Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular mimicry of NF-κB by vaccinia virus protein enables selective inhibition of antiviral responses

Abstract

Infection of mammalian cells with viruses activates NF-κB to induce the expression of cytokines and chemokines and initiate an antiviral response. Here, we show that a vaccinia virus protein mimics the transactivation domain of the p65 subunit of NF-κB to inhibit selectively the expression of NF-κB-regulated genes. Using co-immunoprecipitation assays, we found that the vaccinia virus protein F14 associates with NF-κB co-activator CREB-binding protein (CBP) and disrupts the interaction between p65 and CBP. This abrogates CBP-mediated acetylation of p65, after which it reduces promoter recruitment of the transcriptional regulator BRD4 and diminishes stimulation of NF-κB-regulated genes CXCL10 and CCL2. Recruitment of BRD4 to the promoters of NFKBIA and CXCL8 remains unaffected by either F14 or JQ1 (a competitive inhibitor of BRD4 bromodomains), indicating that BRD4 recruitment is acetylation-independent. Unlike other viral proteins that are general antagonists of NF-κB, F14 is a selective inhibitor of NF-κB-dependent gene expression. An in vivo model of infection demonstrated that F14 promotes virulence. Molecular mimicry of NF-κB may be conserved because other orthopoxviruses, including variola, monkeypox and cowpox viruses, encode orthologues of F14.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Vaccinia virus protein F14 inhibits NF-κB activation and contributes to virulence.
Fig. 2: F14 binds to CBP and has transactivation activity.
Fig. 3: The dipeptide D62/63 of F14 is required for inhibition of NF-κB.
Fig. 4: F14 outcompetes NF-κB for binding to CBP.
Fig. 5: F14 suppresses expression of a subset of NF-κB-responsive genes.
Fig. 6: F14 antagonizes p65 acetylation and inducible recruitment of BRD4 to CCL2 and CXCL10 promoters.

Similar content being viewed by others

Data availability

The authors declare that the main data supporting the findings of this study are available within the article and its Supplementary Information. Poxvirus nucleotide sequences mentioned in this study are publicly available on NCBI GenBank: VACV Western Reserve (NC_006998.1), VACV Copenhagen (M35027.1), VACV Modified Virus Ankara (AY603355.1), horsepox virus isolate MNR-76 (DQ792504.1), monkeypox virus Zaire-96-I-16 (NC_003310.10, cowpox virus Brighton Red (NC_003663.2), variola virus India-1967 (NC_001611.1), camelpox virus CMS (AY009089.1), taterapox virus Dahomey 1968 (DQ437594.1), ectromelia virus Moscow (AF012825.2), raccoonpox virus Herman (NC_027213.1), premodern variola virus (LR800247.1, LR800244.1, LR800245.1, LR800246.1) and variola virus VD21 (KY358055.1). Source data are provided with this paper.

References

  1. Iwasaki, A. A virological view of innate immune recognition. Annu. Rev. Microbiol. 66, 177–196 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vallabhapurapu, S. & Karin, M. Regulation and function of NF-kappaB transcription factors in the immune system. Annu. Rev. Immunol. 27, 693–733 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Chen, L. F. & Greene, W. C. Shaping the nuclear action of NF-kappaB. Nat. Rev. Mol. Cell Biol. 5, 392–401 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Tian, B., Nowak, D. E. & Brasier, A. R. A TNF-induced gene expression program under oscillatory NF-kappaB control. BMC Genom. 6, 137 (2005).

    Article  Google Scholar 

  5. Zhao, M. et al. Transcriptional outcomes and kinetic patterning of gene expression in response to NF-kappaB activation. PLoS Biol. 16, e2006347 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kaikkonen, M. U. et al. Remodeling of the enhancer landscape during macrophage activation is coupled to enhancer transcription. Mol. Cell 51, 310–325 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen, L. F. et al. NF-kappaB RelA phosphorylation regulates RelA acetylation. Mol. Cell. Biol. 25, 7966–7975 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhong, H., Voll, R. E. & Ghosh, S. Phosphorylation of NF-kappa B p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol. Cell 1, 661–671 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Huang, B. et al. Brd4 coactivates transcriptional activation of NF-kappaB via specific binding to acetylated RelA. Mol. Cell. Biol. 29, 1375–1387 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Huang, S. M. & McCance, D. J. Down regulation of the interleukin-8 promoter by human papillomavirus type 16 E6 and E7 through effects on CREB binding protein/p300 and P/CAF. J. Virol. 76, 8710–8721 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xing, J. et al. Herpes simplex virus 1-encoded tegument protein VP16 abrogates the production of beta interferon (IFN) by inhibiting NF-kappaB activation and blocking IFN regulatory factor 3 to recruit its coactivator CBP. J. Virol. 87, 9788–9801 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bahar, M. W. et al. How vaccinia virus has evolved to subvert the host immune response. J. Struct. Biol. 175, 127–134 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Smith, G. L. et al. Vaccinia virus immune evasion: mechanisms, virulence and immunogenicity. J. Gen. Virol. 94, 2367–2392 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Albarnaz, J. D., Torres, A. A. & Smith, G. L. Modulating vaccinia virus immunomodulators to improve immunological memory. Viruses 10, 101 (2018).

    Article  PubMed Central  Google Scholar 

  15. Sumner, R. P. et al. Vaccinia virus inhibits NF-kappaB-dependent gene expression downstream of p65 translocation. J. Virol. 88, 3092–3102 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Perkus, M. E. et al. Deletion of 55 open reading frames from the termini of vaccinia virus. Virology 180, 406–410 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. Assarsson, E. et al. Kinetic analysis of a complete poxvirus transcriptome reveals an immediate-early class of genes. Proc. Natl Acad. Sci. USA 105, 2140–2145 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang, Z. et al. Simultaneous high-resolution analysis of vaccinia virus and host cell transcriptomes by deep RNA sequencing. Proc. Natl Acad. Sci. USA 107, 11513–11518 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wente, S. R. & Rout, M. P. The nuclear pore complex and nuclear transport. Cold Spring Harb. Perspect. Biol. 2, a000562 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gubser, C. et al. Poxvirus genomes: a phylogenetic analysis. J. Gen. Virol. 85, 105–117 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Ferguson, B. J. et al. Vaccinia virus protein N2 is a nuclear IRF3 inhibitor that promotes virulence. J. Gen. Virol. 94, 2070–2081 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen, R. A. et al. Inhibition of IkappaB kinase by vaccinia virus virulence factor B14. PLoS Pathog. 4, e22 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Stuart, J. H. et al. Vaccinia virus protein C6 inhibits type I IFN signalling in the nucleus and binds to the transactivation domain of STAT2. PLoS Pathog. 12, e1005955 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Torres, A. A. et al. Multiple Bcl-2 family immunomodulators from vaccinia virus regulate MAPK/AP-1 activation. J. Gen. Virol. 97, 2346–2351 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang, Z. et al. Deciphering poxvirus gene expression by RNA sequencing and ribosome profiling. J. Virol. 89, 6874–6886 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang, Z. et al. Genome-wide analysis of the 5′ and 3′ ends of vaccinia virus early mRNAs delineates regulatory sequences of annotated and anomalous transcripts. J. Virol. 85, 5897–5909 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Unterholzner, L. et al. Vaccinia virus protein C6 is a virulence factor that binds TBK-1 adaptor proteins and inhibits activation of IRF3 and IRF7. PLoS Pathog. 7, e1002247 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Soday, L. et al. Quantitative temporal proteomic analysis of vaccinia virus infection reveals regulation of histone deacetylases by an interferon antagonist. Cell Rep. 27, 1920–1933 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Parrish, S. & Moss, B. Characterization of a vaccinia virus mutant with a deletion of the D10R gene encoding a putative negative regulator of gene expression. J. Virol. 80, 553–561 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ehlers, A. et al. Poxvirus orthologous clusters (POCs). Bioinformatics 18, 1544–1545 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Tamosiunaite, A. et al. What a difference a gene makes: identification of virulence factors of cowpox virus. J. Virol. 94, e01625–19 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Muhlemann, B. et al. Diverse variola virus (smallpox) strains were widespread in northern Europe in the Viking Age. Science 369, eaaw8977 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Duggan, A. T. et al. 17th century variola virus reveals the recent history of smallpox. Curr. Biol. 26, 3407–3412 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kelley, L. A. et al. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lecoq, L. et al. Structural characterization of interactions between transactivation domain 1 of the p65 subunit of NF-kappaB and transcription regulatory factors. Nucleic Acids Res. 45, 5564–5576 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schmitz, M. L. & Baeuerle, P. A. The p65 subunit is responsible for the strong transcription activating potential of NF-kappa B. EMBO J. 10, 3805–3817 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schmitz, M. L. et al. Interaction of the COOH-terminal transactivation domain of p65 NF-kappa B with TATA-binding protein, transcription factor IIB, and coactivators. J. Biol. Chem. 270, 7219–7226 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Schmitz, M. L. et al. Structural and functional analysis of the NF-kappa B p65 C terminus: an acidic and modular transactivation domain with the potential to adopt an alpha-helical conformation. J. Biol. Chem. 269, 25613–25620 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Blair, W. S. et al. Mutational analysis of the transcription activation domain of RelA: identification of a highly synergistic minimal acidic activation module. Mol. Cell. Biol. 14, 7226–7234 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang, F. et al. IKK beta plays an essential role in the phosphorylation of RelA/p65 on serine 536 induced by lipopolysaccharide. J. Immunol. 170, 5630–5635 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Richards, K. H. et al. The human papillomavirus (HPV) E7 protein antagonises an Imiquimod-induced inflammatory pathway in primary human keratinocytes. Sci. Rep. 5, 12922 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Spitkovsky, D. et al. The human papillomavirus oncoprotein E7 attenuates NF-kappa B activation by targeting the Ikappa B kinase complex. J. Biol. Chem. 277, 25576–25582 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Vandermark, E. R. et al. Human papillomavirus type 16 E6 and E 7 proteins alter NF-kB in cultured cervical epithelial cells and inhibition of NF-kB promotes cell growth and immortalization. Virology 425, 53–60 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Shi, J. & Vakoc, C. R. The mechanisms behind the therapeutic activity of BET bromodomain inhibition. Mol. Cell 54, 728–736 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Devaiah, B. N., Gegonne, A. & Singer, D. S. Bromodomain 4: a cellular Swiss army knife. J. Leukoc. Biol. 100, 679–686 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hargreaves, D. C., Horng, T. & Medzhitov, R. Control of inducible gene expression by signal-dependent transcriptional elongation. Cell 138, 129–145 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mochizuki, K. et al. The bromodomain protein Brd4 stimulates G1 gene transcription and promotes progression to S phase. J. Biol. Chem. 283, 9040–9048 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pallett, M. A. et al. Vaccinia Virus BBK E3 Ligase Adaptor A55 Targets Importin-Dependent NF-kappaB Activation and Inhibits CD8(+) T-Cell Memory. J. Virol. 93, e00051–19 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Eaglesham, J. B. et al. Viral and metazoan poxins are cGAMP-specific nucleases that restrict cGAS-STING signalling. Nature 566, 259–263 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Arenzana-Seisdedos, F. et al. Inducible nuclear expression of newly synthesized I kappa B alpha negatively regulates DNA-binding and transcriptional activities of NF-kappa B. Mol. Cell. Biol. 15, 2689–2696 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Arenzana-Seisdedos, F. et al. Nuclear localization of I kappa B alpha promotes active transport of NF-kappa B from the nucleus to the cytoplasm. J. Cell Sci. 110, 369–378 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Kanno, T. et al. BRD4 assists elongation of both coding and enhancer RNAs by interacting with acetylated histones. Nat. Struct. Mol. Biol. 21, 1047–1057 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mukherjee, S. P. et al. Analysis of the RelA:CBP/p300 interaction reveals its involvement in NF-kappaB-driven transcription. PLoS Biol. 11, e1001647 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Staller, M. V. et al. A high-throughput mutational scan of an intrinsically disordered acidic transcriptional activation domain. Cell Syst. 6, 444–455 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Neidel, S. et al. NF-kappaB activation is a turn on for vaccinia virus phosphoprotein A49 to turn off NF-kappaB activation. Proc. Natl Acad. Sci. USA 116, 5699–5704 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mansur, D. S. et al. Poxvirus targeting of E3 ligase beta-TrCP by molecular mimicry: a mechanism to inhibit NF-kappaB activation and promote immune evasion and virulence. PLoS Pathog. 9, e1003183 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bravo Cruz, A. G. & Shisler, J. L. Vaccinia virus K1 ankyrin repeat protein inhibits NF-kappaB activation by preventing RelA acetylation. J. Gen. Virol. 97, 2691–2702 (2016).

    Article  PubMed  Google Scholar 

  59. Diel, D. G. et al. A nuclear inhibitor of NF-kappaB encoded by a poxvirus. J. Virol. 85, 264–275 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. O’Connor, M. J. et al. Characterization of an E1A-CBP interaction defines a novel transcriptional adapter motif (TRAM) in CBP/p300. J. Virol. 73, 3574–3581 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Marzio, G. et al. HIV-1 tat transactivator recruits p300 and CREB-binding protein histone acetyltransferases to the viral promoter. Proc. Natl Acad. Sci. USA 95, 13519–13524 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Patel, D. et al. The E6 protein of human papillomavirus type 16 binds to and inhibits co-activation by CBP and p300. EMBO J. 18, 5061–5072 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cook, J. L. et al. Role of the E1A Rb-binding domain in repression of the NF-kappa B-dependent defense against tumor necrosis factor-alpha. Proc. Natl Acad. Sci. USA 99, 9966–9971 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Naar, A. M. et al. Composite co-activator ARC mediates chromatin-directed transcriptional activation. Nature 398, 828–832 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Richardson, P. M. & Gilmore, T. D. vRel is an inactive member of the Rel family of transcriptional activating proteins. J. Virol. 65, 3122–3130 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lin, J. R. et al. Minimalist ensemble algorithms for genome-wide protein localization prediction. BMC Bioinf. 13, 157 (2012).

    Article  CAS  Google Scholar 

  67. Robert, X. & Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 42, W320–W324 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gloeckner, C. J. et al. A novel tandem affinity purification strategy for the efficient isolation and characterisation of native protein complexes. Proteomics 7, 4228–4234 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Maluquer de Motes, C. et al. Vaccinia virus virulence factor N1 can be ubiquitylated on multiple lysine residues. J. Gen. Virol. 95, 2038–2049 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Falkner, F. G. & Moss, B. Transient dominant selection of recombinant vaccinia viruses. J. Virol. 64, 3108–3111 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tscharke, D. C. & Smith, G. L. A model for vaccinia virus pathogenesis and immunity based on intradermal injection of mouse ear pinnae. J. Gen. Virol. 80, 2751–2755 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Williamson, J. D. et al. Biological characterization of recombinant vaccinia viruses in mice infected by the respiratory route. J. Gen. Virol. 71, 2761–2767 (1990).

    Article  PubMed  Google Scholar 

  73. Harris, D. P. et al. Tumor necrosis factor (TNF)-alpha induction of CXCL10 in endothelial cells requires protein arginine methyltransferase 5 (PRMT5)-mediated nuclear factor (NF)-kappaB p65 methylation. J. Biol. Chem. 289, 15328–15339 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Xu, X. et al. EVI1 acts as an inducible negative-feedback regulator of NF-kappaB by inhibiting p65 acetylation. J. Immunol. 188, 6371–6380 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Seear, S. Macilwee and J. Milburn for technical support and F. Pfaff and M. Beer (Friedrich-Loeffler-Institut, Germany) for help with access to the cowpox RNA sequencing dataset. We also thank J. Doorbar and C. Crump (Department of Pathology, University of Cambridge, UK), T. Kouzarides (Department of Pathology and The Gurdon Institute, University of Cambridge, UK) and G. Blobel (University of Pennsylvania, Philadelphia, USA) for providing us with reagents. We are grateful to T. Kouzarides for helpful advice and to C. Talbot-Cooper for critical reading of the manuscript. This work was supported by grant no. 090315 from the Wellcome Trust (to G.L.S.). B.Y-W.C.’s laboratory is funded by the Medical Research Council (grant no. MR/R021821/1), the Biotechnology and Biological Sciences Research Council (grant no. BB/V017780.1) and Isaac Newton Trust (grant no. G101522). J.D.A. was a postdoctoral fellow of the Science without Borders programme from CNPq-Brazil (grant no. 235246/2014-0). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

J.D.A., A.A.T. and G.L.S. conceived the idea. J.D.A., H.R., A.A.T., E.V.S., C.A.M., A.J.B., M.P.B. and B.Y-W.C. developed the methodology. J.D.A., H.R., A.A.T. and E.V.S. validated the results. J.D.A. and H.R. undertook the formal analysis. J.D.A., H.R., A.A.T. and E.V.S. undertook investigation. A.A.T., C.A.M., A.J.B., B.Y-W.C. and G.L.S. obtained resources. J.D.A. undertook data curation. J.D.A. wrote the original draft. J.D.A., H.R., A.A.T., C.A.M., A.J.B., B.Y-W.C. and G.L.S. reviewed and edited the manuscript. J.D.A. prepared visualization. J.D.A. and G.L.S. supervised the work. J.D.A. and G.L.S. were project administrators. J.D.A. and G.L.S. obtained funding. A.A.T., C.A.M., A.J.B., B.Y-W.C. and G.L.S. contributed resources.

Corresponding authors

Correspondence to Jonas D. Albarnaz or Geoffrey L. Smith.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Microbiology thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Screen of VACV strain WR ORFs for NF-κB inhibitory activity.

NF-κB-dependent luciferase activity in HEK 293T cells transfected with vectors expressing the indicated VACV proteins or empty vector (EV), and stimulated with TNF-α. Negative (EV, GFP, and N2) and positive (B14) controls are highlighted in the dashed black square, whilst F14 is highlighted in the dashed red square. Means + s.d. (n = 3-4 per condition) are shown.

Source data

Extended Data Fig. 2 Virulence of VACV mutant lacking F14 in the intranasal mouse model of infection.

BALB/c mice were infected intranasally with 5×103 p.f.u. of the indicated VACV strains and their body mass was measured daily. Body mass is expressed as the percentage ± s.e.m. of the mean of the same group of mice on day 0 (n = 5 mice).

Source data

Extended Data Fig. 3 Replication and spread of VACV mutant lacking F14 in cell culture.

(a,b) HeLa cells were infected with the indicated VACV strains (5 p.f.u./cell) and virus titres associated with the cells (a) and in the supernatants (b) were determined by plaque assay. Means (n = 2 per condition) are shown. (c) Plaque formation by the indicated VACV strains on BS-C-1 cells.

Source data

Extended Data Fig. 4 F14 does not inhibit the nuclear translocation of NF-κB subunit p65.

a, T-REx-293 cells inducibly expressing the empty vector (EV) or VACV proteins B14, C6, or F14, were induced with doxycycline and stimulated with TNF-α. Fixed and permeabilised cells were stained with anti-p65 antibody and DAPI, and analysed by confocal microscopy. Scale bars (50 μm) are shown in the bottom right of each micrograph. Representative micrographs of quantitative analysis shown in Fig. 1l. b, Flow cytometry analysis of T-REx-293-F14 induced with doxycycline in the absence and in the presence of the proteasome inhibitor MG132. F14 presence was detected by staining with an anti-FLAG antibody.

Extended Data Fig. 5 F14 inhibits NF-κB at or downstream of p65.

NF-κB activity in HEK 293 T cells transfected with vectors expressing p65, VACV proteins B14 or F14, or empty vector (EV). Top panel: Means + s.d. (n = 4 per condition) are shown. Statistical significance was determined by unpaired two-tailed Student’s t-test. Bottom panel: Immunoblotting. Protein molecular mass markers in kDa are shown on the left of the blots. Immunoblots of tagged proteins are labelled with the protein name followed by the epitope tag antibody in parentheses. When multiple tagged proteins are shown in the same immunoblot, each protein is indicated by a red arrowhead.

Source data

Extended Data Fig. 6 F14 is unique among known viral inhibitors of NF-κB.

(a) Top: Amino acid sequence of the TAD of HSV-1 VP16 with the acidic activation domain similar to p65 highlighted in red, and hydrophobic residues (Φ) are indicated. Middle: NF-κB-dependent luciferase activity in HEK 293T cells transfected with vectors expressing VP16, VP16 mutant, or empty vector (EV), and stimulated with TNF-α. Bottom: Immunoblotting. (b) Top: Amino acid residues 61-98 from HPV16 protein E7 encompassing a ΦXXΦΦ motif containing and preceded by negatively charged residues. Highlighted are two residues mutated to disrupt this motif. Middle: NF-κB-dependent luciferase activity in HEK 293T cells expressing E7 and two mutants as described in (a). Bottom: Immunoblotting. Means + s.d. (n = 4 per condition) are shown. c, Lysates from transfected HEK 293T cells were immunoprecipitated with anti-HA. Immunoblots are representative of two independent experiments. Protein molecular masses in kDa are shown on the left of the blots. Immunoblots of tagged proteins are labelled with the protein name followed the epitope tag antibody in parentheses. When multiple tagged proteins are shown in the same immunoblot, each protein is indicated a red arrowhead. Statistical significance was determined by the Student’s t-test.

Source data

Extended Data Fig. 7 F14 suppresses expression of a subset of NF-κB-responsive genes.

(a-d) RT-qPCR analysis of NF-κB-responsive gene expression in inducible T-REx-293 cells induced with doxycycline overnight to express VACV proteins F14 or C6, and stimulated with TNF-α. Means (n = 2 per condition) are shown. e, Immunoblotting of lysates of inducible T-REx-293 cell lines induced with doxycycline overnight. Data are representative of two independent experiments. Protein molecular masses in kDa are shown on the left of the blots.

Source data

Extended Data Fig. 8 F14 suppresses expression of CXCL10, but not CXCL8, after stimulation with TNF-α.

This shows data normalized for presentation in Fig. 5c,f. ELISA of CXCL8 (a) and CXCL10 (b) in culture supernatants from T-REx-293 cells inducibly expressing the empty vector (EV) or VACV proteins B14, C6, or F14, induced with doxycycline and stimulated with TNF-α. Means + s.d. (n = 3 per condition) are shown. Statistical significance was determined by the Student’s t-test.

Source data

Extended Data Fig. 9 JQ1 reduces BRD4 occupancy on CCND1 gene promoter.

Chromatin immunoprecipitation (ChIP) with anti-BRD4 antibody or control IgG, and qPCR for the promoters of CCND1 gene. T-REx-293 cells were treated with JQ1 and stimulated with TNF-α. Means + s.d. (n = 6 per condition from two independent experiments). Statistical significance was determined by the Student’s t-test.

Source data

Supplementary information

Reporting Summary

Supplementary Information

Supplementary Tables 1 and 2.

Source data

Source Data Fig. 1

Unprocessed western blots.

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Unprocessed western blots.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Unprocessed western blots.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Unprocessed western blots.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Unprocessed western blots.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Unprocessed western blots.

Source Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 5

Unprocessed western blots.

Source Data Extended Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 6

Unprocessed western blots.

Source Data Extended Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 7

Unprocessed western blots.

Source Data Extended Data Fig. 7

Statistical source data.

Source Data Extended Data Fig. 8

Statistical source data.

Source Data Extended Data Fig. 9

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albarnaz, J.D., Ren, H., Torres, A.A. et al. Molecular mimicry of NF-κB by vaccinia virus protein enables selective inhibition of antiviral responses. Nat Microbiol 7, 154–168 (2022). https://doi.org/10.1038/s41564-021-01004-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-021-01004-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing