Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Fetal meconium does not have a detectable microbiota before birth

Abstract

Microbial colonization of the human intestine impacts host metabolism and immunity; however, exactly when colonization occurs is unclear. Although many studies have reported bacterial DNA in first-pass meconium samples, these samples are typically collected hours to days after birth. Here, we investigated whether bacteria could be detected in meconium before birth. Fetal meconium (n = 20) was collected by rectal swab during elective breech caesarean deliveries without labour and before antibiotics and compared to technical and procedural controls (n = 5), first-pass meconium (neonatal meconium; n = 14) and infant stool (n = 25). Unlike first-pass meconium, no microbial signal distinct from negative controls was detected in fetal meconium by 16S ribosomal RNA gene sequencing. Additionally, positive aerobic (n = 10 of 20) and anaerobic (n = 12 of 20) clinical cultures of fetal meconium (13 of 20 samples positive in at least one culture) were identified as likely skin contaminants, most frequently Staphylococcus epidermidis, and not detected by sequencing in most samples (same genera detected by culture and sequencing in 2 of 13 samples with positive culture). We conclude that fetal gut colonization of healthy term infants does not occur before birth and that microbial profiles of neonatal meconium reflect populations acquired during and after birth.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Diagram of the collection method for fetal meconium samples.
Fig. 2: Fetal meconium alpha and beta diversity do not differ from those of sampling negative controls.
Fig. 3: Neighbour-joining phylogenetic tree of all genera and presence/absence in each sample.

Data availability

All sequencing data associated with this study have been made publicly available in the National Center for Biotechnology Information Sequence Read Archive under project ID PRJNA666699. Source data are provided with this paper.

Code availability

Custom scripts for the microbiome analyses are available from the GitHub repository at https://github.com/kennek6/Kennedyetal2021.

References

  1. 1.

    Sprockett, D., Fukami, T. & Relman, D. A. Role of priority effects in the early-life assembly of the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 15, 197–205 (2018).

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Durack, J. et al. Delayed gut microbiota development in high-risk for asthma infants is temporarily modifiable by Lactobacillus supplementation. Nat. Commun. 9, 707 (2018).

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Weström, B., Arévalo Sureda, E., Pierzynowska, K., Pierzynowski, S. G. & Pérez-Cano, F.-J. The immature gut barrier and its importance in establishing immunity in newborn mammals. Front. Immunol. 11, 1153 (2020).

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Axelsson, I. et al. Macromolecular absorption in preterm and term infants. Acta Paediatr. Scand. 78, 532–537 (1989).

    CAS  PubMed  Google Scholar 

  5. 5.

    Nanthakumar, N. et al. The mechanism of excessive intestinal inflammation in necrotizing enterocolitis: an immature innate immune response. PLoS ONE 6, e17776 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Chen, K., Magri, G., Grasset, E. K. & Cerutti, A. Rethinking mucosal antibody responses: IgM, IgG and IgD join IgA. Nat. Rev. Immunol. 20, 427–441 (2020).

    CAS  PubMed  Google Scholar 

  7. 7.

    Yoshida, M. et al. Human neonatal Fc receptor mediates transport of IgG into luminal secretions for delivery of antigens to mucosal dendritic cells. Immunity 20, 769–783 (2004).

    CAS  PubMed  Google Scholar 

  8. 8.

    Hanson, M. A. & Gluckman, P. D. Developmental origins of health and disease: new insights. Basic Clin. Pharmacol. Toxicol. 102, 90–93 (2008).

    CAS  PubMed  Google Scholar 

  9. 9.

    Fujimura, K. E. et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat. Med. 22, 1187–1191 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Soderborg, T. K. et al. The gut microbiota in infants of obese mothers increases inflammation and susceptibility to NAFLD. Nat. Commun. 9, 4462 (2018).

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Aagaard, K. et al. The placenta harbors a unique microbiome. Sci. Transl. Med. 6, 237ra65 (2014).

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Antony, K. M. et al. The preterm placental microbiome varies in association with excess maternal gestational weight gain. Am. J. Obstet. Gynecol. 212, 653.e1–653.e16 (2015).

    Google Scholar 

  13. 13.

    Stinson, L. et al. Comparison of bacterial DNA profiles in mid-trimester amniotic fluid samples from preterm and term deliveries. Front. Microbiol. 11, 415 (2020).

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Collado, M. C., Rautava, S., Aakko, J., Isolauri, E. & Salminen, S. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci. Rep. 6, 23129 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Salter, S. J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 87 (2014).

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Lauder, A. P. et al. Comparison of placenta samples with contamination controls does not provide evidence for a distinct placenta microbiota. Microbiome 4, 29 (2016).

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Theis, K. R. et al. Does the human placenta delivered at term have a microbiota? Results of cultivation, quantitative real-time PCR, 16S rRNA gene sequencing, and metagenomics. Am. J. Obstet. Gynecol. 220, 267.e1–267.e39 (2019).

    CAS  Google Scholar 

  18. 18.

    Olomu, I. N. et al. Elimination of ‘kitome’ and ‘splashome’ contamination results in lack of detection of a unique placental microbiome. BMC Microbiol. 20, 157 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Lim, E. S., Rodriguez, C. & Holtz, L. R. Amniotic fluid from healthy term pregnancies does not harbor a detectable microbial community. Microbiome 6, 87 (2018).

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Rehbinder, E. M. et al. Is amniotic fluid of women with uncomplicated term pregnancies free of bacteria? Am. J. Obstet. Gynecol. 219, 289.e1–289.e12 (2018).

    Google Scholar 

  21. 21.

    de Goffau, M. C. et al. Human placenta has no microbiome but can contain potential pathogens. Nature 572, 329–334 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Wang, J. et al. Dysbiosis of maternal and neonatal microbiota associated with gestational diabetes mellitus. Gut 67, 1614–1625 (2018).

    CAS  PubMed  Google Scholar 

  23. 23.

    Hu, J. et al. Diversified microbiota of meconium is affected by maternal diabetes status. PLoS ONE 8, e78257 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Bittinger, K. et al. Bacterial colonization reprograms the neonatal gut metabolome. Nat. Microbiol. 5, 838–847 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Hall, I. C. & O’Toole, E. Bacterial flora of first specimens of meconium passed by fifty new-born infants. Am. J. Dis. Child. 47, 1279–1285 (1934).

    Google Scholar 

  26. 26.

    Rackaityte, E. et al. Viable bacterial colonization is highly limited in the human intestine in utero. Nat. Med. 26, 599–607 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Chen, C. et al. The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases. Nat. Commun. 8, 875 (2017).

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Moreno-Indias, I., Cardona, F., Tinahones, F. J. & Queipo-Ortuño, M. I. Impact of the gut microbiota on the development of obesity and type 2 diabetes mellitus. Front. Microbiol. 5, 190 (2014).

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Gohir, W., Ratcliffe, E. M. & Sloboda, D. M. Of the bugs that shape us: maternal obesity, the gut microbiome, and long-term disease risk. Pediatr. Res. 77, 196–204 (2015).

    PubMed  Google Scholar 

  30. 30.

    Singer, J. R. et al. Preventing dysbiosis of the neonatal mouse intestinal microbiome protects against late-onset sepsis. Nat. Med. 25, 1772–1782 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Galazzo, G. et al. Development of the microbiota and associations with birth mode, diet, and atopic disorders in a longitudinal analysis of stool samples, collected from infancy through early childhood. Gastroenterology 158, 1584–1596 (2020).

    CAS  PubMed  Google Scholar 

  32. 32.

    Erb-Downward, J. R. et al. Critical relevance of stochastic effects on low-bacterial-biomass 16S rRNA gene analysis. mBio 11, e00258-20 (2020).

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Stacy, A. & Belkaid, Y. Microbial guardians of skin health. Science 363, 227–228 (2019).

    CAS  PubMed  Google Scholar 

  34. 34.

    Weyrich, L. S. et al. Laboratory contamination over time during low-biomass sample analysis. Mol. Ecol. Resour. 19, 982–996 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Karstens, L. et al. Controlling for contaminants in low-biomass 16S rRNA gene sequencing experiments. mSystems 4, e00290-19 (2019).

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    de Goffau, M. C., Charnock-Jones, D. S., Smith, G. C. S. & Parkhill, J. Batch effects account for the main findings of an in utero human intestinal bacterial colonization study. Microbiome 9, 6 (2021).

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Dominguez-Bello, M. G. et al. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat. Med. 22, 250–253 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Valdivia-Arenas, M. A. Bloodstream infections due to Micrococcus spp and intravenous epoprostenol. Infect. Control Hosp. Epidemiol. 30, 1237 (2009).

    PubMed  Google Scholar 

  39. 39.

    Oudiz, R. J. et al. Micrococcus-associated central venous catheter infection in patients with pulmonary arterial hypertension. Chest 126, 90–94 (2004).

    PubMed  Google Scholar 

  40. 40.

    Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 226 (2018).

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Kennedy, K., Hall, M. W., Lynch, M. D. J., Moreno-Hagelsieb, G. & Neufeld, J. D. Evaluating bias of Illumina-based bacterial 16S rRNA gene profiles. Appl. Environ. Microbiol. 80, 5717–5722 (2014).

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Sinha, R. et al. Assessment of variation in microbial community amplicon sequencing by the Microbiome Quality Control (MBQC) project consortium. Nat. Biotechnol. 35, 1077–1086 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Whelan, F. J. et al. The loss of topography in the microbial communities of the upper respiratory tract in the elderly. Ann. Am. Thorac. Soc. 11, 513–521 (2014).

    PubMed  Google Scholar 

  44. 44.

    Bartram, A. K., Lynch, M. D. J., Stearns, J. C., Moreno-Hagelsieb, G. & Neufeld, J. D. Generation of multimillion-sequence 16S rRNA gene libraries from complex microbial communities by assembling paired-end Illumina reads. Appl. Environ. Microbiol. 77, 3846–3852 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Sze, M. A. & Schloss, P. D. The impact of DNA polymerase and number of rounds of amplification in PCR on 16S rRNA gene sequence data. mSphere 4, e00163-19 (2019).

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.J. 17, 10–12 (2011).

    Google Scholar 

  47. 47.

    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

    CAS  PubMed  Google Scholar 

  49. 49.

    McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Oksanen, J. et al. Vegan: Community ecology package. R package version 2.0-10 https://cran.r-project.org/web/packages/vegan/index.html (2013).

  51. 51.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

  52. 52.

    Wright, E. S. RNAconTest: comparing tools for noncoding RNA multiple sequence alignment based on structural consistency. RNA 26, 531–540 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the participants that were recruited in this study. We thank H. Brinkmann, L. Pasura, L. Maschirow and A. Schwickert for assisting with patient recruitment, L. Ehrlich with sample preparation and K. von Weizsaecker and W. Henrich for their external review of the microbiology protocol and advice on protocol improvements. We thank M. Shah for performing the genomic DNA extractions. T.B. and M.M.H. are supported by the Deutsche Forschungsgemeinschaft (German Research Foundation). K.M.K. is supported by a Farncombe Digestive Health Research Institute Student Fellowship. M.G.S. and D.M.S. are supported by the Canada Research Chairs Program. The laboratory analyses including sequencing were supported by funds from the Canadian Institute for Health Research Team Grant no. MWB 141879.

Author information

Affiliations

Authors

Contributions

K.M.K. analysed the sequencing data and wrote the manuscript. M.J.G. contributed to sample collection and wrote the ‘Study design and sample collection’ section of the Methods. T.A. supervised the culture-based analyses. M.M.H. assisted with study design. L.R. assisted with study design and performed the V3–V4 amplifications and processing of raw sequencing data. M.G.S. assisted with study design and analysis of the sequencing data. D.M.S. contributed to data analysis and manuscript development. T.B. designed the study and contributed to sample collection. All authors discussed the analyses and results and edited the manuscript.

Corresponding authors

Correspondence to Deborah M. Sloboda or Thorsten Braun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Microbiology thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Strobe flowchart.

The study flowchart in line with the STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) statement (http://www.strobestatement.org). Pilot cohort 1A and pilot cohort 1B were used to optimize sample collection. The principal study cohort was analysed by culture and sequencing.

Extended Data Fig. 2 Optimization of collection to reduce contamination.

We considered potential problems related to contamination (birth mode, sampling, sample preparation, general) and sensitivity of culture methods and present our solutions to these problems (see Methods).

Source data

Extended Data Fig. 3 Detection of genera across technical replicates.

The abundance (read count) is shown for each sample by sequencing run (run 1 and run 2) for 30 cycles of PCR amplification. Genera are only shown if they were also detected within the same sample’s sequencing data from 40 cycles of PCR amplification.

Supplementary information

Reporting Summary

Peer Review File

Supplementary Tables

Supplementary Table 1. Pilot cohort culture results. Supplementary Table 2. ASV table of negative controls, fetal meconium, neonatal meconium and infant stool samples (listed in ST2). Supplementary Table 3. Sample data for ASV table (ST2). Supplementary Table 4. Agreement of sequencing runs. Supplementary Table 5. Use of negative controls in previous studies.

Source data

Source Data Fig. 2

a, Alpha diversity values for each sample. b, Axes 1 and 2 values for each sample. c, Bray–Curtis dissimilarity values for each sample pair.

Source Data Extended Data Fig. 2

Genus abundance data for each sample and each sequencing run.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kennedy, K.M., Gerlach, M.J., Adam, T. et al. Fetal meconium does not have a detectable microbiota before birth. Nat Microbiol 6, 865–873 (2021). https://doi.org/10.1038/s41564-021-00904-0

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing