Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

FUNGAL BIOLOGY

Fungal spores are future-proofed

A Publisher Correction to this article was published on 11 August 2021

This article has been updated

Quiescent fungal conidia are heterogeneous and prepare for the future through transcriptional programmes that depend on the environment in which the conidia develop.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Entrance and exit of quiescence of filamentous fungi conidia is highly heterogenous.

Change history

References

  1. Baltussen, T. J. H., Zoll, J., Verweij, P. E. & Melchers, W. J. G. Microbiol. Mol. Biol. Rev. 84, e00049-19 (2019).

    PubMed  PubMed Central  Google Scholar 

  2. Lamarre, C. et al. BMC Genom. 9, 417 (2008).

    Article  Google Scholar 

  3. Wang, F. et al. Nat. Microbiol. https://doi.org/10.1038/s41564-021-00922-y (2021).

  4. Sun, S. & Gresham, D. Yeast 38, 12–29 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Teertstra, W. R. et al. Fungal Genet. Biol. 98, 61–70 (2017).

    Article  PubMed  Google Scholar 

  6. Ries, L. N. A. et al. Front. Microbiol. 10, 854 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hagiwara, D. et al. PLoS ONE 12, e0177050 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Roche, B., Arcagngioli, B. & Martienssen, R. RNA Biol. 14, 843–853 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Danion, F. et al. J. Fungi 7, 30 (2021).

    Article  CAS  Google Scholar 

  10. Bleichrodt, R. J., Foster, P., Howell, G., Latgé‚, J. P. & Read, N. D. mBio 11, e03015-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Liu, Z. et al. mBio 12, e00863-21 (2021).

    PubMed  PubMed Central  Google Scholar 

  12. Rosowski, E. E. et al. PLoS Pathog. 14, e1007229 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Roberts, S. E. & Gladfelter, A. S. Curr. Opin. Microbiol. 28, 60–65 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mela, A. P. & Momany, M. PLoS ONE 13, e0201828 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhang, J. et al. Proc. R. Soc. B Biol. Sci. 286, 20182886 (2019).

    Article  CAS  Google Scholar 

  16. Roden, C. & Gladfelter, A. S. Nat. Rev. Mol. Cell. Biol. 22, 183–195 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Paul Latgé.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blatzer, M., Latgé, JP. Fungal spores are future-proofed. Nat Microbiol 6, 979–980 (2021). https://doi.org/10.1038/s41564-021-00946-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-021-00946-4

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology