Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Genomes of six viruses that infect Asgard archaea from deep-sea sediments

Abstract

Asgard archaea are globally distributed prokaryotic microorganisms related to eukaryotes; however, viruses that infect these organisms have not been described. Here, using metagenome sequences recovered from deep-sea hydrothermal sediments, we characterize six relatively large (up to 117 kb) double-stranded DNA (dsDNA) viral genomes that infected two Asgard archaeal phyla, Lokiarchaeota and Helarchaeota. These viruses encode Caudovirales-like structural proteins, as well as proteins distinct from those described in known archaeal viruses. Their genomes contain around 1–5% of genes associated with eukaryotic nucleocytoplasmic large DNA viruses (NCLDVs) and appear to be capable of semi-autonomous genome replication, repair, epigenetic modifications and transcriptional regulation. Moreover, Helarchaeota viruses may hijack host ubiquitin systems similar to eukaryotic viruses. Genomic analysis of these Asgard viruses reveals that they contain features of both prokaryotic and eukaryotic viruses, and provides insights into their potential infection and host interaction mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Protein clustering network of virus genomes recovered from Guaymas Basin sediments compared to previously described viruses.
Fig. 2: Virus–host linkages to Asgard archaea.
Fig. 3: Taxonomic placement of Asgard viruses based on phylogeny and protein composition.
Fig. 4: Model of Asgard viral infection mechanisms and protein similarity with other viruses.

Similar content being viewed by others

Data availability

The genomic sequences associated with the study have been deposited in NCBI under BioProject PRJNA692327.

Code availability

All custom scripts, alignments and phylogenetic tree files have been made available at https://github.com/bakermicrolab/asgardviruses.

References

  1. Spang, A. et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521, 173–179 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zaremba-Niedzwiedzka, K. et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541, 353–358 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Eme, L., Spang, A., Lombard, J., Stairs, C. W. & Ettema, T. J. G. Archaea and the origin of eukaryotes. Nat. Rev. Microbiol. 15, 711–723 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Baker, B. J. et al. Diversity, ecology and evolution of Archaea. Nat. Microbiol. 5, 887–900 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Imachi, H. et al. Isolation of an archaeon at the prokaryote–eukaryote interface. Nature 577, 519–525 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Spang, A. et al. Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nat. Microbiol. 4, 1138–1148 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Bell, P. J. L. Evidence supporting a viral origin of the eukaryotic nucleus. Virus Res. 289, 198168 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Forterre, P. & Gaïa, M. Giant viruses and the origin of modern eukaryotes. Curr. Opin. Microbiol. 31, 44–49 (2016).

    Article  PubMed  Google Scholar 

  9. Chaikeeratisak, V. et al. Assembly of a nucleus-like structure during viral replication in bacteria. Science 355, 194–197 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Malone, L. M. et al. A jumbo phage that forms a nucleus-like structure evades CRISPR-Cas DNA targeting but is vulnerable to type III RNA-based immunity. Nat. Microbiol. 5, 48–55 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Iyer, L. M., Aravind, L. & Koonin, E. V. Common origin of four diverse families of large eukaryotic DNA viruses. J. Virol. 75, 11720–11734 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Krupovic, M., Dolja, V. V. & Koonin, E. V. The LUCA and its complex virome. Nat. Rev. Microbiol. 18, 661–670 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Makarova, K. S. et al. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat. Rev. Microbiol. 18, 67–83 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Dombrowski, N., Teske, A. P. & Baker, B. J. Expansive microbial metabolic versatility and biodiversity in dynamic Guaymas Basin hydrothermal sediments. Nat. Commun. 9, 4999 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Castelle, C. J. et al. Protein family content uncovers lineage relationships and bacterial pathway maintenance mechanisms in DPANN Archaea. Front. Microbiol. 12, 660052 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Langwig, M. V. et al. Large-scale protein level comparison of Deltaproteobacteria reveals cohesive metabolic groups. ISME J. https://doi.org/10.1038/s41396-021-01057-y (2021).

  17. Kieft, K., Zhou, Z. & Anantharaman, K. VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences. Microbiome 8, 90 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Prangishvili, D. et al. The enigmatic archaeal virosphere. Nat. Rev. Microbiol. 15, 724–739 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Nayfach, S. et al. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat. Biotechnol. 39, 578–585 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Kazlauskas, D., Krupovic, M. & Venclovas, Č. The logic of DNA replication in double-stranded DNA viruses: insights from global analysis of viral genomes. Nucleic Acids Res. 44, 4551–4564 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pons, J. C. et al. VPF-Class: Taxonomic assignment and host prediction of uncultivated viruses based on viral protein families. Bioinformatics https://doi.org/10.1093/bioinformatics/btab026 (2021).

  22. Krupovic, M., Cvirkaite-Krupovic, V., Iranzo, J., Prangishvili, D. & Koonin, E. V. Viruses of archaea: structural, functional, environmental and evolutionary genomics. Virus Res. 244, 181–193 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Yutin, N., Wolf, Y. I., Raoult, D. & Koonin, E. V. Eukaryotic large nucleo-cytoplasmic DNA viruses: clusters of orthologous genes and reconstruction of viral genome evolution. Virol. J. 6, 223 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Koonin, E. V. & Dolja, V. V. Virus world as an evolutionary network of viruses and capsidless selfish elements. Microbiol. Mol. Biol. Rev. 78, 278–303 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Iranzo, J., Koonin, E. V., Prangishvili, D., Krupovic, M. & Sandri-Goldin, R. M. Bipartite network analysis of the archaeal virosphere: evolutionary connections between viruses and capsidless mobile elements. J. Virol. 90, 11043–11055 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kala, S. et al. HNH proteins are a widespread component of phage DNA packaging machines. Proc. Natl Acad. Sci. USA 111, 6022–6027 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guilliam, T. A., Keen, B. A., Brissett, N. C. & Doherty, A. J. Primase-polymerases are a functionally diverse superfamily of replication and repair enzymes. Nucleic Acids Res. 43, 6651–6664 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gupta, A., Lad, S. B., Ghodke, P. P., Pradeepkumar, P. I. & Kondabagil, K. Mimivirus encodes a multifunctional primase with DNA/RNA polymerase, terminal transferase and translesion synthesis activities. Nucleic Acids Res. 47, 6932–6945 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. MacNeill, S. A. PCNA-binding proteins in the archaea: novel functionality beyond the conserved core. Curr. Genet. 62, 527–532 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mazzon, C. et al. Cytosolic and mitochondrial deoxyribonucleotidases: activity with substrate analogs, inhibitors and implications for therapy. Biochem. Pharmacol. 66, 471–479 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Colson, P., La Scola, B., Levasseur, A., Caetano-Anollés, G. & Raoult, D. Mimivirus: leading the way in the discovery of giant viruses of amoebae. Nat. Rev. Microbiol. 15, 243–254 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Doherty, A. J., Serpell, L. C. & Ponting, C. P. The helix-hairpin-helix DNA-binding motif: a structural basis for non-sequence-specific recognition of DNA. Nucleic Acids Res. 24, 2488–2497 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Iyer, L. M., Balaji, S., Koonin, E. V. & Aravind, L. Evolutionary genomics of nucleo-cytoplasmic large DNA viruses. Virus Res. 117, 156–184 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Sim, S., Hughes, K., Chen, X. & Wolin, S. L. The bacterial Ro60 protein and its noncoding Y RNA regulators. Annu. Rev. Microbiol. 74, 387–407 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Ho, C. K., Wang, L. K., Lima, C. D. & Shuman, S. Structure and mechanism of RNA ligase. Structure 12, 327–339 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Tang, Q., Wu, P., Chen, H. & Li, G. Pleiotropic roles of the ubiquitin-proteasome system during viral propagation. Life Sci. 207, 350–354 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Murphy, J., Mahony, J., Ainsworth, S., Nauta, A. & van Sinderen, D. Bacteriophage orphan DNA methyltransferases: insights from their bacterial origin, function, and occurrence. Appl. Environ. Microbiol. 79, 7547–7555 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jeudy, S. et al. Exploration of the propagation of transpovirons within Mimiviridae reveals a unique example of commensalism in the viral world. ISME J. 14, 727–739 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Agarkova, I. V., Dunigan, D. D. & Van Etten, J. L. Virion-associated restriction endonucleases of chloroviruses. J. Virol. 80, 8114–8123 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Markine-Goriaynoff, N. et al. Glycosyltransferases encoded by viruses. J. Gen. Virol. 85, 2741–2754 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Piacente, F., Gaglianone, M., Laugieri, M. E. & Tonetti, M. G. The autonomous glycosylation of large DNA viruses. Int. J. Mol. Sci. 16, 29315–29328 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hagelueken, G. et al. A coiled-coil domain acts as a molecular ruler to regulate O-antigen chain length in lipopolysaccharide. Nat. Struct. Mol. Biol. 22, 50–56 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Tamarit, D. et al. A closed Candidatus Odinarchaeum chromosome exposes Asgard archaeal viruses. Nat. Microbiol. https://doi.org/10.1038/s41564-022-01122-y (2022).

    Article  PubMed  Google Scholar 

  44. Medvedeva, S. et al. Three families of Asgard archaeal viruses identified in metagenome-assembled genomes. Nat. Microbiol. https://doi.org/10.1038/s41564-022-01144-6 (2022).

    Article  PubMed  Google Scholar 

  45. Joshi, N.A. & Fass, J.N. Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33) [Software] (2011). https://github.com/najoshi/sickle

  46. Peng, Y., Leung, H. C. M., Yiu, S. M. & Chin, F. Y. L. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28, 1420–1428 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat. Methods 11, 1144–1146 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sieber, C. M. K. et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat. Microbiol. 3, 836–843 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen, I.-M. A. et al. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res. 47, D666–D677 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Biswas, A., Staals, R. H. J., Morales, S. E., Fineran, P. C. & Brown, C. M. CRISPRDetect: a flexible algorithm to define CRISPR arrays. BMC Genomics 17, 356 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bland, C. et al. CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinformatics 8, 209 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Padilha, V. A., Alkhnbashi, O. S., Shah, S. A., de Carvalho, A. C. P. L. F. & Backofen, R. CRISPRcasIdentifier: machine learning for accurate identification and classification of CRISPR-Cas systems. Gigascience 9, giaa062 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Makarova, K. S. et al. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol. 13, 722–736 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Koonin, E. V., Makarova, K. S. & Zhang, F. Diversity, classification and evolution of CRISPR-Cas systems. Curr. Opin. Microbiol. 37, 67–78 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nethery, M. A. et al. CRISPRclassify: repeat-based classification of CRISPR loci. CRISPR J. 4, 558–574 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Aramaki, T. et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 36, 2251–2252 (2019).

    Article  PubMed Central  CAS  Google Scholar 

  64. El-Gebali, S. et al. The Pfam protein families database in 2019. Nucleic Acids Res. 47, D427–D432 (2019).

    Article  CAS  PubMed  Google Scholar 

  65. Grazziotin, A. L., Koonin, E. V. & Kristensen, D. M. Prokaryotic virus orthologous groups (pVOGs): a resource for comparative genomics and protein family annotation. Nucleic Acids Res. 45, D491–D498 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Guo, J. et al. VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome 9, 37 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2014).

    Article  PubMed  CAS  Google Scholar 

  70. Schulz, F. et al. Giant virus diversity and host interactions through global metagenomics. Nature 578, 432–436 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cantu, V. A. et al. PhANNs, a fast and accurate tool and web server to classify phage structural proteins. PloS Comput. Biol. 16, e1007845 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zimmermann, L. et al. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J. Mol. Biol. 430, 2237–2243 (2018).

    Article  CAS  PubMed  Google Scholar 

  73. Grant, J. R. & Stothard, P. The CGView server: a comparative genomics tool for circular genomes. Nucleic Acids Res. 36, W181–W184 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bin Jang, H. et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat. Biotechnol. 37, 632–639 (2019).

    Article  CAS  Google Scholar 

  75. Nepusz, T., Yu, H. & Paccanaro, A. Detecting overlapping protein complexes in protein-protein interaction networks. Nat. Methods 9, 471–472 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Enright, A. J., Van Dongen, S. & Ouzounis, C. A. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 30, 1575–1584 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sayers, E. W. et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 37, D5–D15 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Al-Shayeb, B. et al. Clades of huge phages from across Earth’s ecosystems. Nature 578, 425–431 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. RStudio: Integrated Development Environment for R (RStudio Team, 2019).

  81. R: A Language and Environment for Statistical Computing (R Core Team, 2020).

  82. Rudis, B. & Gandy, D. waffle: create waffle chart visualizations in R (2016).

  83. Yutin, N., Wolf, Y. I. & Koonin, E. V. Origin of giant viruses from smaller DNA viruses not from a fourth domain of cellular life. Virology 466-467, 38–52 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Paez-Espino, D. et al. IMG/VR: a database of cultured and uncultured DNA viruses and retroviruses. Nucleic Acids Res. 45, D457–D465 (2017).

    CAS  PubMed  Google Scholar 

  85. Wu, F. et al. Unique mobile elements and scalable gene flow at the prokaryote–eukaryote boundary revealed by circularized Asgard archaea genomes. Nat. Microbiol. 7, 200–212 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Andersson, A. F. & Banfield, J. F. Virus population dynamics and acquired virus resistance in natural microbial communities. Science 320, 1047–1050 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. De Anda, V. et al. Understanding the mechanisms behind the response to environmental perturbation in microbial mats: a metagenomic-network based approach. Front. Microbiol. 9, 2606 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Zhang, R. et al. SpacePHARER: sensitive identification of phages from CRISPR spacers in prokaryotic hosts. Bioinformatics 37, 3364–3366 (2021).

    Article  CAS  PubMed Central  Google Scholar 

  89. Guglielmini, J., Woo, A. C., Krupovic, M., Forterre, P. & Gaia, M. Diversification of giant and large eukaryotic dsDNA viruses predated the origin of modern eukaryotes. Proc. Natl Acad. Sci. USA 116, 19585–19592 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Moore-Simons Project on the Origin of the Eukaryotic Cell (Simons Foundation grant 73592LPI; https://doi.org/10.46714/735925LPI; B.J.B.) and the Simons Foundation Early Career Award (687165, B.J.B.). We thank D. Tamarit and T. Ettema for discussions about this research; A. P. Teske (Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA) for providing the sediments from Guaymas Basin.

Author information

Authors and Affiliations

Authors

Contributions

V.D.A. and B.J.B. conceptualized the project. I.M.R., V.D.A. and M.V.L. curated the data. B.J.B. acquired funding. I.M.R., V.D.A. and P.L. conducted the investigations. I.M.R., V.D.A. and B.J.B. developed the methodology. B.J.B. and V.D.A. administered and supervised the project. B.J.B acquired resources. I.M.R., V.D.A. and P.L. created the visualizations. I.M.R., V.D.A., M.V.L. and B.J.B. wrote the original draft. I.M.R., V.D.A., M.V.L., P.L. and B.J.B. reviewed and edited the manuscript.

Corresponding author

Correspondence to Brett J. Baker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Susanne Erdmann, Hiroyuki Ogata and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Asgard virus genome structures.

a, Genomic architecture of the complete Helarchaeota virus Nidhogg Meg22_1012. From outside to center: genes described in the main text, genes with homologs not described in the main text, hypothetical proteins, GC content, genome size ruler. Arrows pointing left indicate (−) sense, while those pointing right indicate (+) sense. b, Structures of the linear Fenrir, Sköll, and Ratatoskr genomes. Sequence length is designated by the measure on the x-axis. Genes with hypothetical products do not have labels and are colored in gray. CRISPR spacer match locations are highlighted with vertical bars, colored to represent 0 or 1 mismatches in the alignment.

Extended Data Fig. 2 Range of Asgard virus sizes vs known archaeal viruses.

Median value (Asgard virus = 89,108 / Archaea virus = 35,450); Minimum value (Asgard virus = 39,909 / Archaea virus = 5,278); maximum value (Asgard virus = 117,419 / Archaea virus = 103,257); Archaea virus outlier = 143,855. Data and code for this figure is available at https://github.com/bakermicrolab/asgardviruses.

Extended Data Fig. 3 Average read depths of Asgard virus contigs versus host MAG contigs.

The y-axis denotes average read depth for a contig within its respective sample, with each Asgard host shown on the x-axis. Each point on the x-axis contains two box-and-whisker plots indicating average read depths for linked viral contigs (left) and host contigs (right). Data points represent mean values. Taxonomic assignment is designated by the color of the points and/or box. Average read depth was calculated for each contig using reads from the same sample used in assembly. Helarchaeota Meg19_1012_Bin_504 (virus: n = 3, min=25.52, max=173.4, mid=32.50; MAG: n = 170, min=9.12, mean=56.58, max=81.45, SD = 5.8, 1st quartile=54.9, 3rd quartile=58.9), Lokiarchaeota Meg22_1012_Bin_233 (virus: n = 1, 77.5; MAG: n = 94, min=6.16, mean=37.3, max=202.9, SD = 24.8, 1st quartile=31.5, 3rd quartile=34.3), Lokiarchaeota Meg22_1214_Bin_191 (virus: n = 1, 17.05; MAG: n = 246, min=8.1, mean=44.8, max=1253, SD = 95.6, 1st quartile=29.7, 3rd quartile=39.7), Lokiarchaeota Meg22_1416_Bin_151 (virus: n = 1, 16.32; MAG: n = 217, min=5.9, mean=17, max=48, SD = 3.7, 1st quartile=15.7, 3rd quartile=18.5).

Extended Data Fig. 4 Comparison of NCVOG proportions in viruses.

Viruses are grouped on the x-axis based on their host, with the NCLDVs included in their own category. The y-axis denotes the percentage of genes present with hits to NCVOGs (see Methods). Each dot in the graph represents a viral genome. Bacterial viruses n = 33442, mean=2, SD = ± 1.2; Archaeal viruses n = 84, mean=2.4’ SD = ± 1.4; Asgard virus n = 6, mean=2.2, SD = ± 1.4; Eukaryotic virus n = 362, mean=36, SD = ± 39; NCLDV n = 149, mean=78, SD = 21.

Extended Data Fig. 5 Functional breakdown of NCVOG proportions.

Viruses are grouped on the y-axis based on their host, with percentages on the x-axis indicating the proportion of NCVOG hits assigned to a particular function. NCVOGs found in Asgard viruses are related to DNA replication, recombination and repair or viral structure proteins. The first group of NCVOGs are commonly found in viruses infecting bacteria, and can also be observed in viruses infecting other archaeal groups, and Eukaryotes. The second group of NCVOGs are not so commonly found in other viruses, which can suggest a similar structure of Asgard viruses and NCLDVs.

Extended Data Fig. 6 Deoxynucleotide monophosphate kinase phylogeny.

A phylogenetic tree of 241 deoxynucleotide/side monophosphate kinase sequences from viruses and bacteria. Circles on branches indicate BOOSTER supports ≥70. Lokiarchaeota virus Fenrir Meg22_1012 and Meg22_1214 sequences are highlighted in gold. The phylogeny was inferred using the LG model with fixed base frequencies and 1000 rapid bootstraps.

Extended Data Fig. 7 Ubiquitin-activating enzyme phylogeny.

A phylogenetic tree of 368 ubiquitin-activating enzyme (E1) protein sequences from archaea, bacteria, eukaryotes, and viruses (taxa are labeled with background colors). Three E1-like protein sequences were identified in Nidhogg viruses, and these are labeled with black circles and bold text. Arched lines show the connections between Nidhogg virus sequences and their Helarchaeota host. This phylogeny was inferred using the LG + R8 model with 1000 ultrafast bootstraps and optimization by nearest neighbor interchange (-bb 1000 -bnni). Circles on tree branches indicate ultrafast bootstrap supports ≥95. The tree is comprised of protein sequences belonging to the NEDD8-activating enzyme E1 catalytic subunit family (n = 11, IPR030468), ubiquitin-activating E1 enzyme (n = 218, IPR035985), viral sequences obtained from NCBI (n = 14), and sequences derived from Lokiarchaeota and Helarchaeota (n = 125).

Supplementary information

Supplementary Information

Extended Data Figs. 1–7, Supplementary Text and description of Supplementary Data 1–13.

Reporting Summary

Peer Review File

Supplementary Data 1

CRISPRDetect results, including spacer and repeat lengths and sequences, and CRISPR sense; Asgard CRISPR spacer BLASTN-short output against Guaymas Basin viruses; average read depth of CRISPR-containing contigs of Asgard MAGs; SpacePHARER hits of Asgard CRISPR spacers to Guaymas Basin UViGs; and CRISPRClassify results for Asgard CRISPR repeats.

Supplementary Data 2

Viral genome overview, Asgard MAG GTDBTk taxonomy and MAG statistics.

Supplementary Data 3

Minimum information about an uncultivated virus genome (MiUViG) metadata for viral genomes described in this study.

Supplementary Data 4

Viral annotations with VIBRANT, DIAMOND and InterProScan; PhANNs classification; and HHPred results for major capsid proteins predicted with PhANNs.

Supplementary Data 5–10

Supplementary_Data_5_Fenrir_Meg22_1012_226.pdf. Visualization of Lokiarchaeota virus Fenrir Meg22_1012_scaffold_226 coverage based on read mapping against the Meg22_1012 sample performed with BWA-MEM v0.7.17 and Samtools v1.11. Visualized with Geneious version 2022.0 by Biomatters. Supplementary_Data_6_Fenrir_Meg22_1214.pdf. Visualization of Lokiarchaeota virus Fenrir Meg22_1214_scaffold_313 coverage based on read mapping against the Meg22_1214 sample performed with BWA-MEM v0.7.17 and Samtools v1.11. Visualized with Geneious version 2022.0 by Biomatters. Supplementary_Data_7_Skoll_Meg22_1214_2849.pdf. Visualization of Lokiarchaeota virus Sköll Meg22_1214_scaffold_2849 coverage based on read mapping against the Meg22_1214 sample performed with BWA-MEM v0.7.17 and Samtools v1.11. Visualized with Geneious version 2022.0 by Biomatters. Supplementary_Data_8_Ratatoskr_Meg22_1012_548.pdf. Visualization of Helarchaeota virus Ratatoskr Meg22_1012_scaffold_548 coverage based on read mapping against the Meg22_1012 sample performed with BWA-MEM v0.7.17 and Samtools v1.11. Visualized with Geneious version 2022.0 by Biomatters. Supplementary_Data_9_Nidhogg_Meg22_1012_91.pdf. Visualization of Helarchaeota virus Nidhogg Meg22_1012_scaffold_91 coverage based on read mapping against the Meg22_1012 sample performed with BWA-MEM v0.7.17 and Samtools v1.11. Visualized with Geneious version 2022.0 by Biomatters. Supplementary_Data_10_Nidhogg_Meg22_1214_152.pdf. Visualization of Helarchaeota virus Nidhogg Meg22_1214_scaffold_152 coverage based on read mapping against the Meg22_1214 sample performed with BWA-MEM v0.7.17 and Samtools v1.11. Visualized with Geneious version 2022.0 by Biomatters.

Supplementary Data 11

Sequences used in the DNA polymerase B phylogeny.

Supplementary Data 12

Viral protein family (VPF) classification membership ratios for Asgard viruses.

Supplementary Data 13

InterProScan annotations of Asgard MAGs first detailed in this study and IMG/M annotations of all MAGs used in this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rambo, I.M., Langwig, M.V., Leão, P. et al. Genomes of six viruses that infect Asgard archaea from deep-sea sediments. Nat Microbiol 7, 953–961 (2022). https://doi.org/10.1038/s41564-022-01150-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-022-01150-8

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology