Home chemical and microbial transitions across urbanization

This article has been updated


Urbanization represents a profound shift in human behaviour, and has considerable cultural and health-associated consequences1,2. Here, we investigate chemical and microbial characteristics of houses and their human occupants across an urbanization gradient in the Amazon rainforest, from a remote Peruvian Amerindian village to the Brazilian city of Manaus. Urbanization was found to be associated with reduced microbial outdoor exposure, increased contact with housing materials, antimicrobials and cleaning products, and increased exposure to chemical diversity. The degree of urbanization correlated with changes in the composition of house bacterial and microeukaryotic communities, increased house and skin fungal diversity, and an increase in the relative abundance of human skin-associated fungi and bacteria in houses. Overall, our results indicate that urbanization has large-scale effects on chemical and microbial exposures and on the human microbiota.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Study design.
Fig. 2: House chemical and microbial diversity is altered by urbanization.
Fig. 3: House fungal diversity is correlated with abundance of cleaning and personal care products and overall chemical diversity.

Data availability

Mass spectrometry data have been deposited in MassIVE (accession number MSV000082924). Molecular networking jobs are available at https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=549cfafcdaef4a7496768f45bb90771c (full housing dataset). GNPS molecular networking jobs for dataset matching are available at https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=f1bc8144b7f648dc94215a34b94537df (Checherta), https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=044f5c1437e4453eb9d47afafadb7cfb (Puerto Almendra), https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=c3736e2379d1470f8b9e990a1afeb682 (Iquitos), https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=8799f335311540bdb5af75da896bd87c (Manaus low income) and https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=1070c36112c940a186fcf4454f845f08 (Manaus middle class; searches performed 19 August 2018). In silico structure annotation using NAP is provided at https://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=af425ada55d54adca9c7b28a823af54c. The raw sequencing data and processed BIOM tables are available at Qiita (https://qiita.ucsd.edu/) under study ID 10333, and also at EMBL-EBI under submission number ERP107551.

Code availability

Instructions and source codes for replicating the bioinformatic analyses are provided at https://github.com/knightlab-analyses/amazon-urbanization.

Change history

  • 24 January 2020

    In the version of this Letter originally published, Maria G. Dominguez-Bello’s e-mail address was missing a hyphen; it has now been corrected to mg.dominguez-bello@rutgers.edu.


  1. 1.

    Oyebode, O. et al. Rural, urban and migrant differences in non-communicable disease risk-factors in middle income countries: a cross-sectional study of WHO-SAGE data. PLoS ONE 10, e0122747 (2015).

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Ege, M. J. et al. Exposure to environmental microorganisms and childhood asthma. N. Engl. J. Med. 364, 701–709 (2011).

    CAS  PubMed  Google Scholar 

  3. 3.

    World Population Prospects: 2015 Revision (United Nations Publications, 2016).

  4. 4.

    Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    De Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl Acad. Sci. USA 107, 14691–14696 (2010).

    PubMed  Google Scholar 

  6. 6.

    Clemente, J. C. et al. The microbiome of uncontacted Amerindians. Sci. Adv. 1, e1500183 (2015).

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Obregon-Tito, A. J. et al. Subsistence strategies in traditional societies distinguish gut microbiomes. Nat. Commun. 6, 6505 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Ruiz-Calderon, J. F. et al. Walls talk: microbial biogeography of homes spanning urbanization. Sci. Adv. 2, e1501061 (2016).

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    da Silva, R. R. et al. Propagating annotations of molecular networks using in silico fragmentation. PLoS Comput. Biol. 14, e1006089 (2018).

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Perlin, D. S., Rautemaa-Richardson, R. & Alastruey-Izquierdo, A. The global problem of antifungal resistance: prevalence, mechanisms, and management. Lancet Infect. Dis. 17, e383–e392 (2017).

    PubMed  Google Scholar 

  11. 11.

    Human Microbiome Project Consortium Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

    Google Scholar 

  12. 12.

    Findley, K. et al. Topographic diversity of fungal and bacterial communities in human skin. Nature 498, 367–370 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Oh, J. et al. Biogeography and individuality shape function in the human skin metagenome. Nature 514, 59–64 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Wang, M. et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 34, 828–837 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    McCall, L.-I. & McKerrow, J. H. Determinants of disease phenotype in trypanosomatid parasites. Trends Parasitol. 30, 342–349 (2014).

    CAS  PubMed  Google Scholar 

  16. 16.

    Stagaman, K. et al. Market integration predicts human gut microbiome attributes across a gradient of economic development. mSystems 3, e00122-17 (2018).

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Adams, R. I. et al. Ten questions concerning the microbiomes of buildings. Build. Environ. 109, 224–234 (2016).

    Google Scholar 

  18. 18.

    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl Acad. Sci. USA 108(Suppl 1), 4516–4522 (2011).

    CAS  PubMed  Google Scholar 

  19. 19.

    Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Salter, S. J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 87 (2014).

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Liu, C. M. et al. BactQuant: an enhanced broad-coverage bacterial quantitative real-time PCR assay. BMC Microbiol. 12, 56 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Gil-Serna, J., González-Salgado, A., González-Jaén, M. A. T., Vázquez, C. & Patiño, B. ITS-based detection and quantification of Aspergillus ochraceus and Aspergillus westerdijkiae in grapes and green coffee beans by real-time quantitative PCR. Int. J. Food Microbiol. 131, 162–167 (2009).

    CAS  PubMed  Google Scholar 

  23. 23.

    Schrader, C., Schielke, A., Ellerbroek, L. & Johne, R. PCR inhibitors—occurrence, properties and removal. J. Appl. Microbiol. 113, 1014–1026 (2012).

    CAS  PubMed  Google Scholar 

  24. 24.

    Bouslimani, A. et al. Molecular cartography of the human skin surface in 3D. Proc. Natl Acad. Sci. USA 112, E2120–E2129 (2015).

    CAS  PubMed  Google Scholar 

  25. 25.

    Bouslimani, A. et al. Lifestyle chemistries from phones for individual profiling. Proc. Natl Acad. Sci. USA 113, E7645–E7654 (2016).

    CAS  PubMed  Google Scholar 

  26. 26.

    Protsyuk, I. et al. 3D molecular cartography using LC–MS facilitated by Optimus and ’ili software. Nat. Protoc. 13, 134–154 (2018).

    CAS  PubMed  Google Scholar 

  27. 27.

    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).

    Google Scholar 

  29. 29.

    Watrous, J. et al. Mass spectral molecular networking of living microbial colonies. Proc. Natl Acad. Sci. USA 109, E1743–E1752 (2012).

    CAS  PubMed  Google Scholar 

  30. 30.

    Scheubert, K. et al. Significance estimation for large scale metabolomics annotations by spectral matching. Nat. Commun. 8, 1494 (2017).

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Djoumbou Feunang, Y. et al. ClassyFire: automated chemical classification with a comprehensive, computable taxonomy. J. Cheminform. 8, 61 (2016).

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Ernst, M. et al. MolNetEnhancer: enhanced molecular networks by integrating metabolome mining and annotation tools. Metabolites 9, E144 (2019).

    PubMed  Google Scholar 

  33. 33.

    Sumner, L. W. et al. Proposed minimum reporting standards for chemical analysis. Metabolomics 3, 211–221 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Gonzalez, A. et al. Qiita: rapid, web-enabled microbiome meta-analysis. Nat. Methods 15, 796–798 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Amir, A. et al. Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems 2, e00191-16 (2017).

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Kopylova, E., Noé, L. & Touzet, H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–3217 (2012).

    CAS  PubMed  Google Scholar 

  38. 38.

    McDonald, D. et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610–618 (2012).

    CAS  PubMed  Google Scholar 

  39. 39.

    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Kõljalg, U. et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 22, 5271–5277 (2013).

    PubMed  Google Scholar 

  41. 41.

    Falony, G. et al. Population-level analysis of gut microbiome variation. Science 352, 560–564 (2016).

    CAS  PubMed  Google Scholar 

  42. 42.

    Oksanen, J et al. vegan: Community ecology package. R package version 2.5-6 https://CRAN.R-project.org/package=vegan (2019).

  43. 43.

    Gower, J. C. Generalized procrustes analysis. Psychometrika 40, 33–51 (1975).

    Google Scholar 

  44. 44.

    Kapono, C. A. et al. Creating a 3D microbial and chemical snapshot of a human habitat. Sci. Rep. 8, 3669 (2018).

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Roberts, D. W. labdsv: Ordination and multivariate analysis for ecology. R package version 1.8-0 (2007).

Download references


We thank the collaborators in Peru, the late L. Bocca and the interpreter J. J. Semu for their support and information sources; in Manaus, A. Vasconcelos and J. Machado for help with the fieldwork, and the support of the community leader M. Aparecida Lisboa, Director of Association Fazendo Amigos (AFA), Manaus; the nurses that accompanied the researchers in the jungle; I. Fajardo Neddermann for helping us with the architectural work; D. Vargas and M. Magris, who helped to prepare the urbanization score survey; D. McDonald, J. Morton, R. da Silva and L. Jiang, who helped with DNA and MS data analysis. A. Cai helped to determine the sources of microorganisms correlated with cleaning products; in Peru, staff and community members participating within the Malaria Immunology and Genetics in the Amazon Project with the Ministry of Health of Peru for support. This study was supported by the Sloan Foundation (to M.G.D.-B., R.K. and P.C.D.), C&D Fund, and Emch Fund for Microbial Diversity (to M.G.D.-B.). Partial support was also provided by the NIH Research Initiative for Scientific Enhancement Program 2R25GM061151-13 (to J.F.R.-C.). L.-I.M. was partially supported by a fellowship from the Canadian Institutes of Health Research (grant no. 338511; http://www.cihr-irsc.gc.ca/). C.C. was supported by the Belgian American Educational Foundation and the Research Foundation Flanders. We acknowledge the NIH for providing the MS and MS data analysis infrastructure P41-GM103484 and GMS10RR029121 (to P.C.D.).

Author information




M.G.D.-B., P.C.D. and R.K. conceived and designed the study. M.G.D.-B., J.F.R.-C., H.S.P., J.H., R.R., O.H.B., M.J.B., L.C.P., A.N. and H.C. collected the samples and metadata. A.B. acquired LC–MS data. L.-I.M. led the LC–MS data analysis. C.C. led the taxonomy and metadata analysis. Q.Z. led the DNA data and multi-omics analysis. J.J.M. performed qPCR. S.J.S., M.E., H.C., A.N., A.B. and J.J.M. provided additional contributions to data analysis. L.-I.M., C.C., Q.Z. and M.G.D.-B. wrote the manuscript with contributions from R.K. and P.C.D. All of the authors reviewed the final manuscript.

Corresponding authors

Correspondence to Pieter C. Dorrestein or Rob Knight or Maria G. Dominguez-Bello.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes, Supplementary Tables 1–6, Supplementary Figs. 1–22, Supplementary References and legends for Supplementary Data 1–5.

Reporting Summary

Supplementary Data 1

Cleaning product metabolite feature table.

Supplementary Data 2

Pearson correlation analysis between relative abundances of cleaning products and bacteria (n = 256).

Supplementary Data 3

Pearson correlation analysis between relative abundances of cleaning products and fungi (n = 140).

Supplementary Data 4

Pearson correlation analysis between relative abundances of cleaning products and microeukaryotes (n = 82).

Supplementary Data 5

Urbanization score calculation tool.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

McCall, LI., Callewaert, C., Zhu, Q. et al. Home chemical and microbial transitions across urbanization. Nat Microbiol 5, 108–115 (2020). https://doi.org/10.1038/s41564-019-0593-4

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing