Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Bacterial alginate regulators and phage homologs repress CRISPR–Cas immunity

Abstract

CRISPR–Cas systems are adaptive immune systems that protect bacteria from bacteriophage (phage) infection1. To provide immunity, RNA-guided protein surveillance complexes recognize foreign nucleic acids, triggering their destruction by Cas nucleases2. While the essential requirements for immune activity are well understood, the physiological cues that regulate CRISPR–Cas expression are not. Here, a forward genetic screen identifies a two-component system (KinB–AlgB), previously characterized in the regulation of Pseudomonas aeruginosa alginate biosynthesis3,4, as a regulator of the expression and activity of the P. aeruginosa Type I-F CRISPR–Cas system. Downstream of KinB–AlgB, activators of alginate production AlgU (a σE orthologue) and AlgR repress CRISPR–Cas activity during planktonic and surface-associated growth5. AmrZ, another alginate regulator6, is triggered to repress CRISPR–Cas immunity upon surface association. Pseudomonas phages and plasmids have taken advantage of this regulatory scheme and carry hijacked homologs of AmrZ that repress CRISPR–Cas expression and activity. This suggests that while CRISPR–Cas regulation may be important to limit self-toxicity, endogenous repressive pathways represent a vulnerability for parasite manipulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A forward genetic screen identified a role for an alginate-activating pathway in the repression of CRISPR–Cas immunity.
Fig. 2: The KinB–AlgB pathway modulates Cas3 and Csy protein and RNA levels.
Fig. 3: AmrZ is a surface-activated repressor of CRISPR–Cas immunity.
Fig. 4: Phage-derived AmrZ homologs control CRISPR–Cas immunity.

Similar content being viewed by others

Data availability

Source data and statistics used to generate figures are provided with the paper. Additional data supporting the findings of this paper are available from the corresponding author on request.

References

  1. Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007).

    CAS  PubMed  Google Scholar 

  2. Brouns, S. J. J. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960–964 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Damron, F. H., Qiu, D. & Yu, H. D. The Pseudomonas aeruginosa sensor kinase KinB negatively controls alginate production through AlgW-dependent MucA proteolysis. J. Bacteriol. 191, 2285–2295 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Damron, F. H. et al. Analysis of the Pseudomonas aeruginosa regulon controlled by the sensor kinase KinB and sigma factor RpoN. J. Bacteriol. 194, 1317–1330 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wozniak, D. J. & Ohman, D. E. Transcriptional analysis of the Pseudomonas aeruginosa genes algR, algB, and algD reveals a hierarchy of alginate gene expression which is modulated by algT. J. Bacteriol. 176, 6007–6014 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Baynham, P. J. & Wozniak, D. J. Identification and characterization of AlgZ, an AlgT-dependent DNA-binding protein required for Pseudomonas aeruginosa algD transcription. Mol. Microbiol. 22, 97–108 (1996).

    CAS  PubMed  Google Scholar 

  7. Hochstrasser, M. L. et al. CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference. Proc. Natl Acad. Sci. USA 111, 6618–6623 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Westra, E. R. et al. CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3. Mol. Cell 46, 595–605 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Levy, A. et al. CRISPR adaptation biases explain preference for acquisition of foreign DNA. Nature 520, 505–510 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Haurwitz, R. E., Jinek, M., Wiedenheft, B., Zhou, K. & Doudna, J. A. Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science 329, 1355–1358 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wiedenheft, B. et al. Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense. Structure 17, 904–912 (2009).

    CAS  PubMed  Google Scholar 

  12. Wiedenheft, B. et al. RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions. Proc. Natl Acad. Sci. USA 108, 10092–10097 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Rollins, M. F., Schuman, J. T., Paulus, K., Bukhari, H. S. T. & Wiedenheft, B. Mechanism of foreign DNA recognition by a CRISPR RNA-guided surveillance complex from Pseudomonas aeruginosa. Nucleic Acids Res. 43, 2216–2222 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Rollins, M. F. et al. Cas1 and the Csy complex are opposing regulators of Cas2/3 nuclease activity. Proc. Natl Acad. Sci. USA 114, E5113–E5121 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Chowdhury, S. et al. Structure reveals mechanisms of viral suppressors that intercept a CRISPR RNA-guided surveillance complex. Cell 169, 47–57 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Zegans, M. E. et al. Interaction between bacteriophage DMS3 and host CRISPR region inhibits group behaviors of Pseudomonas aeruginosa. J. Bacteriol. 191, 210–219 (2009).

    CAS  PubMed  Google Scholar 

  17. Cady, K. C. & O’Toole, G. A. Non-identity-mediated CRISPR-bacteriophage interaction mediated via the Csy and Cas3 proteins. J. Bacteriol. 193, 3433–3445 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Cady, K. C., Bondy-Denomy, J., Heussler, G. E., Davidson, A. R. & O’Toole, G. A. The CRISPR/Cas adaptive immune system of Pseudomonas aeruginosa mediates resistance to naturally occurring and engineered phages. J. Bacteriol. 194, 5728–5738 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Vorontsova, D. et al. Foreign DNA acquisition by the I-F CRISPR–Cas system requires all components of the interference machinery. Nucleic Acids Res. 43, 10848–10860 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. van Belkum, A. et al. Phylogenetic distribution of CRISPR-Cas systems in antibiotic-resistant Pseudomonas aeruginosa. mBio 6, e01796-15 (2015).

    PubMed  PubMed Central  Google Scholar 

  21. Westra, E. R. et al. Parasite exposure drives selective evolution of constitutive versus inducible defense. Curr. Biol. 25, 1043–1049 (2015).

    CAS  PubMed  Google Scholar 

  22. van Houte, S. et al. The diversity-generating benefits of a prokaryotic adaptive immune system. Nature 532, 385–388 (2016).

    PubMed  PubMed Central  Google Scholar 

  23. Bondy-Denomy, J., Pawluk, A., Maxwell, K. L. & Davidson, A. R. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature 493, 429–432 (2013).

    CAS  PubMed  Google Scholar 

  24. Pawluk, A., Bondy-Denomy, J., Cheung, V. H. W., Maxwell, K. L. & Davidson, A. R. A new group of phage anti-CRISPR genes inhibits the type I-E CRISPR-Cas system of Pseudomonas aeruginosa. mBio 5, e00896-14 (2014).

    PubMed  PubMed Central  Google Scholar 

  25. Bondy-Denomy, J. et al. Multiple mechanisms for CRISPR–Cas inhibition by anti-CRISPR proteins. Nature 526, 136–139 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Pawluk, A. et al. Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species. Nat. Microbiol. 1, 16085 (2016).

    CAS  PubMed  Google Scholar 

  27. Høyland-Kroghsbo, N. M. et al. Quorum sensing controls the Pseudomonas aeruginosa CRISPR-Cas adaptive immune system. Proc. Natl Acad. Sci. USA 114, 131–135 (2016).

    PubMed  PubMed Central  Google Scholar 

  28. Patterson, A. G. et al. Quorum sensing controls adaptive immunity through the regulation of multiple CRISPR-Cas systems. Mol. Cell 64, 1102–1108 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Borges, A. L. et al. Bacteriophage cooperation suppresses CRISPR-Cas3 and Cas9 immunity. Cell 174, 917–925 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Chand, N. S. et al. The sensor kinase KinB regulates virulence in acute Pseudomonas aeruginosa infection. J. Bacteriol. 193, 2989–2999 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Chand, N. S., Clatworthy, A. E. & Hung, D. T. The two-component sensor KinB acts as a phosphatase to regulate Pseudomonas aeruginosa virulence. J. Bacteriol. 194, 6537–6547 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Cezairliyan, B. O. & Sauer, R. T. Control of Pseudomonas aeruginosa AlgW protease cleavage of MucA by peptide signals and MucB. Mol. Microbiol. 72, 368–379 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Schurr, M. J., Yu, H., Martinez-Salazar, J. M., Boucher, J. C. & Deretic, V. Control of AlgU, a member of the sigma E-like family of stress sigma factors, by the negative regulators MucA and MucB and Pseudomonas aeruginosa conversion to mucoidy in cystic fibrosis. J. Bacteriol. 178, 4997–5004 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Tart, A. H., Blanks, M. J. & Wozniak, D. J. The AlgT-dependent transcriptional regulator AmrZ (AlgZ) inhibits flagellum biosynthesis in mucoid, nonmotile Pseudomonas aeruginosa cystic fibrosis isolates. J. Bacteriol. 188, 6483–6489 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Schulz, S. et al. Elucidation of sigma factor-associated networks in Pseudomonas aeruginosa reveals a modular architecture with limited and function-specific crosstalk. PLoS Pathog. 11, e1004744 (2015).

    PubMed  PubMed Central  Google Scholar 

  36. Wozniak, D. J. et al. Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proc. Natl Acad. Sci. USA 100, 7907–7912 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Pratama, A. A. & van Elsas, J. D. A novel inducible prophage from the mycosphere inhabitant Paraburkholderia terrae BS437. Sci. Rep. 7, 9156 (2017).

    PubMed  PubMed Central  Google Scholar 

  38. Pryor, E. E. et al. The transcription factor AmrZ utilizes multiple DNA binding modes to recognize activator and repressor sequences of Pseudomonas aeruginosa virulence genes. PLoS Pathog. 8, e1002648 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Martin, D. W. et al. Mechanism of conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients. Proc. Natl Acad. Sci. USA 90, 8377–8381 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Jones, A. K. et al. Activation of the Pseudomonas aeruginosa AlgU regulon through mucA mutation inhibits cyclic AMP/Vfr signaling. J. Bacteriol. 192, 5709–5717 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Koonin, E. V. & Makarova, K. S. Mobile genetic elements and evolution of CRISPR-Cas systems: all the way there and back. Genome Biol. Evol. 9, 2812–2825 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Heilmann, S., Sneppen, K. & Krishna, S. Sustainability of virulence in a phage-bacterial ecosystem. J. Virol. 84, 3016–3022 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Dötsch, A. et al. The Pseudomonas aeruginosa transcriptional landscape is shaped by environmental heterogeneity and genetic variation. mBio 6, e00749–15 (2015).

    PubMed  PubMed Central  Google Scholar 

  44. Erdmann, J., Preusse, M., Khaledi, A., Pich, A. & Häussler, S. Environment-driven changes of mRNA and protein levels in Pseudomonas aeruginosa. Environ. Microbiol. 20, 3952–3963 (2018).

    CAS  PubMed  Google Scholar 

  45. Smale, S. T. β-galactosidase assay. Cold Spring Harb. Protoc. https://doi.org/10.1101/pdb.prot5423 (2010).

  46. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS  PubMed  Google Scholar 

  47. Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).

    PubMed  PubMed Central  Google Scholar 

  48. Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M. & Barton, G. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Arndt, D. et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 44, W16–W21 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D. Hung’s lab for providing ∆kinB,algB,algR and ∆algU mutants and G. O’Toole’s lab for providing the csy3::lacZ PA14 strain. We thank K. Trotta (S. Chou’s lab, UCSF) for advice in the development of fluorescent assays and A. Santiago-Frangos (B. Wiedenheft’s lab, MSU) for advice and consultation. J.B.-D.’s lab was supported by the UCSF Program for Breakthrough in Biomedical Research (funded in part by the Sandler Foundation), the Innovative Genomics Institute, a National Institutes of Health Office of the Director Early Independence Award (no. DP5-OD021344) and grant no. R01GM127489.

Author information

Authors and Affiliations

Authors

Contributions

J.B.-D., A.L.B. and B.C. formulated the study design and plans. A.L.B. performed CRISPR–Cas activity and expression profiling and conducted bioinformatics analyses. B.C. conducted the genetic screen and constructed and characterized bacterial mutants. S.G. constructed sfCherry reporter strains. T.S. conducted CRISPRi assays. V.E. assisted in establishing reporter assays. J.B.-D. and A.L.B wrote the manuscript.

Corresponding author

Correspondence to Joseph Bondy-Denomy.

Ethics declarations

Competing interests

J.B.-D. is a scientific advisory board member of SNIPR Biome and Excision Biotherapeutics and a scientific advisory board member and cofounder of Acrigen Biosciences.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Mapped insertions from transposon mutagenesis screen.

All independent transposon insertions identified and mapped by visual screening with increased or decreased csy3::lacZ β-galactosidase activity. β-galactosidase activity is expressed as a percentage of the unmutagenized parent strain, and measurements were taken at a single timepoint after 8 h of growth in liquid culture. The insertion location in the PA14 genome is shown, along with the measured level of β-galactosidase enzyme at the 8 hour timepoint. These measurements were not determined (N/D) for strains with a growth defect.

Extended Data Fig. 2 Characterization of kinB::Tn mutants.

a. A streak plate on X-gal plates, showing strains involved in this study and isolated transposon (Tn) insertions. csy3::lacZ is a derivative of WT PA14, and is the unmutagenized parent of kinB::Tn 1-3. b. β-galactosidase measurements of strains grown in liquid culture for the indicuated time. Measurements for the unmutagenized (csy3::lacZ) parent strain and three isolated kinB transposon mutants (kinB::Tn1-3) are shown, as well as a control PA14 culture with no lacZ insertion. c. Phage titration on lawns of the kinB::Tn1 mutant transformed with empty vector or kinB. d. Spot titration of phages JBD26 (CR2_sp17, sp20-targeted, possessing acrIF4), JBD25 (CR1_sp1 targeted) on kinB::Tn mutants and ∆CRISPR-Cas. These experiments have been replicated at least 2 times with consistent results.

Extended Data Fig. 3 Double knockouts of pathway members.

a, b. Efficiency of immunity measurements for indicated mutants relative to WT. a. Double knockouts show ∆kinB combined with algB, algU, algR, or amrZ. EOI measurements are shown as the mean of 3 biological replicates, ± S.D. Mutants show increased EOI against DMS3macrIF4 relative to WT (∆kinB∆algB, P = 3.8 x 10-2, ∆kinB∆algU, P = 5.9 x 10-3, ∆kinB∆algR, P = 1.5 x 10-2, ∆kinB∆amrZ, P= 3.2 x 10-3) Two-tailed unpaired Student’s T-test was used to calculate P value, *p < 0.05, **p < 0.01. b. Indicated knockouts were combined with csy3::lacZ, EOI shown as the mean of two biological replicates.. These experiments have been replicated at least 2 times with consistent results.

Source data

Extended Data Fig. 4 AmrZ activity in liquid growth.

a. qRT-PCR measurements of transcript levels of csy3 (light grey) and cas3 (dark grey) normalized to the housekeeping gene rpsL after 8 h of growth in liquid culture. Measurements are represented as the mean of 3 technical replicates. b. Measurement of the fluorescence levels of Csy1-sfCherry (light grey) or Cas3-sfCherry (dark grey) reporter strains after 10 h of growth in liquid culture. Fluorescence measurements are represented as the mean of 3 biological replicates +/- SD. Cas3-sfCherry (P = 0.26) and Csy1-sfCherry levels (P = 0.35) in ∆amrZ did not differ significantly from WT. Two-tailed unpaired Student’s T-test was used to calculate P value, ns = not significant c. csy3::lacZ β-galactosidase activity from PA14 WT csy3::lacZ transformed with either empty vector (EV) or a plasmid overexpressing AmrZ (+AmrZ). β-galactosidase reporter activity was measured after 8 h in liquid growth and is represented as the mean of 3 technical replicates. Experiment was replicated two times with consistent results.

Source data

Extended Data Fig. 5 Mobile AmrZ homologs.

AmrZ homologs listed by the genome that encodes them, the accession number, and the mobile genetic element type.

Extended Data Fig. 6 AmrZ copy number analysis of two Pseudomonas aeruginosa strains.

AmrZ copy number analysis of two different strains of Pseudomonas aeruginosa. AmrZ homologs listed by accession number and their genomic coordinates. Phaster49 was used to identify the prophages encoding mobile AmrZ copies.

Extended Data Fig. 7 Cas and Csy RNA and protein levels across growth conditions.

a. Log2 of Fragments Per Kilobase of transcript per Million mapped reads (FPKM) shown for each I-F cas gene in PA14 in the indicated growth condition43. b. Log2 of protein levels for each of the I-F Cas proteins in PA14 in the indicated growth condition44.

Source data

Supplementary Information

Reporting Summary

Supplementary Table 1

Strains, plasmids and primers.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 7

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borges, A.L., Castro, B., Govindarajan, S. et al. Bacterial alginate regulators and phage homologs repress CRISPR–Cas immunity. Nat Microbiol 5, 679–687 (2020). https://doi.org/10.1038/s41564-020-0691-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-020-0691-3

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology