Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Non-equivalent genomes in polyploid prokaryotes

Many bacteria and archaea are polyploid. Here, the means by which some of these prokaryotes carry genomes that are not always equivalent in sequence and/or function are described, and the importance of such non-equivalent genomes is discussed.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic overview of non-equivalent genomes in Azobacter ocaliferum and in Epulopiscium.

References

  1. Soppa, J. J. Molec. Microbiol. Biotech. 24, 409–419 (2014).

    Article  CAS  Google Scholar 

  2. Angert, E. R. Genome Biol. Evol. 13, evab037 (2021).

    Article  Google Scholar 

  3. Ludt, K. & Soppa, J. Biochem. Soc. Trans. 47, 933–944 (2019).

    Article  CAS  Google Scholar 

  4. Wasser, D. et al. Front. Microbiol. 12, 680854 (2021).

    Article  Google Scholar 

  5. Hildenbrand, C. et al. J. Bacteriol. 193, 734–743 (2011).

    Article  CAS  Google Scholar 

  6. Schorn, S. et al. FEMS Microbiol. Ecol. 96, fiz200 (2020).

    Article  CAS  Google Scholar 

  7. Ionescu, D. et al. Nat. Commun. 8, 455 (2017).

    Article  Google Scholar 

  8. Ionescu, D. et al. Molec. Biol. Evol. 38, 1040–1059 (2021).

    Article  CAS  Google Scholar 

  9. Hutchison, E. et al. Molec. Microb. 107, 68–80 (2018).

    Article  CAS  Google Scholar 

  10. Arroyo, F. A. et al. ISME J. 13, 1084–1097 (2019).

    Article  CAS  Google Scholar 

  11. Schnupf, P. et al. Nature 520, 99–103 (2015).

    Article  CAS  Google Scholar 

  12. Chen, A. H. et al. PLoS ONE 7, e47837 (2012).

    Article  CAS  Google Scholar 

  13. Ohbayashi, R. et al. Mbio https://doi.org/10.1128/mBio.00510-19 (2019).

  14. Zerulla, K., Baumann, A. & Soppa, J. in Halophiles: Genetics and Genomes (eds Papke, T. & Oren, A.) 145–166 (Caister Academic Press, 2014).

  15. Delpech, F. et al. Nucleic Acids Res. 46, 10757–10770 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank the German Research Council (DFG) for funding the ploidy research of my group through projects So264/16 and So264/24.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Soppa.

Ethics declarations

Competing interests

The author declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soppa, J. Non-equivalent genomes in polyploid prokaryotes. Nat Microbiol 7, 186–188 (2022). https://doi.org/10.1038/s41564-021-01034-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-021-01034-3

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research