Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Entropy-driven translocation of disordered proteins through the Gram-positive bacterial cell wall

Abstract

In Gram-positive bacteria, a thick cross-linked cell wall separates the membrane from the extracellular space. Some surface-exposed proteins, such as the Listeria monocytogenes actin nucleation-promoting factor ActA, remain associated with the bacterial membrane but somehow thread through tens of nanometres of cell wall to expose their amino terminus to the exterior. Here, we report that entropy enables the translocation of disordered transmembrane proteins through the Gram-positive cell wall. We build a physical model, which predicts that the entropic constraint imposed by a thin periplasm is sufficient to drive the translocation of an intrinsically disordered protein such as ActA across a porous barrier similar to a peptidoglycan cell wall. We experimentally validate our model and show that ActA translocation depends on the cell-envelope dimensions and disordered-protein length, and that translocation is reversible. We also show that disordered regions of eukaryotic proteins can translocate Gram-positive cell walls via entropy. We propose that entropic forces are sufficient to drive the translocation of specific proteins to the outer surface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Entropy-based model for protein translocation across the Gram-positive cell wall.
Fig. 2: Length of ActA and retention in the periplasm.
Fig. 3: Cell-wall thickness and ActA translocation.
Fig. 4: The disordered transmembrane protein iActA extends through the B. subtilis cell wall.
Fig. 5: Disordered nuclear pore proteins traverse the bacterial cell wall.
Fig. 6: Disordered regions are common in surface proteins of Gram-positive bacteria.

Similar content being viewed by others

Data availability

All data are available upon request from the corresponding authors. Source data are provided with this paper.

Code availability

All custom scripts are available at https://bitbucket.org/kchuanglab/acta_code/src/master/.

References

  1. Finlay, B. B. & Falkow, S. Common themes in microbial pathogenicity revisited. Microbiol. Mol. Biol. Rev. 61, 136–169 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Pizarro-Cerda, J. & Cossart, P. Bacterial adhesion and entry into host cells. Cell 124, 715–727 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Demchick, P. & Koch, A. L. The permeability of the wall fabric of Escherichia coli and Bacillus subtilis. J. Bacteriol. 178, 768–773 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Forster, B. M. & Marquis, H. Protein transport across the cell wall of monoderm Gram-positive bacteria. Mol. Microbiol. 84, 405–413 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schneewind, O. & Missiakas, D. M. Protein secretion and surface display in Gram-positive bacteria. Philos. Trans. R. Soc. B 367, 1123–1139 (2012).

    Article  CAS  Google Scholar 

  6. Matias, V. R. & Beveridge, T. J. Cryo-electron microscopy reveals native polymeric cell wall structure in Bacillus subtilis 168 and the existence of a periplasmic space. Mol. Microbiol. 56, 240–251 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Rafelski, S. M. & Theriot, J. A. Mechanism of polarization of Listeria monocytogenes surface protein ActA. Mol. Microbiol. 59, 1262–1279 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Welch, M. D., Rosenblatt, J., Skoble, J., Portnoy, D. A. & Mitchison, T. J. Interaction of human Arp2/3 complex and the Listeria monocytogenes ActA protein in actin filament nucleation. Science 281, 105–108 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Kocks, C. et al. L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein. Cell 68, 521–531 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Tilney, L. G. & Portnoy, D. A. Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J. Cell Biol. 109, 1597–1608 (1989).

    Article  CAS  PubMed  Google Scholar 

  11. Kocks, C. et al. The unrelated surface proteins ActA of Listeria monocytogenes and IcsA of Shigella flexneri are sufficient to confer actin-based motility on Listeria innocua and Escherichia coli respectively. Mol. Microbiol. 18, 413–423 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Smith, G. A., Portnoy, D. A. & Theriot, J. A. Asymmetric distribution of the Listeria monocytogenes ActA protein is required and sufficient to direct actin-based motility. Mol. Microbiol. 17, 945–951 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Beckerle, M. C. Spatial control of actin filament assembly: lessons from Listeria. Cell 95, 741–748 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Footer, M. J., Lyo, J. K. & Theriot, J. A. Close packing of Listeria monocytogenes ActA, a natively unfolded protein, enhances F-actin assembly without dimerization. J. Biol. Chem. 283, 23852–23862 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Housden, N. G. et al. Intrinsically disordered protein threads through the bacterial outer-membrane porin OmpF. Science 340, 1570–1574 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Driessen, A. J. & Nouwen, N. Protein translocation across the bacterial cytoplasmic membrane. Annu. Rev. Biochem. 77, 643–667 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Silhavy, T. J., Kahne, D. & Walker, S. The bacterial cell envelope. Cold Spring Harb. Perspect. Biol. 2, a000414 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dubrac, S., Bisicchia, P., Devine, K. M. & Msadek, T. A matter of life and death: cell wall homeostasis and the WalKR (YycGF) essential signal transduction pathway. Mol. Microbiol. 70, 1307–1322 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Devine, K. M. Bacterial L-forms on tap: an improved methodology to generate Bacillus subtilis L-forms heralds a new era of research. Mol. Microbiol. 83, 10–13 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Wu, X. C., Lee, W., Tran, L. & Wong, S. L. Engineering a Bacillus subtilis expression-secretion system with a strain deficient in six extracellular proteases. J. Bacteriol. 173, 4952–4958 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zuber, B. et al. Granular layer in the periplasmic space of Gram-positive bacteria and fine structures of Enterococcus gallinarum and Streptococcus gordonii septa revealed by cryo-electron microscopy of vitreous sections. J. Bacteriol. 188, 6652–6660 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gouin, E., Dehoux, P., Mengaud, J., Kocks, C. & Cossart, P. iactA of Listeria ivanovii, although distantly related to Listeria monocytogenes actA, restores actin tail formation in an L. monocytogenes actA mutant. Infect. Immun. 63, 2729–2737 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kreft, J., Dumbsky, M. & Theiss, S. The actin-polymerization protein from Listeria ivanovii is a large repeat protein which shows only limited amino acid sequence homology to ActA from Listeria monocytogenes. FEMS Microbiol. Lett. 132, 181–182 (1995).

    CAS  PubMed  Google Scholar 

  24. Yamada, J. et al. A bimodal distribution of two distinct categories of intrinsically disordered structures with separate functions in FG nucleoporins. Mol. Cell Proteom. 9, 2205–2224 (2010).

    Article  Google Scholar 

  25. Matias, V. R. & Beveridge, T. J. Native cell wall organization shown by cryo-electron microscopy confirms the existence of a periplasmic space in Staphylococcus aureus. J. Bacteriol. 188, 1011–1021 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. DeDent, A. C., McAdow, M. & Schneewind, O. Distribution of protein A on the surface of Staphylococcus aureus. J. Bacteriol. 189, 4473–4484 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. DeDent, A., Bae, T., Missiakas, D. M. & Schneewind, O. Signal peptides direct surface proteins to two distinct envelope locations of Staphylococcus aureus. EMBO J. 27, 2656–2668 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Alonzo, F. 3rd & Freitag, N. E. Listeria monocytogenes PrsA2 is required for virulence factor secretion and bacterial viability within the host cell cytosol. Infect. Immun. 78, 4944–4957 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bauer, B. W., Shemesh, T., Chen, Y. & Rapoport, T. A. A “push and slide” mechanism allows sequence-insensitive translocation of secretory proteins by the SecA ATPase. Cell 157, 1416–1429 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Downer, R., Roche, F., Park, P. W., Mecham, R. P. & Foster, T. J. The elastin-binding protein of Staphylococcus aureus (EbpS) is expressed at the cell surface as an integral membrane protein and not as a cell wall-associated protein. J. Biol. Chem. 277, 243–250 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Okuda, S., Freinkman, E. & Kahne, D. Cytoplasmic ATP hydrolysis powers transport of lipopolysaccharide across the periplasm in E. coli. Science 338, 1214–1217 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pavlovic-Lazetic, G. M. et al. Bioinformatics analysis of disordered proteins in prokaryotes. BMC Bioinform. 12, 66 (2011).

    Article  CAS  Google Scholar 

  33. Peng, K., Radivojac, P., Vucetic, S., Dunker, A. K. & Obradovic, Z. Length-dependent prediction of protein intrinsic disorder. BMC Bioinform. 7, 208 (2006).

    Article  Google Scholar 

  34. Cacciuto, A. & Luijten, E. Confinement-driven translocation of a flexible polymer. Phys. Rev. Lett. 96, 238104 (2006).

    Article  PubMed  Google Scholar 

  35. Gopinathan, A. & Kim, Y. W. Polymer translocation in crowded environments. Phys. Rev. Lett. 99, 228106 (2007).

    Article  PubMed  Google Scholar 

  36. Luo, K., Metzler, R., Ala-Nissila, T. & Ying, S. C. Polymer translocation out of confined environments. Phys. Rev. E 80, 021907 (2009).

    Article  Google Scholar 

  37. Muthukumar, M. Translocation of a confined polymer through a hole. Phys. Rev. Lett. 86, 3188–3191 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Muthukumar, M. Molecular modelling of nucleation in polymers. Philos. Trans. A 361, 539–556 (2003).

    Article  CAS  Google Scholar 

  39. Park, P. J. & Sung, W. Polymer release out of a spherical vesicle through a pore. Phys. Rev. E 57, 730 (1998).

    Article  CAS  Google Scholar 

  40. Rubinstein, M. & Colby, R. H. Polymer Physics Vol. 23 (Oxford Univ. Press, 2003).

  41. Sung, W. & Park, P. J. Polymer translocation through a pore in a membrane. Phys. Rev. Lett. 77, 783–786 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Edwards, M. R. & Stevens, R. W. Fine structure of Listeria monocytogenes. J. Bacteriol. 86, 414–428 (1963).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. North, R. J. Some structural aspects of Listeria Monocytogenes. J. Ultrastruct. Res. 59, 187–197 (1963).

    Article  CAS  PubMed  Google Scholar 

  44. De Gennes, P.-G. & Gennes, P.-G. Scaling Concepts in Polymer Physics (Cornell Univ. Press, 1979).

  45. Clisby, N. & Dunweg, B. High-precision estimate of the hydrodynamic radius for self-avoiding walks. Phys. Rev. E 94, 052102 (2016).

    Article  PubMed  Google Scholar 

  46. Flory, P. Principles of Polymer Chemistry (Cornell Univ. Press, 1971).

  47. Grundling, A., Gonzalez, M. D. & Higgins, D. E. Requirement of the Listeria monocytogenes broad-range phospholipase PC-PLC during infection of human epithelial cells. J. Bacteriol. 185, 6295–6307 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Shen, A., Kamp, H. D., Grundling, A. & Higgins, D. E. A bifunctional O-GlcNAc transferase governs flagellar motility through anti-repression. Genes Dev. 20, 3283–3295 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ripio, M. T., Brehm, K., Lara, M., Suarez, M. & Vazquez-Boland, J. A. Glucose-1-phosphate utilization by Listeria monocytogenes is PrfA dependent and coordinately expressed with virulence factors. J. Bacteriol. 179, 7174–7180 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ripio, M. T. et al. Transcriptional activation of virulence genes in wild-type strains of Listeria monocytogenes in response to a change in the extracellular medium composition. Res. Microbiol. 147, 371–384 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Maul, B., Volker, U., Riethdorf, S., Engelmann, S. & Hecker, M. σB-Dependent regulation of gsiB in response to multiple stimuli in Bacillus subtilis. Mol. Gen. Genet. 248, 114–120 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Nguyen, H. D. et al. Construction of plasmid-based expression vectors for Bacillus subtilis exhibiting full structural stability. Plasmid 54, 241–248 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Lauer, P., Chow, M. Y., Loessner, M. J., Portnoy, D. A. & Calendar, R. Construction, characterization, and use of two Listeria monocytogenes site-specific phage integration vectors. J. Bacteriol. 184, 4177–4186 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Schneewind, O., Mihaylova-Petkov, D. & Model, P. Cell wall sorting signals in surface proteins of Gram-positive bacteria. EMBO J. 12, 4803–4811 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ursell, T. et al. Rapid, precise quantification of bacterial cellular dimensions across a genomic-scale knockout library. BMC Biol. 15, 17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Loessner, M. J., Kramer, K., Ebel, F. & Scherer, S. C-terminal domains of Listeria monocytogenes bacteriophage murein hydrolases determine specific recognition and high-affinity binding to bacterial cell wall carbohydrates. Mol. Microbiol. 44, 335–349 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).

    Article  CAS  PubMed  Google Scholar 

  58. Koontz, L. TCA precipitation. Methods Enzymol. 541, 3–10 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567–580 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Bendtsen, J. D., Nielsen, H., von Heijne, G. & Brunak, S. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340, 783–795 (2004).

    Article  PubMed  Google Scholar 

  61. Fischetti, V. A., Pancholi, V. & Schneewind, O. Conservation of a hexapeptide sequence in the anchor region of surface proteins from Gram-positive cocci. Mol. Microbiol. 4, 1603–1605 (1990).

    Article  CAS  PubMed  Google Scholar 

  62. Schneewind, O., Model, P. & Fischetti, V. A. Sorting of protein A to the staphylococcal cell wall. Cell 70, 267–281 (1992).

    Article  CAS  PubMed  Google Scholar 

  63. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23, 127–128 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Rexach for the antibody against Nsp1; W. Burkholder, A. Cheung, T. Burke, and D. Portnoy for strains; and J. Lynch, K. Schulz, H. Shi, M. Tsuchida, and S. Weber for comments on the manuscript. Electron microscopy was performed at, and with the assistance of, the Stanford Cell Sciences Imaging Facility. This work was supported by the National Institutes of Health (NIH) grant no. R37AI-36929 (to J.A.T.); an NSF CAREER Award (grant no. MCB-1149328 to K.C.H.); NSF grant nos. DBI-0960480, DMS-1616926, and HRD-1547848 (to A.G.), and EF-1038697 (to A.G. and K.C.H.); a James S. McDonnell Foundation Award (to A.G.); the Allen Center for Systems Modeling of Infection (to K.M.N. and K.C.H.) and HHMI (to J.A.T.). The project was supported, in part, by an ARRA Award (grant no. 1S10RR026780-01) from the National Center for Research Resources (NCRR); its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NCRR or the NIH. K.C.H. is a Chan Zuckerberg Biohub Investigator.

Author information

Authors and Affiliations

Authors

Contributions

D.K.H., F.E.O., K.C.H. and J.A.T. designed the experiments, analysed the data and wrote the manuscript. D.K.H., F.E.O., M.J.F. and J.A.T. performed the experiments. D.K.H. and K.M.N. constructed the mutants. A.G. and K.C.H. developed the model. N.S.M. and S.N.M. performed the disorder predictions. All authors reviewed the manuscript before submission.

Corresponding authors

Correspondence to Kerwyn Casey Huang or Julie A. Theriot.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Microbiology thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Predicted critical lengths for an ActA-like polymer for different values of cell wall thickness, periplasm thickness and pore radius.

a) Critical length as a function of periplasm thickness P for different values of cell wall thickness w, with pore radius R set at 3 nm. Each curve denotes a different cell wall thickness, with w ranging from 10 nm to 40 nm. b) Critical length as a function of periplasm thickness P for different values of R, with w set at 20 nm. c) Critical length as a function of cell wall thickness w for different values of R, with P set at 12 nm. In (b,c), each curve denotes a different pore radius, with R ranging from 2 nm to 4.2 nm. For all graphs the thickest line signifies parameters used in Fig. 1: w = 20 nm, P = 12 nm, R = 3 nm. The dashed horizontal line denotes the length of an ActA molecule. The entropic model predicts that any parameter set resulting in a critical length falling below this dashed line will result in proper translocation of ActA. All parameter values were chosen so that 2R and P are substantially more than the persistence length of ActA.

Extended Data Fig. 2 Effects of TEV protease treatment on surface presentation of ActA.

A representative TEV cleavage experiment showing population distributions of untreated and TEV protease-treated conditions for strains in Fig. 2d,e after labelling with α−ActA-PRR.

Extended Data Fig. 3 Genetic truncations of ActA were detected at expected lengths.

-100 and -200 refer to 100- and 200-amino acid truncation mutants, respectively. SDS treatment (S) and mechanical disruption by bead-beating (B) as in Fig. 1a,b were performed for all strains labelled with α−ActA-PRR. Arrows indicate (from left to right) full-length ActA, the 100-amino acid truncation, and the 200-amino acid truncation.

Extended Data Fig. 4 Lack of immunofluorescence signal for Nsp1 constructs that are secreted or anchored by transmembrane domains at both termini.

a) Western blotting showed stable expression of the Nsp1 chimaeric construct (arrow) from Fig. 5a,b. b) Polar distribution of ActA in the wild-type strain of L. monocytogenes using an antibody against ActA. c) Lack of signal in the wild-type strain using an antibody against Nsp1. d) Immunofluorescence of Nsp1 expressed with an amino-terminal signal sequence from ActA but no transmembrane anchor. e) Nsp1 expressed with an amino-terminal transmembrane domain from lmo2229 and carboxy-terminal5 transmembrane domain from ActA. No visible labelling was observed when Nsp1 was anchored at both ends, confirming that antibodies do not label proteins that are trapped in the periplasm.

Extended Data Fig. 5 Time course of disordered protein localization and polarization in L. monocytogenes.

a) ActA expressed from the ActA promoter. b) Nsp1, with a signal sequence and transmembrane domain from ActA, expressed from the ActA promoter.

Extended Data Fig. 6 ActA expression, translocation, and exposure, as well as VASP binding and comet-tail formation, were maintained in ∆prsA2 cells.

a) Expression of listeriolysin O (arrow) was lower in two prsA2 transposon insertion mutants, as expected, but similar to wild type in a ∆actA mutant, as shown in a Coomassie-stained gel of TCA-precipitated culture supernatant. b) Expression of ActA (arrow) in prsA2 cells determined using α−ActA decreased to a similar extent as listeriolysin O in (a); no expression was detected in ∆actA cells. Levels were similar between cells treated with SDS (S) or subjected to bead-beating (B), indicating that most ActA was translocated across the cell wall. c) Immunofluorescence labelling with α−ActA confirmed that ActA was exposed on the surface of wild-type and prsA2 cells. d) The EVH1 domain of VASP fused to GST bound to the surface of prsA2 and wild-type cells expressing wild-type ActA, but not to a ∆actA cells. GST alone also did not bind the surface of wild-type bacteria. Shown is immunofluorescence labelling of GST. e) Wild-type and prsA2 L. monocytogenes formed comet tails in host cells, but ∆actA L. monocytogenes did not. Actin was labelled with phalloidin. Thus, PrsA2 is not required for ActA translocation or function.

Source data

Supplementary information

Source data

Source Data Fig. 2

Immunofluorescence analysis.

Source Data Fig. 3

Immunofluorescence analysis.

Source Data Extended Data Fig. 6

Immunofluorescence analysis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halladin, D.K., Ortega, F.E., Ng, K.M. et al. Entropy-driven translocation of disordered proteins through the Gram-positive bacterial cell wall. Nat Microbiol 6, 1055–1065 (2021). https://doi.org/10.1038/s41564-021-00942-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-021-00942-8

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology