health and disease but our understanding of how it is structured along the longitudinal axis of the mammalian gastrointestinal tract (GIT) and other organs is limited. Here, we report a metagenomic analysis of the prokaryotic and eukaryotic virome occupying luminal and mucosa-associated habitats along the GIT, as well as parenchymal organs (liver, lung and spleen), in two representative mammalian species, the domestic pig and rhesus macaque (six animals per species). Luminal samples from the large intestine of both mammals harboured the highest loads and diversity of bacteriophages (class Caudoviricetes, family Microviridae and others). Mucosal samples contained much lower viral loads but a higher proportion of eukaryotic viruses (families Astroviridae, Caliciviridae, Parvoviridae). Parenchymal organs contained bacteriophages of gut origin, in addition to some eukaryotic viruses. Overall, GIT virome composition was specific to anatomical region and host species. Upper GIT and mucosa-specific viruses were greatly under-represented in distal colon samples (a proxy for faeces). Nonetheless, certain viral and phage species were ubiquitous in all samples from the oral cavity to the distal colon. The dataset and its accompanying methodology may provide an important resource for future work investigating the biogeography of the mammalian gut virome.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Abundance of different viral families along the GIT and in parenchymal organs of domestic pigs and rhesus macaques.
Fig. 2: α- and β-diversity of viromes in various anatomical sites in domestic pigs (n = 6) and rhesus macaques (n = 6).
Fig. 3: Sharing of viral genomic contigs between different anatomical sites in pigs (n = 6).
Fig. 4: Sharing of viral genomic contigs between different anatomical sites in macaques (n = 6).

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper, Supplementary Information file and the additional dataset available at https://doi.org/10.6084/m9.figshare.15149247.v2. Raw sequencing data are available from NCBI databases under BioProject PRJNA753514. Source data are provided with this paper.

Code availability

Source data and custom R code used in this study are available at https://doi.org/10.6084/m9.figshare.15149247.v2. Further information and requests for data, code and resources should be directed to and will be fulfilled by A. Shkoporov and C. Hill.

Change history

  • 14 September 2022

    In the version of this article initially published, color overlays in Fig. 3b were missing or incorrect. The image has been corrected in the HTML and PDF versions of the article.

References

  1. Pasolli, E. et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176, 649–662.e20 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhu, A., Sunagawa, S., Mende, D. R. & Bork, P. Inter-individual differences in the gene content of human gut bacterial species. Genome Biol. 16, 82 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Flores, G. E. et al. Temporal variability is a personalized feature of the human microbiome. Genome Biol. 15, 531 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Mehta, R. S. et al. Stability of the human faecal microbiome in a cohort of adult men. Nat. Microbiol. 3, 347–355 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473, 174–180 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wampach, L. et al. Colonization and succession within the human gut microbiome by archaea, bacteria, and microeukaryotes during the first year of life. Front. Microbiol. 8, 738 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Laforest-Lapointe, I. & Arrieta, M.-C. Microbial eukaryotes: a missing link in gut microbiome studies. mSystems 3, e00201–e00217 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Liang, G. et al. The stepwise assembly of the neonatal virome is modulated by breastfeeding. Nature 581, 470–474 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shkoporov, A. N. & Hill, C. Bacteriophages of the human gut: the “known unknown” of the microbiome. Cell Host Microbe 25, 195–209 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Manrique, P. et al. Healthy human gut phageome. Proc. Natl Acad. Sci. USA 113, 10400–10405 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shaw, L. P. et al. Modelling microbiome recovery after antibiotics using a stability landscape framework. ISME J. 13, 1845–1856 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lloyd-Price, J., Abu-Ali, G. & Huttenhower, C. The healthy human microbiome. Genome Med. 8, 51 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Breitbart, M. et al. Viral diversity and dynamics in an infant gut. Res. Microbiol. 159, 367–373 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Roux, S., Hallam, S. J., Woyke, T. & Sullivan, M. B. Viral dark matter and virus–host interactions resolved from publicly available microbial genomes. eLife 4, e08490 (2015).

    Article  PubMed Central  Google Scholar 

  15. Minot, S. et al. Rapid evolution of the human gut virome. Proc. Natl Acad. Sci. USA 110, 12450–12455 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hsu, B. B. et al. Dynamic modulation of the gut microbiota and metabolome by bacteriophages in a mouse model. Cell Host Microbe 25, 803–814.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shkoporov, A. N. et al. The human gut virome is highly diverse, stable, and individual specific. Cell Host Microbe 26, 527–541.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. De Sordi, L., Khanna, V. & Debarbieux, L. The gut microbiota facilitates drifts in the genetic diversity and infectivity of bacterial viruses. Cell Host Microbe 22, 801–808.e3 (2017).

    Article  PubMed  CAS  Google Scholar 

  19. De Sordi, L., Lourenço, M. & Debarbieux, L. The battle within: interactions of bacteriophages and bacteria in the gastrointestinal tract. Cell Host Microbe 25, 210–218 (2019).

    Article  PubMed  CAS  Google Scholar 

  20. Porter, N. T. et al. Phase-variable capsular polysaccharides and lipoproteins modify bacteriophage susceptibility in Bacteroides thetaiotaomicron. Nat. Microbiol. 5, 1170–1181 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Turkington, C. J. R., Morozov, A., Clokie, M. R. J. & Bayliss, C. D. Phage-resistant phase-variant sub-populations mediate herd immunity against bacteriophage invasion of bacterial meta-populations. Front. Microbiol. 10, 1473 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chiang, Y. N., Penadés, J. R. & Chen, J. Genetic transduction by phages and chromosomal islands: the new and noncanonical. PLoS Pathog. 15, e1007878 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen, J. et al. Genome hypermobility by lateral transduction. Science 362, 207–212 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Kleiner, M., Bushnell, B., Sanderson, K. E., Hooper, L. V. & Duerkop, B. A. Transductomics: sequencing-based detection and analysis of transduced DNA in pure cultures and microbial communities. Microbiome 8, 158 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Donaldson, G. P., Lee, S. M. & Mazmanian, S. K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 14, 20–32 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Zhao, G. et al. Virome biogeography in the lower gastrointestinal tract of rhesus macaques with chronic diarrhea. Virology 527, 77–88 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Moreno-Gallego, J. L. et al. Virome diversity correlates with intestinal microbiome diversity in adult monozygotic twins. Cell Host Microbe 25, 261–272.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shkoporov, A. N. et al. Long-term persistence of crAss-like phage crAss001 is associated with phase variation in Bacteroides intestinalis. BMC Biol. 19, 163 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Siranosian, B. A., Tamburini, F. B., Sherlock, G. & Bhatt, A. S. Acquisition, transmission and strain diversity of human gut-colonizing crAss-like phages. Nat. Commun. 11, 280 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Silveira, C. B. & Rohwer, F. L. Piggyback-the-Winner in host-associated microbial communities. NPJ Biofilms Microbiomes 2, 16010 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Norman, J. M. et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 160, 447–460 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Clooney, A. G. et al. Whole-virome analysis sheds light on viral dark matter in inflammatory bowel disease. Cell Host Microbe 26, 764–778.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Lloyd-Price, J. et al. Strains, functions and dynamics in the expanded Human Microbiome Project. Nature 550, 61 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lourenço, M. et al. The spatial heterogeneity of the gut limits predation and fosters coexistence of bacteria and bacteriophages. Cell Host Microbe 28, 390–401.e5 (2020).

    Article  PubMed  CAS  Google Scholar 

  35. Pan, M., Hidalgo-Cantabrana, C. & Barrangou, R. Host and body site-specific adaptation of Lactobacillus crispatus genomes. NAR Genom. Bioinform. 2, lqaa001 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Tailford, L. E., Crost, E. H., Kavanaugh, D. & Juge, N. Mucin glycan foraging in the human gut microbiome. Front. Genet. 6, 81 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Barr, J. J. et al. Bacteriophage adhering to mucus provide a non-host-derived immunity. Proc. Natl Acad. Sci. USA 110, 10771–10776 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Barr, J. J. et al. Subdiffusive motion of bacteriophage in mucosal surfaces increases the frequency of bacterial encounters. Proc. Natl Acad. Sci. USA 112, 13675–13680 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yutin, N. et al. Discovery of an expansive bacteriophage family that includes the most abundant viruses from the human gut. Nat. Microbiol. 3, 38–46 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Karasov, W. H. & Douglas, A. E. Comparative digestive physiology. Compr. Physiol. 3, 741–783 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hoyles, L. et al. Characterization of virus-like particles associated with the human faecal and caecal microbiota. Res. Microbiol. 165, 803–812 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Kleiner, M., Hooper, L. V. & Duerkop, B. A. Evaluation of methods to purify virus-like particles for metagenomic sequencing of intestinal viromes. BMC Genom. 16, 7 (2015).

    Article  CAS  Google Scholar 

  43. Shkoporov, A. N. et al. Reproducible protocols for metagenomic analysis of human faecal phageomes. Microbiome 6, 68 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Breitbart, M., Bonnain, C., Malki, K. & Sawaya, N. A. Phage puppet masters of the marine microbial realm. Nat. Microbiol. 3, 754 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Conceição-Neto, N. et al. Modular approach to customise sample preparation procedures for viral metagenomics: a reproducible protocol for virome analysis. Sci. Rep. 5, srep16532 (2015).

    Article  CAS  Google Scholar 

  46. Roux, S. et al. Towards quantitative viromics for both double-stranded and single-stranded DNA viruses. PeerJ 4, e2777 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Sutton, T. D. S., Clooney, A. G., Ryan, F. J., Ross, R. P. & Hill, C. Choice of assembly software has a critical impact on virome characterisation. Microbiome 7, 12 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Adriaenssens, E. M. et al. Taxonomy of prokaryotic viruses: 2018–2019 update from the ICTV Bacterial and Archaeal Viruses Subcommittee. Arch. Virol. 165, 1253–1260 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Koonin, E. V. et al. Global organization and proposed megataxonomy of the virus world. Microbiol. Mol. Biol. Rev. 84, e00061-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Roux, S. et al. IMG/VR v3: an integrated ecological and evolutionary framework for interrogating genomes of uncultivated viruses. Nucleic Acids Res. 49, D764–D775 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. Gregory, A. C. et al. The gut virome database reveals age-dependent patterns of virome diversity in the human gut. Cell Host Microbe 28, 724–740.e8 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Guerin, E. et al. Biology and taxonomy of crass-like bacteriophages, the most abundant virus in the human gut. Cell Host Microbe 24, 653–664.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Yutin, N. et al. Analysis of metagenome-assembled viral genomes from the human gut reveals diverse putative CrAss-like phages with unique genomic features. Nat. Commun. 12, 1044 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Camarillo-Guerrero, L. F., Almeida, A., Rangel-Pineros, G., Finn, R. D. & Lawley, T. D. Massive expansion of human gut bacteriophage diversity. Cell 184, 1098–1109.e9 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nayfach, S. et al. Metagenomic compendium of 189,680 DNA viruses from the human gut microbiome. Nat. Microbiol. 6, 960–970 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Guo, J. et al. VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome 9, 37 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Roux, S. et al. Minimum information about an uncultivated virus genome (MIUViG). Nat. Biotechnol. 37, 29–37 (2019).

    Article  CAS  PubMed  Google Scholar 

  58. Koonin, E. V. & Yutin, N. The crAss-like phage group: how metagenomics reshaped the human virome. Trends Microbiol. 28, 349–359 (2020).

    Article  CAS  PubMed  Google Scholar 

  59. Roux, S., Krupovic, M., Poulet, A., Debroas, D. & Enault, F. Evolution and diversity of the Microviridae viral family through a collection of 81 new complete genomes assembled from virome reads. PLoS ONE 7, e40418 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Bin Jang, H. et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat. Biotechnol. 37, 632–639 (2019).

    Article  CAS  Google Scholar 

  61. Bichet, M. C. et al. Bacteriophage uptake by mammalian cell layers represents a potential sink that may impact phage therapy. iScience 24, 102287 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mills, S. et al. Movers and shakers: influence of bacteriophages in shaping the mammalian gut microbiota. Gut Microbes 4, 4–16 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Sutton, T. D. S. & Hill, C. Gut bacteriophage: current understanding and challenges. Front. Endocrinol. (Lausanne) 10, 784 (2019).

    Article  Google Scholar 

  64. Mukhopadhya, I., Segal, J. P., Carding, S. R., Hart, A. L. & Hold, G. L. The gut virome: the ‘missing link’ between gut bacteria and host immunity? Therap. Adv. Gastroenterol. 12, 1756284819836620 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Reyes, A., Wu, M., McNulty, N. P., Rohwer, F. L. & Gordon, J. I. Gnotobiotic mouse model of phage–bacterial host dynamics in the human gut. Proc. Natl Acad. Sci. USA 110, 20236–20241 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Guerin, E. et al. Isolation and characterisation of ΦcrAss002, a crAss-like phage from the human gut that infects Bacteroides xylanisolvens. Microbiome 9, 89 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Callanan, J. et al. Biases in viral metagenomics-based detection, cataloguing and quantification of bacteriophage genomes in human faeces, a review. Microorganisms 9, 524 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nandhra, G. K. et al. Normative values for region-specific colonic and gastrointestinal transit times in 111 healthy volunteers using the 3D-Transit electromagnet tracking system: influence of age, gender, and body mass index. Neurogastroenterol. Motil. 32, e13734 (2020).

    Article  PubMed  Google Scholar 

  69. Martínez, I. et al. Experimental evaluation of the importance of colonization history in early-life gut microbiota assembly. eLife 7, e36521 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Yasuda, K. et al. Biogeography of the intestinal mucosal and lumenal microbiome in the rhesus macaque. Cell Host Microbe 17, 385–391 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Qin, Y. et al. Molecular epidemiology and viremia of porcine astrovirus in pigs from Guangxi province of China. BMC Vet. Res. 15, 471 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Górski, A. et al. Bacteriophage translocation. FEMS Immunol. Med. Microbiol. 46, 313–319 (2006).

    Article  PubMed  CAS  Google Scholar 

  73. Sausset, R., Petit, M. A., Gaboriau-Routhiau, V. & De Paepe, M. New insights into intestinal phages. Mucosal Immunol. 13, 205–215 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Majewska, J. et al. Oral application of T4 phage induces weak antibody production in the gut and in the blood. Viruses 7, 4783–4799 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Meldrum, O. W. et al. Mucin gel assembly is controlled by a collective action of non-mucin proteins, disulfide bridges, Ca2+-mediated links, and hydrogen bonding. Sci. Rep. 8, 5802 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zolfo, M. et al. Detecting contamination in viromes using ViromeQC. Nat. Biotechnol. 37, 1408–1412 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nayfach, S. et al. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat. Biotechnol. 39, 578–585 (2021).

    Article  CAS  PubMed  Google Scholar 

  82. Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Terzian, P. et al. PHROG: families of prokaryotic virus proteins clustered using remote homology. NAR Genom. Bioinform. 3, lqab067 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Hockenberry, A. J. & Wilke, C. O. BACPHLIP: predicting bacteriophage lifestyle from conserved protein domains. PeerJ 9, e11396 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Edgar, R. C. PILER-CR: fast and accurate identification of CRISPR repeats. BMC Bioinformatics 8, 18 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. The Human Microbiome Jumpstart Reference Strains Consortium. A catalog of reference genomes from the human microbiome. Science 328, 994–999 (2010).

    Article  PubMed Central  CAS  Google Scholar 

  87. Mandal, S. et al. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb. Ecol. Health Dis. 26, 27663 (2015).

    PubMed  Google Scholar 

  88. Nearing, J. T. et al. Microbiome differential abundance methods produce different results across 38 datasets. Nat. Commun. 13, 342 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was conducted with the financial support of Science Foundation Ireland (SFI) under grant number SFI/12/RC/2273 (C. Hill and R.P.R.), an SFI's Spokes Programme which is co-funded under the European Regional Development Fund under grant number SFI/14/SP APC/B3032, Wellcome Trust Research Career Development Fellowship (220646/Z/20/Z0) (A.N.S.); and a research grant from Janssen Biotech, Inc. (C. Hill and R.P.R.). This research was funded in whole, or in part, by the Wellcome Trust (220646/Z/20/Z). For the purpose of open access, the authors have applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission. We thank T. Haaksma (BPRC) for his technical help with animal sampling, as well as J. Fitzgerald and J. Eckenberger for the fruitful discussion of statistical methods used in the study. The schematics in Figs. 14 were created with BioRender.com.

Author information

Authors and Affiliations

Authors

Contributions

A.N.S., S.R.S., R.P.R. and C. Hill conceived the study. A.N.S., S.R.S., A.L., I.K., L.A.D., C. Heuston and J.A.M.L. designed the study. A.N.S., S.R.S., A.L., I.K., C. Heuston, A.U., E.V.K., I.v.d.K. and B.O. undertook data acquisition. A.N.S., S.R.S., A.L., I.K., C. Heuston, J.A.M.L., L.A.D., R.P.R. and C. Hill analysed and interpreted the results. A.N.S. was responsible for the software. All authors contributed to drafting and revising of the manuscript.

Corresponding authors

Correspondence to Andrey N. Shkoporov or Colin Hill.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Laurent Debarbieux, Guanxiang Liang, Corinne Maurice and Alejandro Reyes for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Catalogue of viral genomic contigs assembled from trimmed and filtered Illumina reads (n = 107,680).

a, Average read coverage vs. contig length, categories of viral genomic contigs identified by CheckV (high-quality genomes vs genome fragments according to definitions given by the MIUViG standard); b, distribution of viral genomic contigs by completeness level as predicted by CheckV with high quality draft and complete genomes by MIUViG standard highlighted in blue; c, cumulative fractional abundance of genomic contigs with different levels of completeness.

Source data

Extended Data Fig. 2 Taxonomic distribution, size, and completeness of viral genomic contigs.

Different viral families are shown in separate panels. Assignments are based on Demovir script. Contig size is plotted on log10-scaled x-axis. Contig completeness is predicted using CheckV.

Source data

Extended Data Fig. 3 Aggregated fractional abundance of viral families across all anatomical sites in pigs (n = 6) and macaques (n = 6) in the study.

Rows represent viral families, columns – sites in individual animals; the top annotation bar represent tissue types (lumen vs mucosa). Data is log10-transformed and presented with hierarchical clustering based on relative abundance patterns.

Source data

Extended Data Fig. 4 Sharing of viral genomic contigs between different anatomical sites in individual pigs (n = 6).

Vertical grey rectangles height is proportional to viral richness (individual genomic contig counts) at each location, aggregated across luminal and mucosal samples; thickness of coloured connectors is proportional with the number of genomic contigs of each viral family shared between pairs of locations; SI, small intestine; LI, large intestine; Prox/Mid/Dist, proximal, medial and distal portions, respectively; unclassified genomic contigs were excluded; C, fraction of viral contig diversity from each organ represented in the distal LI.

Source data

Extended Data Fig. 5 Sharing of viral genomic contigs between different anatomical sites in individual macaques (n = 6).

Vertical grey rectangles height is proportional to viral richness (individual genomic contig counts) at each location, aggregated across luminal and mucosal samples; thickness of coloured connectors is proportional with the number of genomic contigs of each viral family shared between pairs of locations; SI, small intestine; LI, large intestine; Prox/Mid/Dist, proximal, medial and distal portions, respectively; unclassified genomic contigs were excluded; C, fraction of viral contig diversity from each organ represented in the distal LI.

Source data

Extended Data Fig. 6 Numbers of viral genomic contigs shared between pairs of organs in pigs and macaques.

Numbers of shared contigs are expressed as aggregate counts of unique contigs shared between sites across all animals for each of the two species; SI, small intestine; LI, large intestine; Prox/Mid/Dist, proximal, medial and distal portions, respectively.

Source data

Extended Data Fig. 7 Absolute counts of some of the most ubiquitous viral genomic contigs present in pigs and macaques.

Only contigs with >50% estimated completeness and shared between 6 or more sites in any of the animals are displayed. Each line corresponds to an individual genomic contig (potentially collapsing multiple viral strains). Colours are according to viral families. Each panel represent an individual animal.

Source data

Supplementary information

Supplementary Information

Supplementary Methods and Results and Figs. 1–13.

Reporting Summary.

Peer Review File.

Supplementary Table 1

Sample metadata table.

Source data

Source Data Fig. 1

Absolute viral counts per anatomical site, per animal.

Source Data Fig. 2

Ordination plot, coordinates. Alpha diversity values, per sample. Heat map, matrix.

Source Data Fig. 3

Fraction of diversity shared from one site to another. Number of contigs of each family shared between sites. Fraction of diversity represented in the distal colon.

Source Data Fig. 4

Fraction of diversity shared from one site to another. Number of contigs of each family shared between sites. Fraction of diversity represented in the distal colon.

Source Data Extended Data Fig. 1

Viral contigs: size, cumulative abundance, completeness estimate.

Source Data Extended Data Fig. 2

Viral contigs: size and completeness grouped by viral family.

Source Data Extended Data Fig. 3

Log-transformed fractional abundance of viral families across samples.

Source Data Extended Data Fig. 4

Number of contigs of each family shared between sites, per animal.

Source Data Extended Data Fig. 5

Number of contigs of each family shared between sites, per animal.

Source Data Extended Data Fig. 6

List of contigs shared between pairs of anatomical sites, per viral family, per animal species.

Source Data Extended Data Fig. 7

Absolute viral counts for the most ubiquitous viral contigs, per viral family, per animal.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shkoporov, A.N., Stockdale, S.R., Lavelle, A. et al. Viral biogeography of the mammalian gut and parenchymal organs. Nat Microbiol 7, 1301–1311 (2022). https://doi.org/10.1038/s41564-022-01178-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-022-01178-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing