Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunometabolic crosstalk during bacterial infection

Abstract

Following detection of bacteria, macrophages switch their metabolism from oxidative respiration through the tricarboxylic acid cycle to high-rate aerobic glycolysis. This immunometabolic shift enables pro-inflammatory and antimicrobial responses and is facilitated by the accumulation of fatty acids, tricarboxylic acid-derived metabolites and catabolism of amino acids. Recent studies have shown that these immunometabolites are co-opted by pathogens as environmental cues for expression of virulence genes. We review mechanisms by which host immunometabolites regulate bacterial pathogenicity and discuss opportunities for the development of therapeutics targeting metabolic host–pathogen crosstalk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Immunometabolic changes fuel the antimicrobial response of macrophages.
Fig. 2: Immunometabolites drive adaptive changes in respiratory pathogens.
Fig. 3: Immunometabolites as precursors for carbon metabolism of intracellular pathogens.
Fig. 4: Immunometabolites as signalling cues that induce bacterial virulence.

Similar content being viewed by others

References

  1. Kawasaki, T. & Kawai, T. Toll-like receptor signaling pathways. Front. Immunol. 5, 461 (2014).

  2. Ryan, D. G. & O’Neill, L. A. J. Krebs cycle reborn in macrophage immunometabolism. Annu. Rev. Immunol. 38, 289–313 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Geltink, R. I. K., Kyle, R. L. & Pearce, E. L. Unraveling the complex interplay between T cell metabolism and function. Annu. Rev. Immunol. 36, 461–488 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. O’Brien, K. L. & Finlay, D. K. Immunometabolism and natural killer cell responses. Nat. Rev. Immunol. 19, 282–290 (2019).

    Article  PubMed  Google Scholar 

  5. Gomes, M. T. R. et al. STING regulates metabolic reprogramming in macrophages via HIF-1α during Brucella infection. PLoS Pathog. 17, e1009597 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jha, A. K. et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42, 419–430 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. De Souza, D. P. et al. Autocrine IFN-I inhibits isocitrate dehydrogenase in the TCA cycle of LPS-stimulated macrophages. J. Clin. Invest. 129, 4239–4244.

  8. Palmieri, E. M. et al. Nitric oxide orchestrates metabolic rewiring in M1 macrophages by targeting aconitase 2 and pyruvate dehydrogenase. Nat. Commun. 11, 698 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bailey, J. D. et al. Nitric oxide modulates metabolic remodeling in inflammatory macrophages through TCA cycle regulation and itaconate accumulation. Cell Rep. 28, 218–230 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vatansever, F. et al. Antimicrobial strategies centered around reactive oxygen species—bactericidal antibiotics, photodynamic therapy and beyond. FEMS Microbiol. Rev. 37, 955–989 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Galván-Peña, S. & O’Neill, L. A. J. Metabolic reprograming in macrophage polarization. Front. Immunol. 5, 420 (2014).

    PubMed  PubMed Central  Google Scholar 

  12. Gupta, K. D. et al. Class IIa histone deacetylases drive Toll-like receptor-inducible glycolysis and macrophage inflammatory responses via pyruvate kinase M2. Cell Rep. 30, 2712–2728 (2020).

    Article  PubMed  Google Scholar 

  13. Michelucci, A. et al. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc. Natl Acad. Sci. USA 110, 7820–7825 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lampropoulou, V. et al. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab. 24, 158–166 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen, M. et al. Itaconate is an effector of a Rab GTPase cell-autonomous host defense pathway against Salmonella. Science 369, 450–455 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Duncan, D., Lupien, A., Behr, M. A. & Auclair, K. Effect of pH on the antimicrobial activity of the macrophage metabolite itaconate. Microbiology 167, 001050 (2021).

    Article  CAS  Google Scholar 

  17. Berg, I. A., Filatova, L. V. & Ivanovsky, R. N. Inhibition of acetate and propionate assimilation by itaconate via propionyl-CoA carboxylase in isocitrate lyase-negative purple bacterium Rhodospirillum rubrum. FEMS Microbiol. Lett. 216, 49–54 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Sasikaran, J., Ziemski, M., Zadora, P. K., Fleig, A. & Berg, I. A. Bacterial itaconate degradation promotes pathogenicity. Nat. Chem. Biol. 10, 371–377 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Tannahill, G. et al. Succinate is a danger signal that induces IL-1β via HIF-1α. Nature 496, 238–242 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mills, E. L. et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 167, 457–470 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. West, A. P. et al. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472, 476–480 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Palsson-McDermott, E. M. et al. Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the Warburg effect in LPS-activated macrophages. Cell Metab. 21, 65–80 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, F. et al. SIRT5 desuccinylates and activates pyruvate kinase M2 to block macrophage IL-1β production and to prevent DSS-induced colitis in mice. Cell Rep. 19, 2331–2344 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Lin, H.-C. et al. Lactic acid fermentation is required for NLRP3 inflammasome activation. Front. Immunol. 12, 630380 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wolf, A. J. et al. Hexokinase is an innate immune receptor for the detection of bacterial peptidoglycan. Cell 166, 624–636 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tan, Y. & Kagan, J. C. Innate immune signaling organelles display natural and programmable signaling flexibility. Cell 177, 384–398 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhou, R., Yazdi, A. S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221–225 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Rosas-Ballina, M., Guan, X. L., Schmidt, A. & Bumann, D. Classical activation of macrophages leads to lipid droplet formation without de novo fatty acid synthesis. Front. Immunol. 11, 131 (2020).

  29. Posokhova, E. N., Khoshchenko, O. M., Chasovskikh, M. I., Pivovarova, E. N. & Dushkin, M. I. Lipid synthesis in macrophages during inflammation in vivo: effect of agonists of peroxisome proliferator activated receptors alpha and gamma and of retinoid X receptors. Biochem. Mosc. 73, 296–304 (2008).

    Article  CAS  Google Scholar 

  30. Bosch, M. et al. Mammalian lipid droplets are innate immune hubs integrating cell metabolism and host defense. Science 370, eaay8085 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Huang, Y. et al. Toll-like receptor agonists promote prolonged triglyceride storage in macrophages. J. Biol. Chem. 289, 3001–3012 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Castoldi, A. et al. Triacylglycerol synthesis enhances macrophage inflammatory function. Nat. Commun. 11, 4107 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jarc, E. & Petan, T. A twist of FATe: lipid droplets and inflammatory lipid mediators. Biochimie 169, 69–87 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Qin, W. et al. S-glycosylation-based cysteine profiling reveals regulation of glycolysis by itaconate. Nat. Chem. Biol. 15, 983–991 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Mills, E. L. et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 556, 113–117 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang, D. D. & Hannink, M. Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol. Cell. Biol. 23, 8137–8151 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kobayashi, E. H. et al. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat. Commun. 7, 11624 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Itoh, K. et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236, 313–322 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Cho, H.-Y. et al. Nrf2-regulated PPARγ expression is critical to protection against acute lung injury in mice. Am. J. Respir. Crit. Care Med. 182, 170–182 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Odegaard, J. I. et al. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature 447, 1116–1120 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Heming, M. et al. Peroxisome proliferator-activated receptor-γ modulates the response of macrophages to lipopolysaccharide and glucocorticoids. Front. Immunol. 9, 893 (2018).

  42. Gallardo-Soler, A. et al. Arginase I induction by modified lipoproteins in macrophages: a peroxisome proliferator-activated receptor-γ/δ-mediated effect that links lipid metabolism and immunity. Mol. Endocrinol. 22, 1394–1402 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chung, S. W. et al. Oxidized low density lipoprotein inhibits interleukin-12 production in lipopolysaccharide-activated mouse macrophages via direct interactions between peroxisome proliferator-activated receptor-γ and nuclear factor-κB. J. Biol. Chem. 275, 32681–32687 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Ricote, M., Li, A. C., Willson, T. M., Kelly, C. J. & Glass, C. K. The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation. Nature 391, 79–82 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Nelson, V. L. et al. PPARγ is a nexus controlling alternative activation of macrophages via glutamine metabolism. Genes Dev. 32, 1035–1044 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang, D. et al. Metabolic regulation of gene expression by histone lactylation. Nature 574, 575–580 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu, P.-S. et al. α-Ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat. Immunol. 18, 985–994 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Ishii, M. et al. Epigenetic regulation of the alternatively activated macrophage phenotype. Blood 114, 3244–3254 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Stapels, D. A. C. et al. Salmonella persisters undermine host immune defenses during antibiotic treatment. Science 362, 1156–1160 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Tomlinson, K. L. et al. Staphylococcus aureus induces an itaconate-dominated immunometabolic response that drives biofilm formation. Nat. Commun. 12, 1399 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fernández-Barat, L. et al. Intensive care unit-acquired pneumonia due to Pseudomonas aeruginosa with and without multidrug resistance. J. Infect. 74, 142–152 (2017).

    Article  PubMed  Google Scholar 

  52. Cohen, T. S. & Prince, A. Cystic fibrosis: a mucosal immunodeficiency syndrome. Nat. Med. 18, 509–519 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ogger, P. P. & Byrne, A. J. Macrophage metabolic reprogramming during chronic lung disease. Mucosal Immunol. 14, 282–295 (2021).

    Article  CAS  PubMed  Google Scholar 

  54. Moradali, M. F., Ghods, S. & Rehm, B. H. A. Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front. Cell. Infect. Microbiol. 7, 39 (2017).

  55. Riquelme, S. A., Wong Fok Lung, T. & Prince, A. Pulmonary pathogens adapt to immune signaling metabolites in the airway. Front. Immunol. 11, 385 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mah, T.-F. et al. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426, 306–310 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Meylan, S. et al. Carbon sources tune antibiotic susceptibility in Pseudomonas aeruginosa via tricarboxylic acid cycle control. Cell Chem. Biol. 24, 195–206 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nguyen, D. et al. Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science 334, 982–986 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. McElvaney, O. J. et al. Specific inhibition of the NLRP3 inflammasome as an antiinflammatory strategy in cystic fibrosis. Am. J. Respir. Crit. Care Med. 200, 1381–1391 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Riquelme, S. A. et al. CFTR–PTEN-dependent mitochondrial metabolic dysfunction promotes Pseudomonas aeruginosa airway infection. Sci. Transl. Med. 11, eaav4634 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Görke, B. & Stülke, J. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat. Rev. Microbiol. 6, 613–624 (2008).

    Article  PubMed  Google Scholar 

  62. Rojo, F. Carbon catabolite repression in Pseudomonas: optimizing metabolic versatility and interactions with the environment. FEMS Microbiol. Rev. 34, 658–684 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Riquelme, S. A. et al. Cystic fibrosis transmembrane conductance regulator attaches tumor suppressor PTEN to the membrane and promotes anti Pseudomonas aeruginosa immunity. Immunity 47, 1169–1181 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Naujoks, J. et al. IFNs modify the proteome of Legionella-containing vacuoles and restrict infection via IRG1-derived itaconic acid. PLoS Pathog. 12, e1005408 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Rittenhouse, J. W. & McFadden, B. A. Inhibition of isocitrate lyase from Pseudomonas indigofera by itaconate. Arch. Biochem. Biophys. 163, 79–86 (1974).

    Article  CAS  PubMed  Google Scholar 

  66. Riquelme, S. A. et al. Pseudomonas aeruginosa utilizes host-derived itaconate to redirect its metabolism to promote biofilm formation. Cell Metab. 31, 1091–1106 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dolan, S. K. & Welch, M. The glyoxylate shunt, 60 years on. Annu. Rev. Microbiol. 72, 309–330 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Peng, X., Zhang, Y., Bai, G., Zhou, X. & Wu, H. Cyclic di-AMP mediates biofilm formation. Mol. Microbiol. 99, 945–959 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Valentini, M. & Filloux, A. Biofilms and cyclic di-GMP (c-di-GMP) signaling: lessons from Pseudomonas aeruginosa and other bacteria. J. Biol. Chem. 291, 12547–12555 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wolter, D. J. & Ramsey, B. W. Not quite the bully in the schoolyard: Staphylococcus aureus can survive and coexist with Pseudomonas aeruginosa in the cystic fibrosis lung. Am. J. Respir. Crit. Care Med. 203, 279–281 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Millette, G. et al. Despite antagonism in vitro, Pseudomonas aeruginosa enhances Staphylococcus aureus colonization in a murine lung infection model. Front. Microbiol. 10, 2880 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Potter, A. D. et al. Host nutrient milieu drives an essential role for aspartate biosynthesis during invasive Staphylococcus aureus infection. Proc. Natl Acad. Sci USA 117, 12394–12401 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Keiran, N. et al. SUCNR1 controls an anti-inflammatory program in macrophages to regulate the metabolic response to obesity. Nat. Immunol. 20, 581–592 (2019).

    Article  CAS  PubMed  Google Scholar 

  74. Peruzzotti-Jametti, L. et al. Macrophage-derived extracellular succinate licenses neural stem cells to suppress chronic neuroinflammation. Cell Stem Cell 22, 355–368 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Fremder, M. et al. A transepithelial pathway delivers succinate to macrophages, thus perpetuating their pro-inflammatory metabolic state. Cell Rep. 36, 109521 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Freemerman, A. J. et al. Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype. J. Biol. Chem. 289, 7884–7896 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Thurlow, L. R., Stephens, A. C., Hurley, K. E. & Richardson, A. R. Lack of nutritional immunity in diabetic skin infections promotes Staphylococcus aureus virulence. Sci. Adv. 6, eabc5569 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rich, J. & Lee, J. C. The pathogenesis of Staphylococcus aureus infection in the diabetic NOD mouse. Diabetes 54, 2904–2910 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Philips, B. J. et al. Glucose in bronchial aspirates increases the risk of respiratory MRSA in intubated patients. Thorax 60, 761–764 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Schechter-Perkins, E. M. et al. Prevalence and predictors of nasal and extranasal staphylococcal colonization in patients presenting to the emergency department. Ann. Emerg. Med. 57, 492–499 (2011).

    Article  PubMed  Google Scholar 

  81. Gupta, K. et al. MRSA nasal carriage patterns and the subsequent risk of conversion between patterns, infection, and death. PLoS ONE 8, e53674 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cunrath, O. & Bumann, D. Host resistance factor SLC11A1 restricts Salmonella growth through magnesium deprivation. Science 366, 995–999 (2019).

    Article  CAS  PubMed  Google Scholar 

  83. Huang, L., Nazarova, E. V., Tan, S., Liu, Y. & Russell, D. G. Growth of Mycobacterium tuberculosis in vivo segregates with host macrophage metabolism and ontogeny. J. Exp. Med. 215, 1135–1152 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Best, A. & Kwaik, Y. A. Nutrition and bipartite metabolism of intracellular pathogens. Trends Microbiol. 27, 550–561 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lopez, C. A. & Skaar, E. P. The impact of dietary transition metals on host–bacterial interactions. Cell Host Microbe 23, 737–748 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Núñez, G., Sakamoto, K. & Soares, M. P. Innate nutritional immunity. J. Immunol. 201, 11–18 (2018).

    Article  PubMed  Google Scholar 

  87. Groisman, E. A. Feedback control of two-component regulatory systems. Annu. Rev. Microbiol. 70, 103–124 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Houben, R. M. G. J. & Dodd, P. J. The global burden of latent tuberculosis infection: a re-estimation using mathematical modelling. PLoS Med. 13, e1002152 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Cox, J. S., Chen, B., McNeil, M. & Jacobs, W. R. Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 402, 79–83 (1999).

    Article  CAS  PubMed  Google Scholar 

  90. Stanley, S. A., Raghavan, S., Hwang, W. W. & Cox, J. S. Acute infection and macrophage subversion by Mycobacterium tuberculosis require a specialized secretion system. Proc. Natl Acad. Sci. USA 100, 13001–13006 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Pisu, D., Huang, L., Grenier, J. K. & Russell, D. G. Dual RNA-Seq of Mtb-infected macrophages in vivo reveals ontologically distinct host–pathogen interactions. Cell Rep. 30, 335–350 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Pandey, A. K. & Sassetti, C. M. Mycobacterial persistence requires the utilization of host cholesterol. Proc. Natl Acad. Sci. USA 105, 4376–4380 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Muñoz-Elías, E. J. & McKinney, J. D. Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat. Med. 11, 638–644 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Marrero, J., Trujillo, C., Rhee, K. Y. & Ehrt, S. Glucose phosphorylation is required for Mycobacterium tuberculosis persistence in mice. PLoS Pathog. 9, e1003116 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Daniel, J., Maamar, H., Deb, C., Sirakova, T. D. & Kolattukudy, P. E. Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages. PLoS Pathog. 7, e1002093 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. D’Avila, H. et al. Mycobacterium bovis bacillus Calmette–Guérin induces TLR2-mediated formation of lipid bodies: intracellular domains for eicosanoid synthesis in vivo. J. Immunol. 176, 3087–3097 (2006).

    Article  PubMed  Google Scholar 

  97. Knight, M., Braverman, J., Asfaha, K., Gronert, K. & Stanley, S. Lipid droplet formation in Mycobacterium tuberculosis infected macrophages requires IFN-γ/HIF-1α signaling and supports host defense. PLoS Pathog. 14, e1006874 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  98. de Carvalho, L. P. S. et al. Metabolomics of Mycobacterium tuberculosis reveals compartmentalized co-catabolism of carbon substrates. Chem. Biol. 17, 1122–1131 (2010).

    Article  PubMed  Google Scholar 

  99. Zimmermann, M. et al. Integration of metabolomics and transcriptomics reveals a complex diet of Mycobacterium tuberculosis during early macrophage infection. mSystems 2, e00057-17 (2017).

  100. Billig, S. et al. Lactate oxidation facilitates growth of Mycobacterium tuberculosis in human macrophages. Sci. Rep. 7, 6484 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Del Portillo, P. et al. Hypoxia is not a main stress when Mycobacterium tuberculosis is in a dormancy-like long-chain fatty acid environment. Front. Cell. Infect. Microbiol. 8, 449 (2019).

  102. Deb, C. et al. A novel in vitro multiple-stress dormancy model for Mycobacterium tuberculosis generates a lipid-loaded, drug-tolerant, dormant pathogen. PLoS ONE 4, e6077 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Leistikow, R. L. et al. The Mycobacterium tuberculosis DosR regulon assists in metabolic homeostasis and enables rapid recovery from nonrespiring dormancy. J. Bacteriol. 192, 1662–1670 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Hondalus, M. K. et al. Attenuation of and protection induced by a leucine auxotroph of Mycobacterium tuberculosis. Infect. Immun. 68, 2888–2898 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Borah, K. et al. Intracellular Mycobacterium tuberculosis exploits multiple host nitrogen sources during growth in human macrophages. Cell Rep. 29, 3580–3591 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wang, H. et al. An essential bifunctional enzyme in Mycobacterium tuberculosis for itaconate dissimilation and leucine catabolism. Proc. Natl Acad. Sci. USA 116, 15907–15913 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Jiang, Q. & Shi, L. Coordination of the uptake and metabolism of amino acids in Mycobacterium tuberculosis-infected macrophages. Front. Immunol. 12, 711462 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Papathanassiu, A. E. et al. BCAT1 controls metabolic reprogramming in activated human macrophages and is associated with inflammatory diseases. Nat. Commun. 8, 16040 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ko, J.-H. et al. BCAT1 affects mitochondrial metabolism independently of leucine transamination in activated human macrophages. J. Cell Sci. 133, jcs247957 (2020).

  110. Astarie-Dequeker, C. et al. Phthiocerol dimycocerosates of M. tuberculosis participate in macrophage invasion by inducing changes in the organization of plasma membrane lipids. PLoS Pathog. 5, e1000289 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Barczak, A. K. et al. Systematic, multiparametric analysis of Mycobacterium tuberculosis intracellular infection offers insight into coordinated virulence. PLoS Pathog. 13, e1006363 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Howard, N. C. et al. Mycobacterium tuberculosis carrying a rifampicin drug resistance mutation reprograms macrophage metabolism through cell wall lipid changes. Nat. Microbiol. 3, 1099–1108 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Cumming, B. M., Addicott, K. W., Adamson, J. H. & Steyn, A. J. Mycobacterium tuberculosis induces decelerated bioenergetic metabolism in human macrophages. eLife 7, e39169 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Olson, G. S. et al. Type I interferon decreases macrophage energy metabolism during mycobacterial infection. Cell Rep. 35, 109195 (2021).

  115. Hackett, E. E. et al. Mycobacterium tuberculosis limits host glycolysis and IL-1β by restriction of PFK-M via microRNA-21. Cell Rep. 30, 124–136 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Bhaskar, A. et al. Host sirtuin 2 as an immunotherapeutic target against tuberculosis. eLife 9, e55415 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Fàbrega, A. & Vila, J. Salmonella enterica serovar Typhimurium skills to succeed in the host: virulence and regulation. Clin. Microbiol. Rev. 26, 308–341 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Steele-Mortimer, O. The Salmonella-containing vacuole—moving with the times. Curr. Opin. Microbiol. 11, 38–45 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Steeb, B. et al. Parallel exploitation of diverse host nutrients enhances Salmonella virulence. PLoS Pathog. 9, e1003301 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Bumann, D. & Schothorst, J. Intracellular Salmonella metabolism. Cell. Microbiol. 19, e12766 (2017).

  121. Liss, V. et al. Salmonella enterica remodels the host cell endosomal system for efficient intravacuolar nutrition. Cell Host Microbe 21, 390–402 (2017).

    Article  CAS  PubMed  Google Scholar 

  122. Jiang, L. et al. Salmonella Typhimurium reprograms macrophage metabolism via T3SS effector SopE2 to promote intracellular replication and virulence. Nat. Commun. 12, 879 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Monack, D. M., Bouley, D. M. & Falkow, S. Salmonella Typhimurium persists within macrophages in the mesenteric lymph nodes of chronically infected Nramp1+/+ mice and can be reactivated by IFNγ neutralization. J. Exp. Med. 199, 231–241 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Eisele, N. A. et al. Salmonella require the fatty acid regulator PPARδ for the establishment of a metabolic environment essential for long term persistence. Cell Host Microbe 14, 171–182 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Fang, F. C., Libby, S. J., Castor, M. E. & Fung, A. M. Isocitrate lyase (AceA) is required for Salmonella persistence but not for acute lethal infection in mice. Infect. Immun. 73, 2547–2549 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Das, P. et al. Cationic amino acid transporters and Salmonella Typhimurium ArgT collectively regulate arginine availability towards intracellular Salmonella growth. PLoS ONE 5, e15466 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Chakraborty, S. et al. Glycolytic reprograming in Salmonella counters NOX2-mediated dissipation of ΔpH. Nat. Commun. 11, 1783 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Sanman, L. E. et al. Disruption of glycolytic flux is a signal for inflammasome signaling and pyroptotic cell death. eLife 5, e13663 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Popp, J. et al. Role of host cell-derived amino acids in nutrition of intracellular Salmonella enterica. Infect. Immun. 83, 4466–4475 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Wynosky-Dolfi, M. A. et al. Oxidative metabolism enables Salmonella evasion of the NLRP3 inflammasome. J. Exp. Med. 211, 653–668 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Panagi, I. et al. Salmonella effector SteE converts the mammalian serine/threonine kinase GSK3 into a tyrosine kinase to direct macrophage polarization. Cell Host Microbe 27, 41–53 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Rosenberg, G. et al. Host succinate is an activation signal for Salmonella virulence during intracellular infection. Science 371, 400–405 (2021).

    Article  CAS  PubMed  Google Scholar 

  133. Osborne, S. E. & Brumell, J. H. Listeriolysin O: from bazooka to Swiss army knife. Phil. Trans. R Soc. B 372, 20160222 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Renzoni, A., Cossart, P. & Dramsi, S. PrfA, the transcriptional activator of virulence genes, is upregulated during interaction of Listeria monocytogenes with mammalian cells and in eukaryotic cell extracts. Mol. Microbiol. 34, 552–561 (1999).

    Article  CAS  PubMed  Google Scholar 

  135. Chico-Calero, I. et al. Hpt, a bacterial homolog of the microsomal glucose-6-phosphate translocase, mediates rapid intracellular proliferation in Listeria. Proc. Natl Acad. Sci. USA 99, 431–436 (2002).

    Article  CAS  PubMed  Google Scholar 

  136. Joseph, B. et al. Glycerol metabolism and PrfA activity in Listeria monocytogenes. J. Bacteriol. 190, 5412–5430 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Gillmaier, N., Götz, A., Schulz, A., Eisenreich, W. & Goebel, W. Metabolic responses of primary and transformed cells to intracellular Listeria monocytogenes. PLoS ONE 7, e52378 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Grubmüller, S., Schauer, K., Goebel, W., Fuchs, T. M. & Eisenreich, W. Analysis of carbon substrates used by Listeria monocytogenes during growth in J774A.1 macrophages suggests a bipartite intracellular metabolism. Front. Cell. Infect. Microbiol. 4, 156 (2014).

  139. Ripio, M. T., Brehm, K., Lara, M., Suárez, M. & Vázquez-Boland, J. A. Glucose-1-phosphate utilization by Listeria monocytogenes is PrfA dependent and coordinately expressed with virulence factors. J. Bacteriol. 179, 7174–7180 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kwon, D. H. et al. Glutathione induced immune-stimulatory activity by promoting M1-like macrophages polarization via potential ROS scavenging capacity. Antioxidants 8, 413 (2019).

  141. Reniere, M. L. et al. Glutathione activates virulence gene expression of an intracellular pathogen. Nature 517, 170–173 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Haber, A. et al. l-Glutamine induces expression of Listeria monocytogenes virulence genes. PLoS Pathog. 13, e1006161 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Freitag, N. E., Port, G. C. & Miner, M. D. Listeria monocytogenes—from saprophyte to intracellular pathogen. Nat. Rev. Microbiol. 7, 623–628 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Lam, G. Y., Cemma, M., Muise, A. M., Higgins, D. E. & Brumell, J. H. Host and bacterial factors that regulate LC3 recruitment to Listeria monocytogenes during the early stages of macrophage infection. Autophagy 9, 985–995 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Birmingham, C. L. et al. Listeriolysin O allows Listeria monocytogenes replication in macrophage vacuoles. Nature 451, 350–354 (2008).

    Article  CAS  PubMed  Google Scholar 

  146. Nguyen, B. N. et al. TLR2 and endosomal TLR-mediated secretion of IL-10 and immune suppression in response to phagosome-confined Listeria monocytogenes. PLoS Pathog. 16, e1008622 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Zhang, Y. et al. Listeria hijacks host mitophagy through a novel mitophagy receptor to evade killing. Nat. Immunol. 20, 433–446 (2019).

    Article  CAS  PubMed  Google Scholar 

  148. Li, T. et al. Listeria monocytogenes upregulates mitochondrial calcium signalling to inhibit LC3-associated phagocytosis as a survival strategy. Nat. Microbiol. 6, 366–379 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Lachmandas, E. et al. Microbial stimulation of different Toll-like receptor signalling pathways induces diverse metabolic programmes in human monocytes. Nat. Microbiol. 2, 16246 (2016).

    Article  PubMed  Google Scholar 

  150. Cheng, S.-C. et al. mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345, 1250684 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alice Prince or Roi Avraham.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosenberg, G., Riquelme, S., Prince, A. et al. Immunometabolic crosstalk during bacterial infection. Nat Microbiol 7, 497–507 (2022). https://doi.org/10.1038/s41564-022-01080-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-022-01080-5

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology