Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Anthropogenic impact on the atmospheric microbiome

A Publisher Correction to this article was published on 25 February 2020

This article has been updated

The atmosphere has undergone extensive physico-chemical change due to anthropogenic emissions. The impact on the ecology of the atmospheric microbiome has so far not been considered. Here, we define the scope of change to the atmosphere and identify potential microbial responses.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Anthropogenic impacts on the atmospheric microbiome.

Change history

References

  1. IPCC Climate Change 2007: Synthesis Report (eds Core Writing Team, Pachauri, R. K. and Reisinger, A.) (IPCC, 2007).

  2. Zhang, Y. & Tao, S. Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004. Atmos. Environ. 43, 812–819 (2009).

    Article  CAS  Google Scholar 

  3. Klimont, Z. et al. Global anthropogenic emissions of particulate matter including black carbon. Atmos. Chem. Phys. 17, 8681–8723 (2017).

    Article  CAS  Google Scholar 

  4. Bryan, N. C., Christner, B. C., Guzik, T. G., Granger, D. J. & Stewart, M. F. Abundance and survival of microbial aerosols in the troposphere and stratosphere. ISME J. 13, 2789–2799 (2019).

    Article  CAS  Google Scholar 

  5. Fröhlich-Nowoisky, J. et al. Bioaerosols in the Earth system: Climate, health, and ecosystem interactions. Atmos. Res. 182, 346–376 (2016).

    Article  Google Scholar 

  6. Nogales, B., Lanfranconi, M. P., Piña-Villalonga, J. M. & Bosch, R. Anthropogenic perturbations in marine microbial communities. FEMS Microbiol. Rev. 35, 275–298 (2011).

    Article  CAS  Google Scholar 

  7. Cavicchioli, R. et al. Scientists’ warning to humanity: microorganisms and climate change. Nat. Rev. Microbiol. 17, 569–586 (2019).

    Article  CAS  Google Scholar 

  8. Singh, B. K., Bardgett, R. D., Smith, P. & Reay, D. S. Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat. Rev. Microbiol. 8, 779–790 (2010).

    Article  CAS  Google Scholar 

  9. Caliz, J., Triadó-Margarit, X., Camarero, L. & Casamayor, E. O. A long-term survey unveils consistent seasonal trends in the airborne microbiome composition coupled to air masses circulation. Proc. Natl Acad. Sci. USA 115, 12229–12234 (2019).

    Article  Google Scholar 

  10. Els, N. et al. Microbial composition in seasonal time series of free tropospheric air and precipitation reveals community separation. Aerobiologia 35, 671–701 (2019).

    Article  Google Scholar 

  11. Archer, S. D. J. et al. Airborne microbial transport limitation to isolated Antarctic soil habitats. Nat. Microbiol. 4, 925–932 (2019).

    Article  CAS  Google Scholar 

  12. Mayol, E. et al. Long-range transport of airborne microbes over the global tropical and subtropical ocean. Nat. Commun. 8, 201 (2017).

    Article  Google Scholar 

  13. Maki, T. et al. Aeolian dispersal of bacteria associated with desert dust and anthropogenic particles over continental and oceanic surfaces. J. Geophys. Res.-Atmos. 124, 5579–5588 (2019).

    Article  Google Scholar 

  14. Sattler, B., Puxbaum, H. & Psenner, R. Bacterial growth in supercooled cloud droplets. Geophys. Res. Lett. 28, 239–242 (2001).

    Article  Google Scholar 

  15. Amato, P. et al. Metatranscriptomic exploration of microbial functioning in clouds. Sci. Rep. 9, 4383 (2019).

    Article  Google Scholar 

  16. Spracklen, D. V. & Heald, C. L. The contribution of fungal spores and bacteria to regional and global aerosol number and ice nucleation immersion freezing rates. Atmos. Chem. Phys. 14, 9051–9059 (2014).

    Article  Google Scholar 

  17. Vaïtilingom, M. et al. Potential impact of microbial activity on the oxidant capacity and organic carbon budget in clouds. Proc. Natl Acad. Sci. USA 110, 559–564 (2013).

    Article  Google Scholar 

  18. Global Carbon Budget. Global Carbon Project https://www.globalcarbonproject.org/carbonbudget/ (2018).

  19. Global Methane Budget. Global Carbon Project https://www.globalcarbonproject.org/methanebudget/ (2016).

  20. Ji, M. et al. Atmospheric trace gases support primary production in Antarctic desert surface soil. Nature 552, 400–403 (2017).

    Article  CAS  Google Scholar 

  21. Kim, K.-H., Jahan, S. A., Kabir, E. & Brown, R. J. C. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ. Int. 60, 71–80 (2013).

    Article  CAS  Google Scholar 

  22. Cerniglia, C. E. Biodegradation of polycyclic aromatic hydrocarbons. Curr. Opin. Biotechnol. 4, 331–338 (1993).

    Article  CAS  Google Scholar 

  23. Laskin, A., Laskin, J. & Nizkorodov, S. A. Chemistry of Atmospheric Brown Carbon. Chem. Rev. 115, 4335–4382 (2015).

    Article  CAS  Google Scholar 

  24. Pointing, S. B. & Belnap, J. Disturbance to desert soil ecosystems contributes to dust-mediated impacts at regional scales. Biodivers. Conserv. 23, 1659–1667 (2014).

    Article  Google Scholar 

  25. Hayakawa, K. et al. Long term trends in atmospheric concentrations of polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons: A study of Japanese cities from 1997 to 2014. Environ. Pollut. 233, 474–482 (2018).

    Article  CAS  Google Scholar 

  26. Woo, A. C. et al. Temporal variation in airborne microbial populations and microbially-derived allergens in a tropical urban landscape. Atmos. Environ. 74, 291–300 (2013).

    Article  CAS  Google Scholar 

  27. Smets, W., Moretti, S., Denys, S. & Lebeer, S. Airborne bacteria in the atmosphere: Presence, purpose, and potential. Atmos. Environ. 139, 214–221 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen B. Pointing.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Archer, S.D.J., Pointing, S.B. Anthropogenic impact on the atmospheric microbiome. Nat Microbiol 5, 229–231 (2020). https://doi.org/10.1038/s41564-019-0650-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-019-0650-z

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology