Anthropogenic impact on the atmospheric microbiome

The atmosphere has undergone extensive physico-chemical change due to anthropogenic emissions. The impact on the ecology of the atmospheric microbiome has so far not been considered. Here, we define the scope of change to the atmosphere and identify potential microbial responses.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Anthropogenic impacts on the atmospheric microbiome.

Change history

  • 25 February 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. 1.

    IPCC Climate Change 2007: Synthesis Report (eds Core Writing Team, Pachauri, R. K. and Reisinger, A.) (IPCC, 2007).

  2. 2.

    Zhang, Y. & Tao, S. Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004. Atmos. Environ. 43, 812–819 (2009).

  3. 3.

    Klimont, Z. et al. Global anthropogenic emissions of particulate matter including black carbon. Atmos. Chem. Phys. 17, 8681–8723 (2017).

  4. 4.

    Bryan, N. C., Christner, B. C., Guzik, T. G., Granger, D. J. & Stewart, M. F. Abundance and survival of microbial aerosols in the troposphere and stratosphere. ISME J. 13, 2789–2799 (2019).

  5. 5.

    Fröhlich-Nowoisky, J. et al. Bioaerosols in the Earth system: Climate, health, and ecosystem interactions. Atmos. Res. 182, 346–376 (2016).

  6. 6.

    Nogales, B., Lanfranconi, M. P., Piña-Villalonga, J. M. & Bosch, R. Anthropogenic perturbations in marine microbial communities. FEMS Microbiol. Rev. 35, 275–298 (2011).

  7. 7.

    Cavicchioli, R. et al. Scientists’ warning to humanity: microorganisms and climate change. Nat. Rev. Microbiol. 17, 569–586 (2019).

  8. 8.

    Singh, B. K., Bardgett, R. D., Smith, P. & Reay, D. S. Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat. Rev. Microbiol. 8, 779–790 (2010).

  9. 9.

    Caliz, J., Triadó-Margarit, X., Camarero, L. & Casamayor, E. O. A long-term survey unveils consistent seasonal trends in the airborne microbiome composition coupled to air masses circulation. Proc. Natl Acad. Sci. USA 115, 12229–12234 (2019).

  10. 10.

    Els, N. et al. Microbial composition in seasonal time series of free tropospheric air and precipitation reveals community separation. Aerobiologia 35, 671–701 (2019).

  11. 11.

    Archer, S. D. J. et al. Airborne microbial transport limitation to isolated Antarctic soil habitats. Nat. Microbiol. 4, 925–932 (2019).

  12. 12.

    Mayol, E. et al. Long-range transport of airborne microbes over the global tropical and subtropical ocean. Nat. Commun. 8, 201 (2017).

  13. 13.

    Maki, T. et al. Aeolian dispersal of bacteria associated with desert dust and anthropogenic particles over continental and oceanic surfaces. J. Geophys. Res.-Atmos. 124, 5579–5588 (2019).

  14. 14.

    Sattler, B., Puxbaum, H. & Psenner, R. Bacterial growth in supercooled cloud droplets. Geophys. Res. Lett. 28, 239–242 (2001).

  15. 15.

    Amato, P. et al. Metatranscriptomic exploration of microbial functioning in clouds. Sci. Rep. 9, 4383 (2019).

  16. 16.

    Spracklen, D. V. & Heald, C. L. The contribution of fungal spores and bacteria to regional and global aerosol number and ice nucleation immersion freezing rates. Atmos. Chem. Phys. 14, 9051–9059 (2014).

  17. 17.

    Vaïtilingom, M. et al. Potential impact of microbial activity on the oxidant capacity and organic carbon budget in clouds. Proc. Natl Acad. Sci. USA 110, 559–564 (2013).

  18. 18.

    Global Carbon Budget. Global Carbon Project https://www.globalcarbonproject.org/carbonbudget/ (2018).

  19. 19.

    Global Methane Budget. Global Carbon Project https://www.globalcarbonproject.org/methanebudget/ (2016).

  20. 20.

    Ji, M. et al. Atmospheric trace gases support primary production in Antarctic desert surface soil. Nature 552, 400–403 (2017).

  21. 21.

    Kim, K.-H., Jahan, S. A., Kabir, E. & Brown, R. J. C. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ. Int. 60, 71–80 (2013).

  22. 22.

    Cerniglia, C. E. Biodegradation of polycyclic aromatic hydrocarbons. Curr. Opin. Biotechnol. 4, 331–338 (1993).

  23. 23.

    Laskin, A., Laskin, J. & Nizkorodov, S. A. Chemistry of Atmospheric Brown Carbon. Chem. Rev. 115, 4335–4382 (2015).

  24. 24.

    Pointing, S. B. & Belnap, J. Disturbance to desert soil ecosystems contributes to dust-mediated impacts at regional scales. Biodivers. Conserv. 23, 1659–1667 (2014).

  25. 25.

    Hayakawa, K. et al. Long term trends in atmospheric concentrations of polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons: A study of Japanese cities from 1997 to 2014. Environ. Pollut. 233, 474–482 (2018).

  26. 26.

    Woo, A. C. et al. Temporal variation in airborne microbial populations and microbially-derived allergens in a tropical urban landscape. Atmos. Environ. 74, 291–300 (2013).

  27. 27.

    Smets, W., Moretti, S., Denys, S. & Lebeer, S. Airborne bacteria in the atmosphere: Presence, purpose, and potential. Atmos. Environ. 139, 214–221 (2016).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stephen B. Pointing.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Archer, S.D.J., Pointing, S.B. Anthropogenic impact on the atmospheric microbiome. Nat Microbiol 5, 229–231 (2020). https://doi.org/10.1038/s41564-019-0650-z

Download citation