Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Fungal taxonomy and sequence-based nomenclature

Subjects

An Author Correction to this article was published on 27 May 2021

This article has been updated

Abstract

The identification and proper naming of microfungi, in particular plant, animal and human pathogens, remains challenging. Molecular identification is becoming the default approach for many fungal groups, and environmental metabarcoding is contributing an increasing amount of sequence data documenting fungal diversity on a global scale. This includes lineages represented only by sequence data. At present, these taxa cannot be formally described under the current nomenclature rules. By considering approaches used in bacterial taxonomy, we propose solutions for the nomenclature of taxa known only from sequences to facilitate consistent reporting and communication in the literature and public sequence repositories.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fungal diversity.
Fig. 2: Timeline of important events in fungal taxonomy and nomenclature.
Fig. 3: Visualization of new lineages.

Similar content being viewed by others

Change history

References

  1. Richards, T. A., Leonard, G. & Wideman, J. G. What defines the "kingdom" Fungi? Microbiol. Spectr. 5, 57–77 (2017).

    Article  Google Scholar 

  2. Hawksworth, D. L. & Lücking, R. in The Fungal Kingdom (eds Heitman, J. et al.) 79–95 (ASM Press, 2017).

  3. Berbee, M. L., James, T. Y. & Strullu-Derrien, C. Early diverging fungi: diversity and impact at the dawn of terrestrial life. Annu. Rev. Microbiol. 71, 41–60 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Lücking, R. et al. Unambiguous identification of fungi: where do we stand and how accurate and precise is fungal barcoding? IMA Fungus 11, 14 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wijayawardene, N. N. et al. Outline of Fungi and fungus-like taxa. Mycosphere 11, 1060–1456 (2020).

    Article  Google Scholar 

  6. Beakes, G. W. & Thines, M. in Handbook of the Protists 2nd edn (eds Archibald, J. M. et al.) 435–505 (Springer, 2017).

  7. Turland, N. J. et al. International Code of Nomenclature for Algae, Fungi, and Plants (Shenzhen Code) 2018 (Koeltz Botanical Books, 2018).

  8. Hawksworth, D. L. et al. The Amsterdam declaration on fungal nomenclature. IMA Fungus 2, 105–112 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Schoch, C. L. et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl Acad. Sci. USA 109, 6241–6246 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Forsberg, K. et al. Candida auris: the recent emergence of a multidrug-resistant fungal pathogen. Med. Mycol. 57, 1–12 (2019).

    Article  PubMed  Google Scholar 

  11. Daniel, H.-M., Lachance, M.-A. & Kurtzman, C. P. On the reclassification of species assigned to Candida and other anamorphic ascomycetous yeast genera based on phylogenetic circumscription. Antonie van Leeuwenhoek 106, 67–84 (2014).

    Article  PubMed  Google Scholar 

  12. Shen, X. X. et al. Tempo and mode of genome evolution in the budding yeast subphylum. Cell 175, 1533–1545 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rush, T. A. et al. Variation in the internal transcribed spacer region of Phakopsora pachyrhizi and implications for molecular diagnostic assays. Plant Dis. 103, 2237–2245 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, N. et al. Generic names in Magnaporthales. IMA Fungus 7, 155–159 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cogliati, M. et al. Genotypes and population genetics of Cryptococcus neoformans and Cryptococcus gattii species complexes in Europe and the Mediterranean area. Fungal Genet. Biol. 129, 16–29 (2019).

    Article  PubMed  Google Scholar 

  16. Firacative, C., Trilles, L. & Meyer, W. MALDI–TOF MS enables the rapid identification of the major molecular types within the Cryptococcus neoformans/C. gattii species complex. PLoS ONE 7, e37566 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu, X. Z. et al. Towards an integrated phylogenetic classification of the Tremellomycetes. Stud. Mycol. 81, 85–147 (2015).

    Article  PubMed  Google Scholar 

  18. Nguyen, N. H. et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).

    Article  Google Scholar 

  19. Maryani, N. et al. Phylogeny and genetic diversity of the banana Fusarium wilt pathogen Fusarium oxysporum f. sp. cubense in the Indonesian centre of origin. Stud. Mycol. 92, 155–194 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Liu, F., Wang, M., Damm, U., Crous, P. W. & Cai, L. Species boundaries in plant pathogenic fungi: a Colletotrichum case study. BMC Evol. Biol. 16, 81–81 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Thines, M., Telle, S., Ploch, S. & Runge, F. Identity of the downy mildew pathogens of basil, coleus, and sage with implications for quarantine measures. Mycol. Res. 113, 532–540 (2009).

    Article  PubMed  Google Scholar 

  22. Ruppert, K. M., Kline, R. J. & Rahman, M. S. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: a systematic review in methods, monitoring, and applications of global eDNA. Glob. Ecol. Conserv. 17, e00547 (2019).

    Article  Google Scholar 

  23. James, T. Y., Stajich, J. E., Hittinger, C. T. & Rokas, A. Toward a fully resolved fungal tree of life. Annu. Rev. Microbiol. 74, 291–313 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Jones, M. D. M. et al. Discovery of novel intermediate forms redefines the fungal tree of life. Nature 474, 200–203 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Rosling, A. et al. Archaeorhizomycetes: unearthing an ancient class of ubiquitous soil Fungi. Science 333, 876–879 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Page, R. D. DNA barcoding and taxonomy: dark taxa and dark texts. Philos. Trans. R. Soc. B 371, 20150334 (2016).

    Article  Google Scholar 

  27. Sayers, E. W. et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. D1, D9–D16 (2020).

    Article  Google Scholar 

  28. Anslan, S. et al. Great differences in performance and outcome of high-throughput sequencing data analysis platforms for fungal metabarcoding. MycoKeys 39, 29–40 (2018).

    Article  Google Scholar 

  29. Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Öpik, M. et al. The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol. 188, 223–241 (2010).

  31. Schoch, C. L. et al. NCBI taxonomy: a comprehensive update on curation, resources and tools. Database 2020, baaa062 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Parker, C. T., Tindall, B. J. & Garrity, G. M. International Code of Nomenclature of Prokaryotes. Prokaryotic Code (2008 revision). Int. J. Syst. Evol. Microbiol. 69, S7–S111 (2019).

    Google Scholar 

  33. Lücking, R. & Hawksworth, D. L. Formal description of sequence-based voucherless Fungi: promises and pitfalls, and how to resolve them. IMA Fungus 9, 143–166 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Thines, M. et al. Ten reasons why a sequence-based nomenclature is not useful for fungi anytime soon. IMA Fungus 9, 177–183 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Torres-Cruz, T. J. et al. Bifiguratus adelaidae, gen. et sp nov., a new member of Mucoromycotina in endophytic and soil-dwelling habitats. Mycologia 109, 363–378 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Imachi, H. et al. Isolation of an archaeon at the prokaryote–eukaryote interface. Nature 577, 519–525 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Overmann, J. Significance and future role of microbial resource centers. Syst. Appl. Microbiol. 38, 258–265 (2015).

    Article  PubMed  Google Scholar 

  38. Parte, A. C., Sarda Carbasse, J., Meier-Kolthoff, J. P., Reimer, L. C. & Goker, M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int. J. Syst. Evol. Microbiol. 70, 5607–5612 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Louca, S., Mazel, F., Doebeli, M. & Parfrey, L. W. A census-based estimate of Earth’s bacterial and archaeal diversity. PLoS Biol. 17, e3000106 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Murray, A. E. et al. Roadmap for naming uncultivated Archaea and Bacteria. Nat. Microbiol. 5, 987–994 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ryberg, M. & Nilsson, R. H. New light on names and naming of dark taxa. MycoKeys 30, 31–39 (2018).

    Article  Google Scholar 

  42. Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  43. de Beer, Z. W. et al. Hawksworthiomyces gen. nov. (Ophiostomatales), illustrates the urgency for a decision on how to name novel taxa known only from environmental nucleic acid sequences (ENAS). Fungal Biol. 120, 1323–1340 (2016).

    Article  PubMed  Google Scholar 

  44. Khan, F. et al. Naming the untouchable—environmental sequences and niche partitioning as taxonomical evidence in fungi. IMA Fungus 11, 23 (2020).

    Article  Google Scholar 

  45. Lücking, R. & Moncada, B. Dismantling Marchandiomphalina into Agonimia (Verrucariaceae) and Lawreymyces gen. nov. (Corticiaceae): setting a precedent to the formal recognition of thousands of voucherless fungi based on type sequences. Fungal Divers. 84, 119–138 (2017).

    Article  Google Scholar 

  46. Kirk, P. M. Nomenclatural novelties. Index Fungi 1, 1 (2012).

    Google Scholar 

  47. May, T. W., Redhead, S. A., Lombard, L. & Rossman, A. Y. XI International Mycological Congress: report of Congress action on nomenclature proposals relating to fungi. IMA Fungus 9, xxii–xxvii (2018).

    Article  Google Scholar 

  48. Větrovský, T. et al. GlobalFungi: global database of fungal records from high-throughput-sequencing metabarcoding studies. Sci. Data 7, 228 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Parks, D. H. et al. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat. Biotechnol. 38, 1098–1098 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Lee, M. R., & Hawkes, C. V. Plant and soil drivers of whole-plant microbiomes: variation in switchgrass fungi from coastal to mountain sites. Phytobiomes J. https://doi.org/10.1094/PBIOMES-07-20-0056-FI (2020).

  51. Tang, J., Liu, J., Zhang, M. Y. & Mei, Q. Visualizing large-scale and high-dimensional data. In WWW ‘16: Proc. 25th International Conference on World Wide Web 287–297 (International World Wide Web Conferences Steering Committee, 2016); https://doi.org/10.1145/2872427.2883041

  52. Vu, D., Groenewald, M. & Verkley, G. Convolutional neural networks improve fungal classification. Sci. Rep. 10, 12628 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work by C.L.S. and B.R. was supported by the Intramural Research Program of the National Library of Medicine at the National Institutes of Health in Bethesda, Maryland, USA. D.M.G. received support through the National Science Foundation (NSF) grant DEB-1655980 and Project 4655 of the Pennsylvania State Agricultural Experiment Station. E.M. acknowledges CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil) and FACEPE (Fundação de Amparo à Ciência e Tecnologia de Pernambuco, Brazil). K.D.H. thanks the Thailand Research Fund, grant RDG6130001, entitled “Impact of Climate Change on Fungal Diversity and Biogeography in the Greater Mekong Subregion”. The USDA Hatch project 1010662 is acknowledged for support to M.C.A. M.Ö. was supported by the European Regional Development Fund (Centre of Excellence EcolChange). M.T. acknowledges LOEWE for funding in the framework of the Centre for Translational Biodiversity Genomics (TBG) and the German Science Foundation. N.Z. acknowledges the NSF of the United States (DEB-1452971). P.R.J. was supported through the Manaaki Whenua Biota Portfolio with funding from the Science and Innovation Group of the New Zealand Ministry of Business, Innovation and Employment. R.J. thanks the University of Mauritius for research support. We thank S. Redhead for nomenclatural advice. R. Sanders provided the update for the fungal ITS data in the SRA.

Author information

Authors and Affiliations

Authors

Contributions

The present manuscript was first discussed among members of the ICTF. Based on contributions from this initial discussion, a first version of the manuscript was drafted by R.L., C.L.S., M.C.A., B.R. and A.N.M. This version was distributed among the ICTF and to selected colleagues outside the ICTF, and all comments were recorded and incorporated. Based on these initial comments, lead and co-authorship was determined, additional co-authors then including T.A., H.A.A., G.C., P.W.C., I.S.D., D.M.G., D.L.H., K.D.H., L.I., R.J., P.R.J., P.M.K., E.M., T.W.M., W.M., M.Ö., V.R., M.S., M.T., D.V., A.M.Y. and N.Z. The revised draft was circulated two more times among all authors for additional comments before submission. After the first review, H.R.N. was invited as an additional co-author to provide specific input regarding dark taxa and the role of the UNITE database in the proposed alternatives for dark taxa nomenclature. Apart from contributing generally to the manuscript, D.L.H. and T.W.M. revised the nomenclatural details included in Box 1 and Fig. 1. B.R. and D.V. also assisted in technical aspects regarding the SRA and Fig. 3. P.W.C., R.L., W.M., M.T. and A.M.Y. organized the photographs used in Fig. 2 from their working groups. The final draft was approved by all authors.

Corresponding author

Correspondence to Conrad L. Schoch.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Microbiology thanks Michaela Lackner, Emma Steenkamp and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

References for the timeline events depicted in Fig. 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lücking, R., Aime, M.C., Robbertse, B. et al. Fungal taxonomy and sequence-based nomenclature. Nat Microbiol 6, 540–548 (2021). https://doi.org/10.1038/s41564-021-00888-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-021-00888-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing