Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The Rcs stress response inversely controls surface and CRISPR–Cas adaptive immunity to discriminate plasmids and phages

Abstract

Bacteria harbour multiple innate defences and adaptive CRISPR–Cas systems that provide immunity against bacteriophages and mobile genetic elements. Although some bacteria modulate defences in response to population density, stress and metabolic state, a lack of high-throughput methods to systematically reveal regulators has hampered efforts to understand when and how immune strategies are deployed. We developed a robust approach called SorTn-seq, which combines saturation transposon mutagenesis, fluorescence-activated cell sorting and deep sequencing to characterize regulatory networks controlling CRISPR–Cas immunity in Serratia sp. ATCC 39006. We applied our technology to assess csm gene expression for ~300,000 mutants and uncovered multiple pathways regulating type III-A CRISPR–Cas expression. Mutation of igaA or mdoG activated the Rcs outer-membrane stress response, eliciting cell-surface-based innate immunity against diverse phages via the transcriptional regulators RcsB and RcsA. Activation of this Rcs phosphorelay concomitantly attenuated adaptive immunity by three distinct type I and III CRISPR–Cas systems. Rcs-mediated repression of CRISPR–Cas defence enabled increased acquisition and retention of plasmids. Dual downregulation of cell-surface receptors and adaptive immunity in response to stress by the Rcs pathway enables protection from phage infection without preventing the uptake of plasmids that may harbour beneficial traits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the type III-A csm promoter, fluorescent reporter plasmid and high-throughput SorTn-seq workflow.
Fig. 2: SorTn-seq reveals type III-A CRISPR–Cas regulators.
Fig. 3: Rcs pathway activation represses type III CRISPR–Cas activity.
Fig. 4: Induction of the Rcs pathway represses type I CRISPR–Cas activity and leads to decreased CRISPR adaptation and greater plasmid retention.
Fig. 5: Mutations inducing the Rcs pathway confer innate immunity against phage infection.
Fig. 6: Proposed model of phage defence strategy and effects on HGT on Rcs phosphorelay activation.

Similar content being viewed by others

Data availability

Additional data that support the findings of the present study are available from the corresponding author upon request. Sequencing data are available in the Sequence Read Archive under BioProject no. PRJNA601789. The annotated genome of Serratia sp. ATCC 39006—LacA is available through the NCBI (reference sequence NZ_CP025085.1) (https://www.ncbi.nlm.nih.gov/nuccore/NZ_CP025085.1). Source data are provided with this paper.

Code availability

Custom R scripts (SorTnSeq.R and SorTnSeq_Statistics.R) and files required for data processing (serratia_master_features_table.xlsx) are available on GitHub (https://github.com/JacksonLab/SorTn-seq).

References

  1. Hampton, H. G., Watson, B. N. J. & Fineran, P. C. The arms race between bacteria and their phage foes. Nature 577, 327–336 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Hille, F. et al. The biology of CRISPR–Cas: backward and forward. Cell 172, 1239–1259 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Partridge, S. R., Kwong, S. M., Firth, N. & Jensen, S. O. Mobile genetic elements associated with antimicrobial resistance. Clin. Microbiol. Rev. 31, https://doi.org/10.1128/CMR.00088-17 (2018).

  4. Willyard, C. The drug-resistant bacteria that pose the greatest health threats. Nature 543, 15–15 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Kortright, K. E., Chan, B. K., Koff, J. L. & Turner, P. E. Phage therapy: a renewed approach to combat antibiotic-resistant bacteria. Cell Host Microbe 25, 219–232 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Bernheim, A. & Sorek, R. The pan-immune system of bacteria: antiviral defence as a community resource. Nat. Rev. Microbiol. 18, 113–119 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Jackson, S. A. et al. CRISPR–Cas: adapting to change. Science 356, https://doi.org/10.1126/science.aal5056 (2017).

  8. Makarova, K. S. et al. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-019-0299-x (2019).

  9. Nicholson, T. J. et al. Bioinformatic evidence of widespread priming in type I and II CRISPR–Cas systems. RNA Biol. 16, 566–576 (2019).

    Article  PubMed  Google Scholar 

  10. Silas, S. et al. Type III CRISPR-Cas systems can provide redundancy to counteract viral escape from type I systems. eLife 6, https://doi.org/10.7554/eLife.27601 (2017).

  11. Deng, L., Garrett, R. A., Shah, S. A., Peng, X. & She, Q. A novel interference mechanism by a type IIIB CRISPR-Cmr module in Sulfolobus. Mol. Microbiol. 87, 1088–1099 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Elmore, J. R. et al. Bipartite recognition of target RNAs activates DNA cleavage by the type III-B CRISPR–Cas system. Genes Dev. 30, 447–459 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tamulaitis, G., Venclovas, C. & Siksnys, V. Type III CRISPR–Cas immunity: major differences brushed aside. Trends Microbiol. 25, 49–61 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Kazlauskiene, M., Kostiuk, G., Venclovas, C., Tamulaitis, G. & Siksnys, V. A cyclic oligonucleotide signaling pathway in type III CRISPR–Cas systems. Science 357, 605–609 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Niewoehner, O. et al. Type III CRISPR–Cas systems produce cyclic oligoadenylate second messengers. Nature 548, 543–548 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. McMahon, S. A. et al. Structure and mechanism of a type III CRISPR defence DNA nuclease activated by cyclic oligoadenylate. Nat. Commun. 11, 500 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vercoe, R. B. et al. Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands. PLoS Genet. 9, e1003454 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stern, A., Keren, L., Wurtzel, O., Amitai, G. & Sorek, R. Self-targeting by CRISPR: gene regulation or autoimmunity? Trends Genet. 26, 335–340 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vale, P. F. et al. Costs of CRISPR–Cas-mediated resistance in Streptococcus thermophilus. Proc. Biol. Sci. 282, 20151270 (2015).

    PubMed  PubMed Central  Google Scholar 

  20. Weissman, J. L., Stoltzfus, A., Westra, E. R. & Johnson, P. L. F. Avoidance of self during CRISPR immunization. Trends Microbiol. 28, 543–553 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Patterson, A. G., Yevstigneyeva, M. S. & Fineran, P. C. Regulation of CRISPR–Cas adaptive immune systems. Curr. Opin. Microbiol. 37, 1–7 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Smith, L. M., Rey Campa, A. & Fineran, P. C. in CRISPR–Cas systems (eds Marraffini, L. A. et al.) (ASM Press, 2021).

  23. Pyenson, N. C., Gayvert, K., Varble, A., Elemento, O. & Marraffini, L. A. Broad targeting specificity during bacterial type III CRISPR–Cas immunity constrains viral escape. Cell Host Microbe 22, 343–353 e343 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Malone, L. M. et al. A jumbo phage that forms a nucleus-like structure evades CRISPR–Cas DNA targeting but is vulnerable to type III RNA-based immunity. Nat. Microbiol. 5, 48–55 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Shinkai, A. et al. Transcription activation mediated by a cyclic AMP receptor protein from Thermus thermophilus HB8. J. Bacteriol. 189, 3891–3901 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bernal-Bernal, D. et al. Multifactorial control of the expression of a CRISPR–Cas system by an extracytoplasmic function sigma/anti-sigma pair and a global regulatory complex. Nucleic Acids Res. 46, 6726–6745 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Agari, Y. et al. Transcription profile of Thermus thermophilus CRISPR systems after phage infection. J. Mol. Biol. 395, 270–281 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Wall, E., Majdalani, N. & Gottesman, S. The complex Rcs regulatory cascade. Annu. Rev. Microbiol. 72, 111–139 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Gottesman, S., Trisler, P. & Torres-Cabassa, A. Regulation of capsular polysaccharide synthesis in Escherichia coli K-12: characterization of three regulatory genes. J. Bacteriol. 162, 1111–1119 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hussein, N. A., Cho, S. H., Laloux, G., Siam, R. & Collet, J. F. Distinct domains of Escherichia coli IgaA connect envelope stress sensing and down-regulation of the Rcs phosphorelay across subcellular compartments. PLoS Genet. 14, e1007398 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Cho, S. H. et al. Detecting envelope stress by monitoring beta-barrel assembly. Cell 159, 1652–1664 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Castanie-Cornet, M. P., Cam, K. & Jacq, A. RcsF is an outer membrane lipoprotein involved in the RcsCDB phosphorelay signaling pathway in Escherichia coli. J. Bacteriol. 188, 4264–4270 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wall, E. A., Majdalani, N. & Gottesman, S. IgaA negatively regulates the Rcs phosphorelay via contact with the RcsD phosphotransfer protein. PLoS Genet. 16, e1008610 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Guo, X. P. & Sun, Y. C. New insights into the non-orthodox two component Rcs phosphorelay system. Front. Microbiol. 8, 2014 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Stout, V., Torres-Cabassa, A., Maurizi, M. R., Gutnick, D. & Gottesman, S. RcsA, an unstable positive regulator of capsular polysaccharide synthesis. J. Bacteriol. 173, 1738–1747 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gottesman, S. & Stout, V. Regulation of capsular polysaccharide synthesis in Escherichia coli K12. Mol. Microbiol. 5, 1599–1606 (1991).

    Article  CAS  PubMed  Google Scholar 

  38. Sledjeski, D. & Gottesman, S. A small RNA acts as an antisilencer of the H-NS-silenced rcsA gene of Escherichia coli. Proc. Natl Acad. Sci. USA 92, 2003–2007 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ebel, W. & Trempy, J. E. Escherichia coli RcsA, a positive activator of colanic acid capsular polysaccharide synthesis, functions to activate its own expression. J. Bacteriol. 181, 577–584 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Majdalani, N., Chen, S., Murrow, J., St John, K. & Gottesman, S. Regulation of RpoS by a novel small RNA: the characterization of RprA. Mol. Microbiol. 39, 1382–1394 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Majdalani, N., Hernandez, D. & Gottesman, S. Regulation and mode of action of the second small RNA activator of RpoS translation, RprA. Mol. Microbiol. 46, 813–826 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Bohin, J. P. Osmoregulated periplasmic glucans in Proteobacteria. FEMS Microbiol. Lett. 186, 11–19 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Bontemps-Gallo, S., Bohin, J. & Lacroix, J. Osmoregulated periplasmic glucans. EcoSal Plus https://doi.org/10.1128/ecosalplus.ESP-0001-2017 (2017).

  44. Bontemps-Gallo, S. & Lacroix, J. M. New insights into the biological role of the osmoregulated periplasmic glucans in pathogenic and symbiotic bacteria. Environ. Microbiol. Rep. 7, 690–697 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ebel, W., Vaughn, G. J., Peters, H. K.III. & Trempy, J. E. Inactivation of mdoH leads to increased expression of colanic acid capsular polysaccharide in Escherichia coli. J. Bacteriol. 179, 6858–6861 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bontemps-Gallo, S. et al. Concentration of osmoregulated periplasmic glucans (OPGs) modulates the activation level of the RcsCD RcsB phosphorelay in the phytopathogen bacteria Dickeya dadantii. Environ. Microbiol. 15, 881–894 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Girgis, H. S., Liu, Y., Ryu, W. S. & Tavazoie, S. A comprehensive genetic characterization of bacterial motility. PLoS Genet. 3, 1644–1660 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Madec, E., Bontemps-Gallo, S. & Lacroix, J. M. Increased phosphorylation of the RcsB regulator of the RcsCDB phosphorelay in strains of Dickeya dadantii devoid of osmoregulated periplasmic glucans revealed by Phos-tag gel analysis. Microbiology 160, 2763–2770 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Bouchart, F. et al. The virulence of a Dickeya dadantii 3937 mutant devoid of osmoregulated periplasmic glucans is restored by inactivation of the RcsCD–RcsB phosphorelay. J. Bacteriol. 192, 3484–3490 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Konovalova, A., Perlman, D. H., Cowles, C. E. & Silhavy, T. J. Transmembrane domain of surface-exposed outer membrane lipoprotein RcsF is threaded through the lumen of beta-barrel proteins. Proc. Natl Acad. Sci. USA 111, E4350–E4358 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rigel, N. W. & Silhavy, T. J. Making a beta-barrel: assembly of outer membrane proteins in Gram-negative bacteria. Curr. Opin. Microbiol. 15, 189–193 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Konovalova, A., Mitchell, A. M. & Silhavy, T. J. A lipoprotein/beta-barrel complex monitors lipopolysaccharide integrity transducing information across the outer membrane. eLife 5, https://doi.org/10.7554/eLife.15276 (2016).

  53. Kalynych, S., Morona, R. & Cygler, M. Progress in understanding the assembly process of bacterial O-antigen. FEMS Microbiol. Rev. 38, 1048–1065 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Ren, G., Wang, Z., Li, Y., Hu, X. & Wang, X. Effects of lipopolysaccharide core sugar deficiency on colanic acid biosynthesis in Escherichia coli. J. Bacteriol. 198, 1576–1584 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang, C. et al. Colanic acid biosynthesis in Escherichia coli is dependent on lipopolysaccharide structure and glucose availability. Microbiol. Res. 239, 126527 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Patterson, A. G. et al. Quorum sensing controls adaptive immunity through the regulation of multiple CRISPR–Cas systems. Mol. Cell 64, 1102–1108 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Datsenko, K. A. et al. Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. Nat. Commun. 3, 945 (2012).

    Article  PubMed  CAS  Google Scholar 

  58. Swarts, D. C., Mosterd, C., van Passel, M. W. & Brouns, S. J. CRISPR interference directs strand specific spacer acquisition. PLoS ONE 7, e35888 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Evans, T. J. et al. Characterization of a broad-host-range flagellum-dependent phage that mediates high-efficiency generalized transduction in, and between, Serratia and Pantoea. Microbiology 156, 240–247 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Jackson, S. A., Birkholz, N., Malone, L. M. & Fineran, P. C. Imprecise spacer acquisition generates CRISPR–Cas immune diversity through primed adaptation. Cell Host Microbe 25, 250–260 e254 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Rendueles, O., Garcia-Garcera, M., Neron, B., Touchon, M. & Rocha, E. P. C. Abundance and co-occurrence of extracellular capsules increase environmental breadth: implications for the emergence of pathogens. PLoS Pathog. 13, e1006525 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Paynter, M. J. & Bungay, H. R. III. Capsular protection against virulent coliphage infection. Biotechnol. Bioeng. 12, 341–346 (1970).

    Article  CAS  PubMed  Google Scholar 

  63. Stella, N. A. et al. An IgaA/UmoB family protein from Serratia marcescens regulates motility, capsular polysaccharide biosynthesis, and secondary metabolite production. Appl. Environ. Microbiol. 84, https://doi.org/10.1128/AEM.02575-17 (2018).

  64. Schwechheimer, C. & Kuehn, M. J. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat. Rev. Microbiol. 13, 605–619 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dineshkumar, K. et al. Bacterial bug-out bags: outer membrane vesicles and their proteins and functions. J. Microbiol. https://doi.org/10.1007/s12275-020-0026-3 (2020).

  66. Meng, J., Bai, J. & Chen, J. Transcriptomic analysis reveals the role of RcsB in suppressing bacterial chemotaxis, flagellar assembly and infection in Yersinia enterocolitica. Curr. Genet. https://doi.org/10.1007/s00294-020-01083-x (2020).

  67. Rousset, F. et al. Genome-wide CRISPR-dCas9 screens in E. coli identify essential genes and phage host factors. PLoS Genet. 14, e1007749 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Mutalik, V. K. et al. High-throughput mapping of the phage resistance landscape in E. coli. PLoS Biol. 18, e3000877 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. van Houte, S., Buckling, A. & Westra, E. R. Evolutionary ecology of prokaryotic immune mechanisms. Microbiol. Mol. Biol. Rev. 80, 745–763 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Perez-Mendoza, D. & de la Cruz, F. Escherichia coli genes affecting recipient ability in plasmid conjugation: are there any? BMC Genomics 10, 71 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Wang, D. et al. Genome-wide identification of genes regulated by the Rcs phosphorelay system in Erwinia amylovora. Mol. Plant Microbe Interact. 25, 6–17 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Fredericks, C. E., Shibata, S., Aizawa, S., Reimann, S. A. & Wolfe, A. J. Acetyl phosphate-sensitive regulation of flagellar biogenesis and capsular biosynthesis depends on the Rcs phosphorelay. Mol. Microbiol. 61, 734–747 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Ancona, V., Chatnaparat, T. & Zhao, Y. Conserved aspartate and lysine residues of RcsB are required for amylovoran biosynthesis, virulence, and DNA binding in Erwinia amylovora. Mol. Genet. Genomics 290, 1265–1276 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Garcia-Calderon, C. B., Garcia-Quintanilla, M., Casadesus, J. & Ramos-Morales, F. Virulence attenuation in Salmonella enterica rcsC mutants with constitutive activation of the Rcs system. Microbiology 151, 579–588 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Westra, E. R. et al. Parasite exposure drives selective evolution of constitutive versus inducible defense. Curr. Biol. 25, 1043–1049 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Jiang, W. et al. Dealing with the evolutionary downside of CRISPR immunity: bacteria and beneficial plasmids. PLoS Genet. 9, e1003844 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bikard, D., Hatoum-Aslan, A., Mucida, D. & Marraffini, L. A. CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection. Cell Host Microbe 12, 177–186 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Laubacher, M. E. & Ades, S. E. The Rcs phosphorelay is a cell envelope stress response activated by peptidoglycan stress and contributes to intrinsic antibiotic resistance. J. Bacteriol. 190, 2065–2074 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. McMahon, K. J., Castelli, M. E., Garcia Vescovi, E. & Feldman, M. F. Biogenesis of outer membrane vesicles in Serratia marcescens is thermoregulated and can be induced by activation of the Rcs phosphorelay system. J. Bacteriol. 194, 3241–3249 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Manning, A. J. & Kuehn, M. J. Contribution of bacterial outer membrane vesicles to innate bacterial defense. BMC Microbiol. 11, 258 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hirakawa, H., Nishino, K., Hirata, T. & Yamaguchi, A. Comprehensive studies of drug resistance mediated by overexpression of response regulators of two-component signal transduction systems in Escherichia coli. J. Bacteriol. 185, 1851–1856 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Abedon, S. T. Phage-antibiotic combination treatments: antagonistic impacts of antibiotics on the pharmacodynamics of phage therapy? Antibiotics 8, https://doi.org/10.3390/antibiotics8040182 (2019).

  83. Hesse, S. & Adhya, S. Phage therapy in the twenty-first century: facing the decline of the antibiotic era; is it finally time for the age of the phage? Annu. Rev. Microbiol. 73, 155–174 (2019).

    Article  CAS  PubMed  Google Scholar 

  84. Salvail, H. & Groisman, E. A. The phosphorelay BarA/SirA activates the non-cognate regulator RcsB in Salmonella enterica. PLoS Genet. 16, e1008722 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cain, A. K. et al. A decade of advances in transposon-insertion sequencing. Nat. Rev. Genet. https://doi.org/10.1038/s41576-020-0244-x (2020).

  86. van Opijnen, T. & Levin, H. L. Transposon insertion sequencing, a global measure of gene function. Annu. Rev. Genet. https://doi.org/10.1146/annurev-genet-112618-043838 (2020).

  87. Kwon, Y. M., Ricke, S. C. & Mandal, R. K. Transposon sequencing: methods and expanding applications. Appl. Microbiol. Biotechnol. 100, 31–43 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Richter, C. et al. Priming in the type I-F CRISPR–Cas system triggers strand-independent spacer acquisition, bi-directionally from the primed protospacer. Nucleic Acids Res. 42, 8516–8526 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Schmieder, R. & Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 27, 863–864 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Barquist, L. et al. The TraDIS toolkit: sequencing and analysis for dense transposon mutant libraries. Bioinformatics 32, 1109–1111 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Patterson, A. G., Chang, J. T., Taylor, C. & Fineran, P. C. Regulation of the type I-F CRISPR–Cas system by CRP-cAMP and GalM controls spacer acquisition and interference. Nucleic Acids Res. 43, 6038–6048 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ramsay, J. High-throughput β-galactosidase and β-glucuronidase assays using fluorogenic substrates. Bio-protocol 3, e827 (2013).

    Article  Google Scholar 

  93. Ashburner, M. et al. Gene Ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. The Gene Ontology Consortium. The gene ontology resource: 20 years and still GOing strong. Nucleic Acids Res. 47, D330–D338 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Marsden Fund from the Royal Society of New Zealand (to P.C.F. and P.P.G.) and the School of Biomedical Sciences Bequest Fund from the University of Otago (to P.C.F., S.A.J., J.E.U. and P.P.G.). L.M.S. and L.M.M. were supported by University of Otago Doctoral Scholarships. We thank the staff of the Otago Micro and Nano Imaging facility for assistance with electron microscopy, M. Wilson for help with cell sorting and A. Jeffs of the Otago Genomics Facility for assistance with sequencing. We thank H. Hampton, A. Rey Campa, M. Yevstigneyeva and G. Salmond for providing strains and plasmids, and members of the Fineran laboratory for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

L.M.S. designed experiments, performed the SorTn-seq and the bioinformatic analyses, constructed plasmids and mutants, performed all reporter, interference, adaptation, phage adsorption and microscopy experiments, and prepared all the figures. S.A.J. designed experiments, performed bioinformatic analyses, constructed plasmids and provided supervision. L.M.M. generated strains and provided phages. J.E.U. provided supervision and input into the flow cytometry. P.P.G. assisted with bioinformatic analyses and supervision. P.C.F. conceptualized the study, designed experiments and supervised the project. L.M.S. and P.C.F. wrote the manuscript. All authors edited the manuscript.

Corresponding author

Correspondence to Peter C. Fineran.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Microbiology thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Classification of significantly enriched genes and model of csm regulation in Serratia.

a,b, Categories shown are Gene Ontology classifications93,94 from the a, low expression bin and b, high expression bin. Locus tags and Gene Ontology information is detailed in Supplementary Table 2 (NA = no Gene Ontology term assigned). c, Main regulatory pathways controlling type III-A CRISPR-Cas immunity in Serratia. Features identified through csm SorTn-seq are shown in dark blue. Dashed lines indicate that the mechanism of regulation (direct versus indirect) is unknown. Connections between pathways that have been established in other organisms but have not yet been demonstrated in Serratia are indicated by a question mark (QS = quorum sensing).

Extended Data Fig. 2 Levels of csm expression and Rcs pathway-related promoters.

a, Activity of the csm promoter was measured in strains containing a chromosomal LacZ reporter (Pcsm-lacZ) or no reporter controls (lacZ—controls) (n = 6 biologically independent samples). b, Expression of the csm promoter was partially restored in the igaA mutant background upon expression of igaA from a low copy number plasmid (pPF2143, RK2 origin; T5-lac promoter) versus control plasmid (pPF1622) (n = 5 biologically independent samples). MFI, median fluorescence intensity. c, Organization of a predicted capsular polysaccharide biosynthesis locus and predicted rcsA gene in Serratia. d, Expression levels of the rcsA promoter (PrcsA) is elevated in strains igaA and mdoG, which suggests positive autoregulation of rcsA upon Rcs-pathway induction (n = 5 biologically independent samples). e, Capsule locus expression, measured from a wza promoter fusion to eYFP (Pwza), was reduced in Rcs-activated strains igaA and mdoG. The decrease in capsule locus expression is consistent with TEM imaging which showed no evidence of capsule synthesis in the igaA mutant (n = 5 biologically independent samples). All bars shown are the mean and error bars represent the s.e.m. For panels d and e, two-sided t-tests were used to determine statistical significance. Detailed statistical testing can be found in the accompanying Source Data file. ****P < 0.0001; ***P < 0.001.

Source data

Extended Data Fig. 3 The Rcs pathway mediated changes in type I expression and interference.

a, Repression of type I-E cas3 expression requires rcsB in both strains mdoG and igaA, while rcsA contributes to repression only in strain igaA. The reduction of cas3 expression is independent of rprA (n = 5 biologically independent samples). MFI, median fluorescence intensity. b, Repression of type I-F cas1 expression requires both rcsB and rcsA in strain igaA and is independent of rprA (n = 5 biologically independent samples). c, CRISPR-Cas interference measured through conjugation efficiency of plasmids carrying protospacers matching endogenous CRISPR arrays (targeted) or control plasmids (untargeted). Type I-E CRISPR-Cas interference of the igaA strain is restored upon deletion of rcsB, and partially restored upon deletion of rcsA (I-E targeted). Type I-F interference levels of the igaA strain are restored upon deletion of rcsB or rcsA (I-F targeted). Conjugation efficiency of untargeted plasmids is similar amongst rcsA or rcsB deletions and isogenic parental strains (untargeted) (n = 3 biologically independent samples). All bars shown are the mean and error bars represent the s.e.m. For panels a and b, two-sided t-tests were used to determine statistical significance. Detailed statistical testing can be found in the accompanying Source Data file. ****P < 0.0001; **P < 0.01; ns, not significant.

Source data

Extended Data Fig. 4 Activation of the Rcs pathway results in attenuated phage infection and reduced swimming motility.

a, During infection on plates, strain igaA is resistant to all phages. Faint clearing of the mdoG lawn is visible at high titers for flagellatropic phages OT8, JS26 and PCH45 (-1; ~109 PFU/ml and -2; ~108 PFU/ml). Infection of mdoG by LC53 is reduced on plates compared to WT. b, Strain mdoG is resistant to infection by flagellatropic phages in liquid, while remaining susceptible to phage LC53 (n = 3 biologically independent samples; lines represent the mean + /- the standard deviation). MOI, multiplicity of infection. c, Reduced swimming in mdoG and null swimming in igaA mutants is consistent with activation of the Rcs pathway. Deletion of rcsBrcsB) restores swimming motility to wild-type levels in mdoG and igaA mutant backgrounds, while deletion of the rcsA homolog RS09790 (ΔrcsA) does not. The partial restoration of swimming in strain igaA upon rcsA deletion is consistent with partial increase in flhDC expression (Extended Data Fig. 6), as well as partial re-sensitization to flagellatropic phages. (Extended Data Fig. 5). Deletion of both rcsA and rcsBrcsAB), results in similar swimming motility as the rcsB deletion.

Source data

Extended Data Fig. 5 Phage resistance in strains igaA and mdoG is dependent on the Rcs pathway.

a, Deletion of rcsB restores susceptibility of strains igaA and mdoG to flagellatropic phage OT8. Deletion of rcsA partially sensitizes igaA to OT8, while mdoG remains largely resistant (n = 3 biologically independent samples). MOI, multiplicity of infection. These results support the partial role for rcsA in swimming motility (Extended Data Fig. 4) and flagella gene repression (Extended Data Fig. 6) observed in igaA but not mdoG. b, Deletion of either rcsB or rcsA restores susceptibility of strain igaA to phage LC53 resistant (n = 3 biologically independent samples). Lines in a and b represent the mean +/− the standard deviation.

Source data

Extended Data Fig. 6 Genetic organization and expression levels of Rcs-affected loci.

a, Expression of the flhDC operon (flagella master regulator) promoter (PflhDC) is reduced in Rcs-activated strains. In strain igaA, restoration of expression to WT levels occurs upon deletion rcsB and rcsD, while rcsA deletion partially restores expression. Repression of PflhDC is independent of rprA. In mdoG, flhDC expression is increased upon deletion of rcsB and rcsD but is unaffected by rcsA deletion (n = 5 biologically independent samples). MFI, median fluorescence intensity. b, Expression of the ompW promoter (PompW) is reduced in Rcs-activated strains. In strain igaA, an increase in expression is observed upon deletion rcsB, rcsD, or rcsA. In mdoG, the slight decrease in ompW expression does not alter phage LC53 infectivity in liquid but may contribute to an observed reduction in plaque formation on solid media (Extended Data Fig. 4). Repression of ompW is independent of rprA in the igaA mutant (n = 5 biologically independent samples). All bars indicate the mean and error bars represent the s.e.m. Two-sided t-tests were used to determine statistical significance. Detailed statistical testing can be found in the accompanying Source Data file. ****P < 0.0001; **P < 0.01; ns, not significant.

Source data

Supplementary information

Supplementary Information

Supplementary Discussion, Supplementary Figs. 1–2 and Supplementary Tables 1–6.

Reporting summary

Supplementary Data 1

Complete edgeR output of genes and intergenic regions tested during csm SorTn-seq analysis. Fold changes and associated P values are indicated for features in the high and low libraries, as compared against the depleted control.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 4

Unprocessed gels.

Source Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 6

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, L.M., Jackson, S.A., Malone, L.M. et al. The Rcs stress response inversely controls surface and CRISPR–Cas adaptive immunity to discriminate plasmids and phages. Nat Microbiol 6, 162–172 (2021). https://doi.org/10.1038/s41564-020-00822-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-020-00822-7

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology