Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Evolution of the human pathogenic lifestyle in fungi

Abstract

Fungal pathogens cause more than a billion human infections every year, resulting in more than 1.6 million deaths annually. Understanding the natural history and evolutionary ecology of fungi is helping us understand how disease-relevant traits have repeatedly evolved. Different types and mechanisms of genetic variation have contributed to the evolution of fungal pathogenicity and specific genetic differences distinguish pathogens from non-pathogens. Insights into the traits, genetic elements, and genetic and ecological mechanisms that contribute to the evolution of fungal pathogenicity are crucial for developing strategies to both predict emergence of fungal pathogens and develop drugs to combat them.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Milestones in the study of fungal diseases.
Fig. 2: Human pathogenicity has evolved repeatedly in fungi.
Fig. 3: Repeated evolution of pathogenicity in the Aspergillus section Fumigati lineage.
Fig. 4: Genetic variation and the evolution of infection-relevant traits.

Similar content being viewed by others

References

  1. Blackwell, M. The fungi: 1, 2, 3… 5.1 million species? Am. J. Bot. 98, 426–438 (2011).

    Article  PubMed  Google Scholar 

  2. Hawksworth, D. L. & Lucking, R. Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.FUNK-0052-2016 (2017).

  3. Stop neglecting fungi. Nat. Microbiol. https://doi.org/10.1038/nmicrobiol.2017.120 (2017).

  4. Fungus focus. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-018-0721-1 (2018).

  5. Denning, D. W. Calling upon all public health mycologists: to accompany the country burden papers from 14 countries. Eur. J. Clin. Microbiol. Infect. Dis. 36, 923–924 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Konopka, J., Casadevall, A., Taylor, J., Heitman, J. & Cowen, L. One Health: Fungal Pathogens of Humans, Animals, and Plants (American Academy of Microbiology, 2019).

  7. Bongomin, F., Gago, S., Oladele, R. O. & Denning, D. W. Global and multi-national prevalence of fungal diseases-estimate precision. J. Fungi 3, 57 (2017).

    Article  Google Scholar 

  8. Latge, J. P. & Chamilos, G. Aspergillus fumigatus and aspergillosis in 2019. Clin. Microbiol. Rev. https://doi.org/10.1128/CMR.00140-18 (2019).

  9. Fisher, M. C. et al. Threats posed by the fungal kingdom to humans, wildlife, and agriculture. mBio 11, e00449-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chang, C. C. & Levitz, S. M. Fungal immunology in clinical practice: magical realism or practical reality? Med. Mycol. 57, S294–S306 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gow, N. A. & Netea, M. G. Medical mycology and fungal immunology: new research perspectives addressing a major world health challenge. Philos. Trans. R. Soc. B 371, 20150462 (2016).

    Article  CAS  Google Scholar 

  12. Romani, L. Immunity to fungal infections. Nat. Rev. Immunol. 11, 275–288 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Fisher, M. C., Hawkins, N. J., Sanglard, D. & Gurr, S. J. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 360, 739–742 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Robbins, N., Caplan, T. & Cowen, L. E. Molecular evolution of antifungal drug resistance. Annu. Rev. Microbiol. 71, 753–775 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. James, T. Y., Stajich, J. E., Hittinger, C. T. & Rokas, A. Toward a fully resolved fungal tree of life. Annu. Rev. Microbiol. 74, 291–313 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Li, Y. et al. A genome-scale phylogeny of the kingdom Fungi. Curr. Biol. 31, 1653–1665 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wijayawardene, N. N. et al. Outline of fungi and fungus-like taxa. Mycosphere 11, 1060–1456 (2020).

    Article  Google Scholar 

  18. Rokas, A., Mead, M. E., Steenwyk, J. L., Oberlies, N. H. & Goldman, G. H. Evolving moldy murderers: Aspergillus section Fumigati as a model for studying the repeated evolution of fungal pathogenicity. PLoS Pathog. 16, e1008315 (2020).

  19. Mead, M. E. et al. An evolutionary genomic approach reveals both conserved and species-specific genetic elements related to human disease in closely related Aspergillus fungi. Genetics 218, iyab066 (2021).

    Article  PubMed  Google Scholar 

  20. Mead, M. E. et al. Characterizing the pathogenic, genomic, and chemical traits of Aspergillus fischeri, a close relative of the major human fungal pathogen Aspergillus fumigatus. mSphere 4, e00018-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Steenwyk, J. L., Shen, X. X., Lind, A. L., Goldman, G. H. & Rokas, A. A robust phylogenomic time tree for biotechnologically and medically important fungi in the genera Aspergillus and Penicillium. mBio 10, e00925-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Garcia Garces, H., Hamae Yamauchi, D., Theodoro, R. C. & Bagagli, E. PRP8 intein in onygenales: distribution and phylogenetic aspects. Mycopathologia 185, 37–49 (2020).

    CAS  PubMed  Google Scholar 

  23. Hassan, M. I. A. & Voigt, K. Pathogenicity patterns of mucormycosis: epidemiology, interaction with immune cells and virulence factors. Med. Mycol. 57, S245–S256 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gabaldon, T., Naranjo-Ortiz, M. A. & Marcet-Houben, M. Evolutionary genomics of yeast pathogens in the Saccharomycotina. FEMS Yeast Res. 16, fow064 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Opulente, D. A. et al. Pathogenic budding yeasts isolated outside of clinical settings. FEMS Yeast Res. 19, foz032 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Singh-Babak, S. D., Babak, T., Fraser, H. B. & Johnson, A. D. Lineage-specific selection and the evolution of virulence in the Candida clade. Proc. Natl Acad. Sci. USA 118, e2016818118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hagen, F. et al. Importance of resolving fungal nomenclature: the case of multiple pathogenic species in the cryptococcus genus. mSphere https://doi.org/10.1128/mSphere.00238-17 (2017).

  28. Kwon-Chung, K. J. et al. The case for adopting the ‘Species Complex’ nomenclature for the etiologic agents of cryptococcosis. mSphere https://doi.org/10.1128/mSphere.00357-16 (2017).

  29. Sugui, J. A. et al. Genetic relatedness versus biological compatibility between Aspergillus fumigatus and related species. J. Clin. Microbiol. 52, 3707–3721 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Grice, E. A. & Dawson, T. L. Jr Host–microbe interactions: Malassezia and human skin. Curr. Opin. Microbiol. 40, 81–87 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Van Dyke, M. C. C., Teixeira, M. M. & Barker, B. M. Fantastic yeasts and where to find them: the hidden diversity of dimorphic fungal pathogens. Curr. Opin. Microbiol. 52, 55–63 (2019).

    Article  PubMed  Google Scholar 

  32. de Hoog, G. S. et al. Toward a novel multilocus phylogenetic taxonomy for the dermatophytes. Mycopathologia 182, 5–31 (2017).

    Article  PubMed  Google Scholar 

  33. Hirakawa, M. P. et al. Genetic and phenotypic intra-species variation in Candida albicans. Genome Res. 25, 413–425 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang, J. M. et al. Intraspecies transcriptional profiling reveals key regulators of Candida albicans pathogenic traits. mBio https://doi.org/10.1128/mBio.00586-21 (2021).

  35. Kowalski, C. H. et al. Fungal biofilm morphology impacts hypoxia fitness and disease progression. Nat. Microbiol. 4, 2430–2441 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Kowalski, C. H. et al. Heterogeneity among isolates reveals that fitness in low oxygen correlates with Aspergillus fumigatus virulence. mBio https://doi.org/10.1128/mBio.01515-16 (2016).

  37. Ries, L. N. A. et al. Nutritional heterogeneity among Aspergillus fumigatus strains has consequences for virulence in a strain- and host-dependent manner. Front. Microbiol. 10, 854 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Dos Santos, R. A. C. et al. Genomic and phenotypic heterogeneity of clinical isolates of the human pathogens Aspergillus fumigatus, Aspergillus lentulus, and Aspergillus fumigatiaffinis. Front. Genet. 11, 459 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Beale, M. A. et al. Genotypic diversity is associated with clinical outcome and phenotype in cryptococcal meningitis across Southern Africa. PLoS Negl. Trop. Dis. https://doi.org/10.1371/journal.pntd.0003847 (2015).

  40. Ventoulis, I. et al. Bloodstream infection by Saccharomyces cerevisiae in two COVID-19 patients after receiving supplementation of Saccharomyces in the ICU. J. Fungi https://doi.org/10.3390/jof6030098 (2020).

  41. Hoenigl, M. et al. Sinusitis and frontal brain abscess in a diabetic patient caused by the basidiomycete Schizophyllum commune: case report and review of the literature. Mycoses 56, 389–393 (2013).

    Article  PubMed  Google Scholar 

  42. Nanno, S. et al. Disseminated Hormographiella aspergillata infection with involvement of the lung, brain, and small intestine following allogeneic hematopoietic stem cell transplantation: case report and literature review. Transpl. Infect. Dis. 18, 611–616 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Ioannou, P., Vamvoukaki, R. & Samonis, G. Rhodotorula species infections in humans: a systematic review. Mycoses 62, 90–100 (2019).

    Article  PubMed  Google Scholar 

  44. Seyedmousavi, S. et al. Fungal infections in animals: a patchwork of different situations. Med. Mycol. 56, 165–187 (2018).

    Article  PubMed  Google Scholar 

  45. Rodrigues, A. M., de Hoog, G. S. & de Camargo, Z. P. Sporothrix species causing outbreaks in animals and humans driven by animal–animal transmission. PLoS Pathog. 12, e1005638 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Han, B., Pan, G. & Weiss, L. M. Microsporidiosis in humans. Clin. Microbiol. Rev. https://doi.org/10.1128/CMR.00010-20 (2021).

  47. Cushion, M. T. Are members of the fungal genus Pneumocystis (a) commensals; (b) opportunists; (c) pathogens; or (d) all of the above? PLoS Pathog. 6, e1001009 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Romo, J. A. & Kumamoto, C. A. On commensalism of Candida. J. Fungi https://doi.org/10.3390/jof6010016 (2020).

  49. Bensasson, D. et al. Diverse lineages of Candida albicans live on old oaks. Genetics 211, 277–288 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Taylor, L. H., Latham, S. M. & Woolhouse, M. E. Risk factors for human disease emergence. Philos. Trans. R. Soc. B 356, 983–989 (2001).

    Article  CAS  Google Scholar 

  51. Fisher, M. C. et al. Emerging fungal threats to animal, plant and ecosystem health. Nature 484, 186–194 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Tekaia, F. & Latge, J. P. Aspergillus fumigatus: saprophyte or pathogen? Curr. Opin. Microbiol. 8, 385–392 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Casadevall, A. Cards of virulence and the global virulome for humans. Microbe 1, 359–364 (2006).

    Google Scholar 

  55. Gostincar, C. et al. Fungi between extremotolerance and opportunistic pathogenicity on humans. Fungal Diversity 93, 195–213 (2018).

    Article  Google Scholar 

  56. Egidi, E. et al. A few Ascomycota taxa dominate soil fungal communities worldwide. Nat. Commun. 10, 2369 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Robert, V., Cardinali, G. & Casadevall, A. Distribution and impact of yeast thermal tolerance permissive for mammalian infection. BMC Biol. 13, 18 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Yamamoto, N. et al. Particle-size distributions and seasonal diversity of allergenic and pathogenic fungi in outdoor air. ISME J. 6, 1801–1811 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chung, H. & Lee, Y. H. Hypoxia: a double-edged sword during fungal pathogenesis? Front. Microbiol. 11, 1920 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Magwene, P. M. et al. Outcrossing, mitotic recombination, and life-history trade-offs shape genome evolution in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 108, 1987–1992 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Novohradska, S., Ferling, I. & Hillmann, F. Exploring virulence determinants of filamentous fungal pathogens through interactions with soil amoebae. Front. Cell. Infect. Microbiol. 7, 497 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Bloom, A. L. M. et al. Thermotolerance in the pathogen Cryptococcus neoformans is linked to antigen masking via mRNA decay-dependent reprogramming. Nat. Commun. 10, 4950 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Findley, K. et al. Phylogeny and phenotypic characterization of pathogenic Cryptococcus species and closely related saprobic taxa in the Tremellales. Eukaryot. Cell 8, 353–361 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. White, T. C. et al. Fungi on the skin: dermatophytes and Malassezia. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/cshperspect.a019802 (2014).

  65. Rodrigues, A. M. et al. The threat of emerging and re-emerging pathogenic Sporothrix species. Mycopathologia 185, 813–842 (2020).

    Article  PubMed  Google Scholar 

  66. Steenbergen, J. N., Shuman, H. A. & Casadevall, A. Cryptococcus neoformans interactions with amoebae suggest an explanation for its virulence and intracellular pathogenic strategy in macrophages. Proc. Natl Acad. Sci. USA 98, 15245–15250 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Casadevall, A., Fu, M. S., Guimaraes, A. J. & Albuquerque, P. The ‘Amoeboid Predator-Fungal Animal Virulence’ hypothesis. J. Fungi https://doi.org/10.3390/jof5010010 (2019).

  68. Magditch, D. A., Liu, T. B., Xue, C. & Idnurm, A. DNA mutations mediate microevolution between host-adapted forms of the pathogenic fungus Cryptococcus neoformans. PLoS Pathog. 8, e1002936 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Fu, M. S. et al. Amoeba predation of Cryptococcus neoformans results in pleiotropic changes to traits associated with virulence. mBio https://doi.org/10.1128/mBio.00567-21 (2021).

  70. Albuquerque, P. et al. A hidden battle in the dirt: soil amoebae interactions with Paracoccidioides spp. PLoS Negl. Trop. Dis. 13, e0007742 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Sil, A. & Andrianopoulos, A. Thermally dimorphic human fungal pathogens–polyphyletic pathogens with a convergent pathogenicity trait. Cold Spring Harb. Perspect. Med. 5, a019794 (2014).

    Article  PubMed  CAS  Google Scholar 

  72. Boyce, K. J. & Andrianopoulos, A. Fungal dimorphism: the switch from hyphae to yeast is a specialized morphogenetic adaptation allowing colonization of a host. FEMS Microbiol. Rev. 39, 797–811 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Strope, P. K. et al. The 100-genomes strains, an S. cerevisiae resource that illuminates its natural phenotypic and genotypic variation and emergence as an opportunistic pathogen. Genome Res. 25, 762–774 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Raffa, N. & Keller, N. P. A call to arms: mustering secondary metabolites for success and survival of an opportunistic pathogen. PLoS Pathog. 15, e1007606 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Munoz, J. F., McEwen, J. G., Clay, O. K. & Cuomo, C. A. Genome analysis reveals evolutionary mechanisms of adaptation in systemic dimorphic fungi. Sci. Rep. 8, 4473 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Mixao, V. & Gabaldon, T. Hybridization and emergence of virulence in opportunistic human yeast pathogens. Yeast 35, 5–20 (2018).

    Article  CAS  PubMed  Google Scholar 

  77. Maxwell, C. S. et al. Gene exchange between two divergent species of the fungal human pathogen, Coccidioides. Evolution 73, 42–58 (2019).

    Article  PubMed  Google Scholar 

  78. Gusa, A. et al. Transposon mobilization in the human fungal pathogen Cryptococcus is mutagenic during infection and promotes drug resistance in vitro. Proc. Natl Acad. Sci. USA 117, 9973–9980 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bennett, R. J., Forche, A. & Berman, J. Rapid mechanisms for generating genome diversity: whole ploidy shifts, aneuploidy, and loss of heterozygosity. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/cshperspect.a019604 (2014).

  80. Steenwyk, J. L., Soghigian, J. S., Perfect, J. R. & Gibbons, J. G. Copy number variation contributes to cryptic genetic variation in outbreak lineages of Cryptococcus gattii from the North American Pacific Northwest. BMC Genomics 17, 700 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Cisse, O. H. et al. Genomic insights into the host specific adaptation of the Pneumocystis genus. Commun. Biol. 4, 305 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ianiri, G. et al. HGT in the human and skin commensal Malassezia: a bacterially derived flavohemoglobin is required for NO resistance and host interaction. Proc. Natl Acad. Sci. USA 117, 15884–15894 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sun, S., Hoy, M. J. & Heitman, J. Fungal pathogens. Curr. Biol. 30, R1163–R1169 (2020).

    Article  CAS  PubMed  Google Scholar 

  84. Taylor, J. W. Evolutionary perspectives on human fungal pathogens. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/cshperspect.a019588 (2014).

  85. Steenwyk, J. L. et al. Variation among biosynthetic gene clusters, secondary metabolite profiles, and cards of virulence across aspergillus species. Genetics 216, 481–497 (2020).

  86. Jackson, A. P. et al. Comparative genomics of the fungal pathogens Candida dubliniensis and Candida albicans. Genome Res. 19, 2231–2244 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Carroll, S. B. Evolution at two levels: on genes and form. PLoS Biol. 3, e245 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Sorrells, T. R. & Johnson, A. D. Making sense of transcription networks. Cell 161, 714–723 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Fisher, K. J. & Lang, G. I. Experimental evolution in fungi: an untapped resource. Fungal Genet. Biol. 94, 88–94 (2016).

    Article  PubMed  Google Scholar 

  90. Forche, A. et al. Rapid phenotypic and genotypic diversification after exposure to the oral host niche in Candida albicans. Genetics 209, 725–741 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. de Crecy, E., Jaronski, S., Lyons, B., Lyons, T. J. & Keyhani, N. O. Directed evolution of a filamentous fungus for thermotolerance. BMC Biotechnol. 9, 74 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Tso, G. H. W. et al. Experimental evolution of a fungal pathogen into a gut symbiont. Science 362, 589–595 (2018).

    Article  CAS  PubMed  Google Scholar 

  93. Hu, G. et al. Microevolution during serial mouse passage demonstrates FRE3 as a virulence adaptation gene in Cryptococcus neoformans. mBio 5, e00941–00914 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Ene, I. V. et al. Global analysis of mutations driving microevolution of a heterozygous diploid fungal pathogen. Proc. Natl Acad. Sci. USA 115, E8688–E8697 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Forche, A. et al. Selection of Candida albicans trisomy during oropharyngeal infection results in a commensal-like phenotype. PLoS Genet. 15, e1008137 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lucking, R. et al. Fungal taxonomy and sequence-based nomenclature. Nat. Microbiol. 6, 540–548 (2021).

    Article  PubMed  CAS  Google Scholar 

  97. Cao, C., Xi, L. & Chaturvedi, V. Talaromycosis (Penicilliosis) due to Talaromyces (Penicillium) marneffei: insights into the clinical trends of a major fungal disease 60 years after the discovery of the pathogen. Mycopathologia 184, 709–720 (2019).

    Article  PubMed  Google Scholar 

  98. Fishman, J. A. Pneumocystis jiroveci. Semin. Respir. Crit. Care Med. 41, 141–157 (2020).

    Article  PubMed  Google Scholar 

  99. Gabaldon, T. & Carrete, L. The birth of a deadly yeast: tracing the evolutionary emergence of virulence traits in Candida glabrata. FEMS Yeast Res. 16, fov110 (2016).

    Article  PubMed  CAS  Google Scholar 

  100. Grigoriev, I. V. et al. MycoCosm portal: gearing up for 1,000 fungal genomes. Nucleic Acids Res. 42, D699–D704 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Shen, X. X. et al. Genome-scale phylogeny and contrasting modes of genome evolution in the fungal phylum Ascomycota. Sci. Adv. 6, eabd0079 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Shen, X. X. et al. Tempo and mode of genome evolution in the budding yeast subphylum. Cell 175, 1533–1545 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Robert, V. et al. MycoBank gearing up for new horizons. IMA Fungus 4, 371–379 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Nguyen, N. H. et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).

    Article  Google Scholar 

  105. Wang, F. et al. Transcription in fungal conidia before dormancy produces phenotypically variable conidia that maximize survival in different environments. Nat. Microbiol. 6, 1066–1081 (2021).

    Article  CAS  PubMed  Google Scholar 

  106. Zhao, S., Ge, W., Watanabe, A., Fortwendel, J. R. & Gibbons, J. G. Genome-wide association for itraconazole sensitivity in non-resistant clinical isolates of Aspergillus fumigatus. Front. Fung. Biol. 1, 617338 (2021).

    Article  Google Scholar 

  107. Barber, A. E. et al. Aspergillus fumigatus pan-genome analysis identifies genetic variants associated with human infection. Nat. Microbiol. 6, 1526–1536 (2021).

    Article  CAS  PubMed  Google Scholar 

  108. Smith, S. D., Pennell, M. W., Dunn, C. W. & Edwards, S. V. Phylogenetics is the new genetics (for most of biodiversity). Trends Ecol. Evol. 35, 415–425 (2020).

    Article  PubMed  Google Scholar 

  109. Mazi, P. B., Rauseo, A. M. & Spec, A. Blastomycosis. Infect. Dis. Clin. North Am. 35, 515–530 (2021).

    Article  PubMed  Google Scholar 

  110. Pappas, P. G., Lionakis, M. S., Arendrup, M. C., Ostrosky-Zeichner, L. & Kullberg, B. J. Invasive candidiasis. Nat. Rev. Dis. Prim. 4, 18026 (2018).

    Article  PubMed  Google Scholar 

  111. Van Dyke, M. C. C., Thompson, G. R., Galgiani, J. N. & Barker, B. M. The rise of Coccidioides: forces against the dust devil unleashed. Front. Immunol. 10, 2188 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Maziarz, E. K. & Perfect, J. R. Cryptococcosis. Infect. Dis. Clin. North Am. 30, 179–206 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Schwartz, I. S. et al. Emergomyces: the global rise of new dimorphic fungal pathogens. PLoS Pathog. 15, e1007977 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Batista, B. G., Chaves, M. A., Reginatto, P., Saraiva, O. J. & Fuentefria, A. M. Human fusariosis: an emerging infection that is difficult to treat. Rev. Soc. Bras. Med. Trop. 53, e20200013 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Bahr, N. C., Antinori, S., Wheat, L. J. & Sarosi, G. A. Histoplasmosis infections worldwide: thinking outside of the Ohio River valley. Curr. Trop. Med. Rep. 2, 70–80 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Ruan, Y. et al. The largest meta-analysis on the global prevalence of microsporidia in mammals, avian and water provides insights into the epidemic features of these ubiquitous pathogens. Parasites Vectors 14, 186 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Prakash, H. & Chakrabarti, A. Global epidemiology of mucormycosis. J. Fungi https://doi.org/10.3390/jof5010026 (2019).

  118. Martinez, R. New trends in paracoccidioidomycosis epidemiology. J. Fungi https://doi.org/10.3390/jof3010001 (2017).

  119. Brown, L., Leck, A. K., Gichangi, M., Burton, M. J. & Denning, D. W. The global incidence and diagnosis of fungal keratitis. Lancet Infect. Dis. 21, e49–e57 (2021).

    Article  PubMed  Google Scholar 

  120. Plaignaud, M. Obervation sur un fongus du sinus maxillaire. J. de Chirugie 87, 244–251 (1791).

  121. Knoke, M. & Bernhardt, H. The first description of an oesophageal candidosis by Bernhard von Langenbeck in 1839. Mycoses 49, 283–287 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Chander, J. Textbook of Medical Mycology 4th edn, 534–596 (Jaypee Brothers Medical Publishers Ltd., 2018).

  123. Dawson, T. L. Jr Malassezia: the forbidden kingdom opens. Cell Host Microbe 25, 345–347 (2019).

    Article  CAS  PubMed  Google Scholar 

  124. Hirschmann, J. V. The early history of coccidioidomycosis: 1892–1945. Clin. Infect. Dis. 44, 1202–1207 (2007).

    Article  PubMed  Google Scholar 

  125. Bradsher, R. W.Jr The endemic mimic: blastomycosis an illness often misdiagnosed. Trans. Am. Clin. Climatol. Assoc. 125, 188–203 (2014).

    PubMed  PubMed Central  Google Scholar 

  126. Freij, J. B. & Freij, B. J. The earliest account of human cryptococcosis (Busse–Buschke Disease) in a woman with chronic osteomyelitis of the tibia. Pediatr. Infect. Dis. J. 34, 1278 (2015).

    Article  PubMed  Google Scholar 

  127. Lopes-Bezerra, L. M. et al. Sporotrichosis between 1898 and 2017: the evolution of knowledge on a changeable disease and on emerging etiological agents. Med. Mycol. 56, 126–143 (2018).

    Article  PubMed  CAS  Google Scholar 

  128. Benard, G. Pathogenesis and classification of paracocidioidomycosis: new insights from old good stuff. Open Forum Infect. Dis. 8, ofaa624 (2021).

    Article  PubMed  Google Scholar 

  129. Collins, R. D. Dr William DeMonbreun: description of his contributions to our understanding of histoplasmosis and analysis of the significance of his work. Hum. Pathol. 36, 453–464 (2005).

    Article  PubMed  Google Scholar 

  130. Walzer, P. D. The ecology of Pneumocystis: perspectives, personal recollections, and future research opportunities. J. Eukaryot. Microbiol. 60, 634–645 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Schneider, E. et al. A coccidioidomycosis outbreak following the Northridge, Calif, earthquake. JAMA 277, 904–908 (1997).

    Article  CAS  PubMed  Google Scholar 

  132. Gremiao, I. D., Miranda, L. H., Reis, E. G., Rodrigues, A. M. & Pereira, S. A. Zoonotic epidemic of sporotrichosis: cat to human transmission. PLoS Pathog. 13, e1006077 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Stephen, C., Lester, S., Black, W., Fyfe, M. & Raverty, S. Multispecies outbreak of cryptococcosis on southern Vancouver Island, British Columbia. Can. Vet. J. 43, 792–794 (2002).

    PubMed  PubMed Central  Google Scholar 

  134. Chang, D. C. et al. Multistate outbreak of Fusarium keratitis associated with use of a contact lens solution. JAMA 296, 953–963 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Neblett Fanfair, R. et al. Necrotizing cutaneous mucormycosis after a tornado in Joplin, Missouri, in 2011. N. Engl. J. Med. 367, 2214–2225 (2012).

    Article  PubMed  CAS  Google Scholar 

  136. Vaux, S. et al. Multicenter outbreak of infections by Saprochaete clavata, an unrecognized opportunistic fungal pathogen. mBio https://doi.org/10.1128/mBio.02309-14 (2014).

  137. Larone, D. H. & Walsh, T. J. Exserohilum rostratum: anatomy of a national outbreak of fungal meningitis. Clin. Microbiol. Newsl. 35, 185–193 (2013).

    Article  Google Scholar 

  138. Hoenigl, M. Invasive fungal disease complicating Coronavirus disease 2019: when it rains, it spores. Clin. Infect. Dis. 73, e1645–e1648 (2021).

    Article  CAS  PubMed  Google Scholar 

  139. Hubka, V. et al. Unravelling species boundaries in the Aspergillus viridinutans complex (section Fumigati): opportunistic human and animal pathogens capable of interspecific hybridization. Persoonia 41, 142–174 (2018).

  140. Knowles, S. L. et al. Mapping the fungal battlefield: using in situ chemistry and deletion mutants to monitor interspecific chemical interactions between fungi. Front. Microbiol. 10, 285 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Oberlies, N. H. et al. Droplet probe: coupling chromatography to the in situ evaluation of the chemistry of nature. Nat. Prod. Rep. 36, 944–959 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Lamoth, F. Aspergillus fumigatus-related species in clinical practice. Front. Microbiol. 7, 683 (2016).

    PubMed  PubMed Central  Google Scholar 

  143. Cox, M. J., Loman, N., Bogaert, D. & O’Grady, J. Co-infections: potentially lethal and unexplored in COVID-19. Lancet Microbe 1, e11 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Crum-Cianflone, N. F. Invasive aspergillosis associated with severe influenza infections. Open Forum Infect. Dis. 3, ofw171 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Ezeokoli, O. T., Gcilitshana, O. & Pohl, C. H. Risk factors for fungal co-infections in critically ill COVID-19 patients, with a focus on immunosuppressants. J. Fungi https://doi.org/10.3390/jof7070545 (2021).

  146. Koehler, P. et al. COVID-19 associated pulmonary aspergillosis. Mycoses 63, 528–534 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Alanio, A., Delliere, S., Fodil, S., Bretagne, S. & Megarbane, B. Prevalence of putative invasive pulmonary aspergillosis in critically ill patients with COVID-19. Lancet Respir. Med. 8, e48–e49 (2020).

    Article  CAS  PubMed  Google Scholar 

  148. Prattes, J. et al. Diagnosis and treatment of COVID-19 associated pulmonary apergillosis in critically ill patients: results from a European confederation of medical mycology registry. Intensive Care Med. https://doi.org/10.1007/s00134-021-06471-6 (2021).

  149. Arastehfar, A. et al. COVID-19 associated pulmonary aspergillosis (CAPA)—from immunology to treatment. J. Fungi https://doi.org/10.3390/jof6020091 (2020).

  150. John, T. M., Jacob, C. N. & Kontoyiannis, D. P. When uncontrolled diabetes mellitus and severe COVID-19 converge: the perfect storm for mucormycosis. J. Fungi 7, 298 (2021).

    Article  CAS  Google Scholar 

  151. Steenwyk, J. L. et al. Genomic and phenotypic analysis of COVID-19-associated pulmonary aspergillosis isolates of Aspergillus fumigatus. Microbiol. Spectr. https://doi.org/10.1128/Spectrum.00010-21 (2021).

  152. Casadevall, A. The pathogenic potential of a microbe. mSphere https://doi.org/10.1128/mSphere.00015-17 (2017).

  153. Keizer, E. M. et al. Variation of virulence of five Aspergillus fumigatus isolates in four different infection models. PLoS ONE 16, e0252948 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Cramer, R. A. & Kowalski, C. H. Is it time to kill the survival curve? A case for disease progression factors in microbial pathogenesis and host defense research. mBio https://doi.org/10.1128/mBio.03483-20 (2021).

  155. Garcia-Solache, M. A. & Casadevall, A. Global warming will bring new fungal diseases for mammals. mBio 1, e00061-10 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Nnadi, N. E. & Carter, D. A. Climate change and the emergence of fungal pathogens. PLoS Pathog. 17, e1009503 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Rhodes, J. & Fisher, M. C. Global epidemiology of emerging Candida auris. Curr. Opin. Microbiol. 52, 84–89 (2019).

    Article  PubMed  Google Scholar 

  158. Chow, N. A. et al. Tracing the evolutionary history and global expansion of Candida auris using population genomic analyses. mBio 11, e03364-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Lockhart, S. R. et al. Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin. Infect. Dis. 64, 134–140 (2017).

    Article  CAS  PubMed  Google Scholar 

  160. Casadevall, A., Kontoyiannis, D. P. & Robert, V. Environmental Candida auris and the global warming emergence hypothesis. mBio https://doi.org/10.1128/mBio.00360-21 (2021).

  161. Arora, P. et al. Environmental isolation of Candida auris from the Coastal Wetlands of Andaman Islands, India. mBio https://doi.org/10.1128/mBio.03181-20 (2021).

  162. Taylor, J. W. et al. Sources of fungal genetic variation and associating it with phenotypic diversity. Microbiol Spectr. https://doi.org/10.1128/microbiolspec.FUNK-0057-2016 (2017).

  163. Kim, N.-S. The genomes and transposable elements in plants: are they friends or foes? Gene. Genom. 39, 359–370 (2017).

  164. Cortés-Ortiz, L., Roos, C. & Zinner, D. Introduction to special issue on primate hybridization and hybrid zones. Int. J. Primatol. 40, 1–8 (2019).

  165. Gogarten, J. P. & Townsend, J. P. Horizontal gene transfer, genome innovation and evolution. Nat. Rev. Microbiol. 3, 679–687 (2005).

  166. Shastry, B. S. SNPs in disease gene mapping, medicinal drug development and evolution. J. Hum. Genet. 52, 871–880 (2007).

  167. Powell, R. V., Willett, C. R., Goertzen, L. R. & Rashotte, A. M. Lineage specific conservation of cis-regulatory elements in Cytokinin Response Factors. Sci. Rep. 9, 13387 (2019).

  168. Campbell, M. A., Buser, T. J., Alfaro, M. E. & López, J. A. Addressing incomplete lineage sorting and paralogy in the inference of uncertain salmonid phylogenetic relationships. PeerJ 8, e9389 (2020).

Download references

Acknowledgements

I thank past and present members of my laboratory, in particular M. Mead and J. Steenwyk, and my collaborators C. T. Hittinger, G. Goldman and N. Oberlies for numerous discussions over the years that have shaped my thinking on the topic. I thank Y. Li for his help with Fig. 1. Research in my laboratory is supported by the National Institutes of Health/National Institute of Allergy and Infectious Diseases (grant nos R56 AI146096 and R01 AI153356), National Science Foundation (grant nos DEB1442113 and DEB2110404), Guggenheim Foundation and Burroughs Wellcome Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonis Rokas.

Ethics declarations

Competing interests

I am a scientific consultant for LifeMine Therapeutics, Inc.

Peer review

Peer review information

Nature Microbiology thanks Daniel Croll and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rokas, A. Evolution of the human pathogenic lifestyle in fungi. Nat Microbiol 7, 607–619 (2022). https://doi.org/10.1038/s41564-022-01112-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-022-01112-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing