Abstract
Microbial communities have essential roles in ocean ecology and planetary health. Microbes participate in nutrient cycles, remove huge quantities of carbon dioxide from the air and support ocean food webs. The taxonomic and functional diversity of the global ocean microbiome has been revealed by technological advances in sampling, DNA sequencing and bioinformatics. A better understanding of the ocean microbiome could underpin strategies to address environmental and societal challenges, including achievement of multiple Sustainable Development Goals way beyond SDG 14 ‘life below water’. We propose a set of priorities for understanding and protecting the ocean microbiome, which include delineating interactions between microbiota, sustainably applying resources from oceanic microorganisms and creating policy- and funder-friendly ocean education resources, and discuss how to achieve these ambitious goals.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Inter-comparison of marine microbiome sampling protocols
ISME Communications Open Access 19 August 2023
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Bar-On, Y. & Milo, R. The biomass composition of the oceans: a blueprint of our blue planet. Cell 179, 1451–1454 (2019).
Field, C. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).
Boyd, P., Claustre, H., Levy, M., Siegel, D. & Weber, T. Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature 568, 327–335 (2019).
Worden, A. et al. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science 347, 1257594 (2015).
Smetacek, V. Microbial food webs: the ocean’s veil. Nature 419, 565 (2002).
Cavicchioli, R. et al. Scientists’ warning to humanity: microorganisms and climate change. Nat. Rev. Microbiol. 17, 569–586 (2019).
Keeling, P. & Campo, J. Marine protists are not just big bacteria. Curr. Biol. 27, R541–R549 (2017).
Pierella Karlusich, J. J., Ibarbalz, F. & Bowler, C. Exploration of marine phytoplankton: from their historical appreciation to the omics era. J. Plankton Res. 42, 595–612 (2020).
Suttle, C. Marine viruses — major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812 (2007).
Sunagawa, S. et al. Tara Oceans: towards global ocean ecosystems biology. Nat. Rev. Microbiol. 18, 428–445 (2020).
Venter, J. et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304, 66–74 (2004).
Global Ocean Science Report 2020 (UNESCO, 2020).
DeLong, E. & Karl, D. Genomic perspectives in microbial oceanography. Nature 437, 336–342 (2005).
Trevathan-Tackett, S. M. et al. A horizon scan of priorities for coastal marine microbiome research. Nat. Ecol. Evol. 3, 1509–1520 (2019).
Jonkers, L., Hillebrand, H. & Kucera, M. Global change drives modern plankton communities away from the pre-industrial state. Nature 570, 372–375 (2019).
Kashtan, N. et al. Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science 344, 416–420 (2014).
Delmont, T. et al. Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes. Nat. Microbiol. 3, 804–813 (2018).
Nand, A. et al. Genetic and spatial organization of the unusual chromosomes of the dinoflagellate Symbiodinium microadriaticum. Nat. Genet. 53, 618–629 (2021).
Chadwick, G. et al. NanoSIMS imaging reveals metabolic stratification within current-producing biofilms. Proc. Natl Acad. Sci. USA 116, 20716–20724 (2019).
Karl, D. & Church, M. Microbial oceanography and the Hawaii Ocean Time-series programme. Nat. Rev. Microbiol. 12, 699–713 (2014).
Lombard, F. et al. Globally consistent quantitative observations of planktonic ecosystems. Front. Mar. Sci. 6, 196 (2019).
Zhang, Y. et al. Targeted sampling by autonomous underwater vehicles. Front. Mar. Sci. 6, 3773–3784 (2019).
Coles, V. et al. Ocean biogeochemistry modeled with emergent trait-based genomics. Science 358, 1149–1154 (2017).
French, V. et al. (eds) Advancing Citizen Science for Coastal and Ocean Research (European Marine Board, 2017); https://doi.org/10.25607/OBP-29
Vezzulli, L., Martinez-Urtaza, J. & Stern, R. Continuous plankton recorder in the omics era: from marine microbiome to global ocean observations. Curr. Opin. Biotechnol. 73, 61–66 (2021).
Mitchell, A. et al. MGnify: the microbiome analysis resource in 2020. Nucleic Acids Res. https://doi.org/10.1093/nar/gkz1035 (2019).
Wood-Charlson, E. et al. The National Microbiome Data Collaborative: enabling microbiome science. Nat. Rev. Microbiol. 18, 313–314 (2020).
Webb, T. Marine and terrestrial ecology: unifying concepts, revealing differences. Trends Ecol. Evol. 27, 535–541 (2012).
Siano, R. et al. Sediment archives reveal irreversible shifts in plankton communities after World War II and agricultural pollution. Curr. Biol. 31, 2682–2689.e7 (2021).
Harrison, J., Sunday, J. & Rogers, S. Predicting the fate of eDNA in the environment and implications for studying biodiversity. Proc. R. Soc. B 286, 20191409 (2019).
Wild, C. Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol. Biomarkers Prev. 14, 1847–1850 (2005).
Halpern, B. et al. Recent pace of change in human impact on the world’s ocean. Sci. Rep. 9, 11609 (2019).
Gulder, T. & Moore, B. Salinosporamide natural products: potent 20S proteasome inhibitors as promising cancer chemotherapeutics. Angew. Chem. Int. Ed. 49, 9346–9367 (2010).
Tortorella, E. et al. Antibiotics from deep-sea microorganisms: current discoveries and perspectives. Mar. Drugs 16, 355 (2018).
Pausch, P. et al. CRISPR–CasΦ from huge phages is a hypercompact genome editor. Science 369, 333–337 (2020).
Alava, J. in Predicting Future Oceans (eds Cisneros-Montemayor, A. M. et al.) 495–518 (Elsevier, 2019).
Torres-Tiji, Y., Fields, F. & Mayfield, S. Microalgae as a future food source. Biotechnol. Adv. 41, 107536 (2020).
Gephart, J. et al. Environmental performance of blue foods. Nature 597, 360–365 (2021).
Giordano, D. et al. Marine microbial secondary metabolites. Adv. Microb. Physiol. https://doi.org/10.1016/bs.ampbs.2015.04.001 (2015).
Gerwick, W. & Fenner, A. Drug discovery from marine microbes. Microb. Ecol. 65, 800–806 (2012).
McKinley, E., Acott, T. & Yates, K. Marine social sciences: looking towards a sustainable future. Environ. Sci. Policy 108, 85–92 (2020).
Timmis, K. et al. The urgent need for microbiology literacy in society. Environ. Microbiol. 21, 1513–1528 (2019).
Bennett, N. Marine social science for the peopled seas. Coast. Manage. 47, 244–252 (2019).
Dasgupta, P. The Economics of Biodiversity: the Dasgupta Review (London HM Treasury, 2021).
Bartkowski, B. and Lienhoop, N. Beyond rationality, towards reasonableness: enriching the theoretical foundation of deliberative monetary valuation. Ecol. Econ. 143, 97–104 (2018).
Hirt, H. Healthy soils for healthy plants for healthy humans. EMBO Rep. 21, e51069 (2020).
Foster, E. and Deardorff, A. Open Science Framework (OSF). J. Med. Libr. Assoc. 105, 203–206 (2017).
Clayton, S. et al. Bio-GO-SHIP: the time is right to establish global repeat sections of ocean biology. Front. Mar. Sci. 8, 767443 (2022).
Delmont, T. et al. Single-amino acid variants reveal evolutionary processes that shape the biogeography of a global SAR11 subclade. Elife 8, e46497 (2019).
Dolan, J. Pioneers of plankton research: Victor Hensen (1835–1924). J. Plankton Res. 43, 507–510 (2021).
Benway, H. et al. Ocean time series observations of changing marine ecosystems: an era of integration, synthesis, and societal applications. Front. Mar. Sci. 6, 393 (2019).
Kopf, A. et al. The ocean sampling day consortium. GigaScience 4, 27 (2015).
Rohwer, F. et al. The complete genomic sequence of the marine phage Roseophage SIO1 shares homology with nonmarine phages. Limnol. Oceanogr. 45, 408–418 (2000).
Rocap, G. et al. Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424, 1042–1047 (2003).
Dufresne, A. et al. Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome. Proc. Natl Acad. Sci. USA 100, 10020–10025 (2003).
Armbrust, E. et al. The genome of the diatom Thalassiosira Pseudonana: ecology, evolution, and metabolism. Science 306, 79–86 (2004).
Giovannoni, S. SAR11 bacteria: the most abundant plankton in the oceans. Annu. Rev. Mar. Sci. 9, 231–255 (2017).
Rinke, C. et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499, 431–437 (2013).
Swan, B. et al. Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean. Science 333, 1296–1300 (2011).
Guidi, L. et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature 532, 465–470 (2016).
DeLong, E. Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311, 496–503 (2006).
Breitbart, M. et al. Genomic analysis of uncultured marine viral communities. Proc. Natl Acad. Sci. USA 99, 14250–14255 (2002).
Saito, M. et al. Multiple nutrient stresses at intersecting Pacific Ocean biomes detected by protein biomarkers. Science 345, 1173–1177 (2014).
Millard, A., Clokie, M., Shub, D. & Mann, N. Genetic organization of the psbAD region in phages infecting marine Synechococcus strains. Proc. Natl Acad. Sci. USA 101, 11007–11012 (2004).
Foster, R. et al. Nitrogen fixation and transfer in open ocean diatom–cyanobacterial symbioses. ISME J. 5, 1484–1493 (2011).
Corliss, J. et al. Submarine thermal springs on the Galápagos Rift. Science 203, 1073–1083 (1979).
Moon-van der Staay, S., De Wachter, R. & Vaulot, D. Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409, 607–610 (2001).
Bergh, Ø., BØrsheim, K., Bratbak, G. & Heldal, M. High abundance of viruses found in aquatic environments. Nature 340, 467–468 (1989).
Dutkiewicz, S. et al. Dimensions of marine phytoplankton diversity. Biogeosciences 17, 609–634 (2020).
Henson, S., Sanders, R. & Madsen, E. Global patterns in efficiency of particulate organic carbon export and transfer to the deep ocean. Glob. Biogeochem. Cycles 26, GB1028 (2012).
Kaschner, K., Tittensor, D., Ready, J., Gerrodette, T. & Worm, B. Current and future patterns of global marine mammal biodiversity. PLoS ONE 6, e19653 (2011).
Spalding, M., Ravilious, C. & Green, E. World Atlas Of Coral Reefs (Univ. California Press, 2001).
Waycott, M. et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl Acad. Sci. USA 106, 12377–12381 (2009).
Friess, D. et al. The state of the world’s mangrove forests: past, present, and future. Annu. Rev. Environ. Resour. 44, 89–115 (2019).
Webb, P. Introduction to Oceanography (Rebus Community, 2020); https://open.umn.edu/opentextbooks/textbooks/introduction-to-oceanography
Eakins, B.W. & Sharman, G. F. Volumes of the World’s Oceans from ETOPO1 (NOAA National Geophysical Data Center, 2010).
Costello, M. J., Cheung, A. & De Hauwere, N. Surface area and the seabed area, volume, depth, slope, and topographic variation for the world’s seas, oceans, and countries. Environ. Sci. Technol. 44, 8821–8828 (2010).
Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).
Kuypers, M., Marchant, H. & Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 16, 263–276 (2018).
Magnabosco, C. et al. The biomass and biodiversity of the continental subsurface. Nat. Geosci. 11, 707–717 (2018).
Halpern, B. S. et al. An index to assess the health and benefits of the global ocean. Nature 488, 615–620 (2012).
Jansson, J. & Hofmockel, K. Soil microbiomes and climate change. Nat. Rev. Microbiol. 18, 35–46 (2019).
Thompson, L. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).
Mirzayi, C. et al. Reporting guidelines for human microbiome research: the STORMS checklist. Nat Med. 27, 1885–1892 (2021).
Acknowledgements
We thank R. Zaayman-Gallant, T. Rauscher and F. Ibarbalz for preparation of the figures, and the European Union’s Horizon 2020 research and innovation project AtlantECO, under grant agreement no. 862923. This article is contribution number 131 of Tara Oceans.
Author information
Authors and Affiliations
Consortia
Contributions
A.G. and C.B. wrote the paper, with input from A.A., E. Boss, E. Bourgois, R.T., S.G.A., P.B., E.B., M.B., S.C., C.d.V., T.O.D., D.E., L.G., D.I., S.K., H.M., F.L., R.P., J.J.P.K., G.P., A.R., G.S.-K., L.S., M.B.S., S.S., P.W., O.Z., D.A., J.B., R.F., E.H., B.R., R.C., I.C., M.C., A.E.K., W.H.C.F.K., M.O., N.P., D.M.P., I.S., T.M.T., J. Vamathevan and J. Vanaverbeke.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Microbiology thanks Oded Beja, Hebe Mónica Dionisi, Jack Gilbert and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Tara Ocean Foundation., Tara Oceans., European Molecular Biology Laboratory (EMBL). et al. Priorities for ocean microbiome research. Nat Microbiol 7, 937–947 (2022). https://doi.org/10.1038/s41564-022-01145-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41564-022-01145-5
This article is cited by
-
Inter-comparison of marine microbiome sampling protocols
ISME Communications (2023)
-
Why the ocean virome matters
Nature Methods (2022)