Gut bacteria responding to dietary change encode sialidases that exhibit preference for red meat-associated carbohydrates

Abstract

Dietary habits have been associated with alterations of the human gut resident microorganisms contributing to obesity, diabetes and cancer1. In Western diets, red meat is a frequently eaten food2, but long-term consumption has been associated with increased risk of disease3,4. Red meat is enriched in N-glycolylneuraminic acid (Neu5Gc) that cannot be synthesized by humans5. However, consumption can cause Neu5Gc incorporation into cell surface glycans6, especially in carcinomas4,7. As a consequence, an inflammatory response is triggered when Neu5Gc-containing glycans encounter circulating anti-Neu5Gc antibodies8,9. Although bacteria can use free sialic acids as a nutrient source10,11,12, it is currently unknown if gut microorganisms contribute to releasing Neu5Gc from food. We found that a Neu5Gc-rich diet induces changes in the gut microbiota, with Bacteroidales and Clostridiales responding the most. Genome assembling of mouse and human shotgun metagenomic sequencing identified bacterial sialidases with previously unobserved substrate preference for Neu5Gc-containing glycans. X-ray crystallography revealed key amino acids potentially contributing to substrate preference. Additionally, we verified that mouse and human sialidases were able to release Neu5Gc from red meat. The release of Neu5Gc from red meat using bacterial sialidases could reduce the risk of inflammatory diseases associated with red meat consumption, including colorectal cancer4 and atherosclerosis13.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Composition of gut microbial community of mice fed on soy, PSM or EBN diet.
Fig. 2: Characterization of sialidases preference for Neu5Ac- or Neu5Gc-containing substrates.
Fig. 3: Screening for Neu5Gc-preferring sialidases in human and environmental samples.

Data availability

Sequencing data supporting the findings of this study are available under accession number PRJNA505660. X-ray crystallographic data that support the findings of this study have been deposited in the RCSB (Research Collaboratory for Structural Bioinformatics) Protein Data Bank (accession codes: 6MRX, 6MRV, 6MYV and 6MNJ).

Code availability

The code used to generate the figures and for statistical analysis can be accessed from the corresponding author upon request.

References

  1. 1.

    Hall, A. B., Tolonen, A. C. & Xavier, R. J. Human genetic variation and the gut microbiome in disease. Nat. Rev. Genet. 18, 690–699 (2017).

    CAS  PubMed  Google Scholar 

  2. 2.

    Mann, N. Dietary lean red meat and human evolution. Eur. J. Nutr. 39, 71–79 (2000).

    CAS  PubMed  Google Scholar 

  3. 3.

    Etemadi, A. et al. Mortality from different causes associated with meat, heme iron, nitrates, and nitrites in the NIH-AARP Diet and Health Study: population based cohort study. BMJ 357, 1–11 (2017).

    Google Scholar 

  4. 4.

    Alisson-Silva, F., Kawanishi, K. & Varki, A. Human risk of diseases associated with red meat intake: analysis of current theories and proposed role for metabolic incorporation of a non-human sialic acid. Mol. Aspects Med. 51, 16–30 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Samraj, A. N. et al. A red meat-derived glycan promotes inflammation and cancer progression. Proc. Natl Acad. Sci. USA 112, 542–547 (2015).

    CAS  PubMed  Google Scholar 

  6. 6.

    Tangvoranuntakul, P. et al. Human uptake and incorporation of an immunogenic non-human dietary sialic acid. Proc. Natl Acad. Sci. USA 100, 12045–12050 (2003).

    CAS  PubMed  Google Scholar 

  7. 7.

    Samraj, A. N., Laubli, H., Varki, N. & Varki, A. Involvement of a non-human sialic acid in human cancer. Front. Oncol. 4, 1–13 (2014).

    Google Scholar 

  8. 8.

    Varki, A. Uniquely human evolution of sialic acid genetics and biology. Proc. Natl Acad. Sci. USA 107, 8939–8946 (2010).

    CAS  PubMed  Google Scholar 

  9. 9.

    Dhar, C., Sasmal, A. & Varki, A. From ‘serum sickness’ to ‘xenosialitis’: past, present, and future significance of the non-human sialic acid Neu5Gc. Front. Immunol. 10, 807 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Almagro-Moreno, S. & Boyd, E. F. Sialic acid catabolism confers a competitive advantage to pathogenic Vibrio cholerae in the mouse intestine. Infect. Immun. 77, 3807–3816 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    McDonald, N. D., Lubin, J.-B., Chowdhury, N. & Boyd, E. F. Host-derived sialic acids are an important nutrient source required for optimal bacterial fitness in vivo. MBio 7, e02237–15 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Lewis, A. L. & Lewis, W. G. Host sialoglycans and bacterial sialidases: a mucosal perspective. Cell. Microbiol. 14, 1174–1182 (2012).

    CAS  PubMed  Google Scholar 

  13. 13.

    Kawanishi, K. et al. Human species-specific loss of CMP-N-acetylneuraminic acid hydroxylase enhances atherosclerosis via intrinsic and extrinsic mechanisms. Proc. Natl Acad. Sci. USA 116, 16036–16045 (2019).

    CAS  PubMed  Google Scholar 

  14. 14.

    Banda, K., Gregg, C. J., Chow, R., Varki, N. M. & Varki, A. Metabolism of vertebrate amino sugars with N-glycolyl groups: mechanisms underlying gastrointestinal incorporation of the non-human sialic acid xeno-autoantigen N-glycolylneuraminic acid. J. Biol. Chem. 287, 28852–28864 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Almagro-Moreno, S. & Boyd, E. F. Insights into the evolution of sialic acid catabolism among bacteria. BMC Evol. Biol. 9, 118 (2009).

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Almagro-Moreno, S. & Boyd, E. F. Bacterial catabolism of non-ulosonic (sialic) acid and fitness in the gut. Gut Microbes 1, 45–50 (2010).

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Li, J. & McClane, B. A. NanI sialidase can support the growth and survival of Clostridium perfringens strain F4969 in the presence of sialyated host macromolecules (mucin) or Caco-2 cells. Infect. Immun. 86, e00547–17 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Tailford, L. E. et al. Discovery of intramolecular trans-sialidases in human gut microbiota suggests novel mechanisms of mucosal adaptation. Nat. Commun. 6, 7624 (2015).

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Kim, S., Oh, D. B., Kang, H. A. & Kwon, O. Features and applications of bacterial sialidases. Appl. Microbiol. Biotechnol. 91, 1–15 (2011).

    CAS  PubMed  Google Scholar 

  20. 20.

    Juge, N., Tailford, L. & Owen, C. D. Sialidases from gut bacteria: a mini-review. Biochem. Soc. Trans. 44, 166–175 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Chokhawala, H. A., Yu, H. & Chen, X. High-throughput substrate specificity studies of sialidases by using chemoenzymatically synthesized sialoside libraries. Chembiochem 8, 194–201 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Huang, Y. L., Chassard, C., Hausmann, M., Von Itzstein, M. & Hennet, T. Sialic acid catabolism drives intestinal inflammation and microbial dysbiosis in mice. Nat. Commun. 6, 8141 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Hedlund, M. et al. N-glycolylneuraminic acid deficiency in mice: implications for human biology and evolution. Mol. Cell. Biol. 27, 4340–4346 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    CAS  PubMed  Google Scholar 

  25. 25.

    Flint, H. J., Scott, K. P., Duncan, S. H., Louis, P. & Forano, E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3, 289–306 (2012).

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Magnúsdóttir, S. et al. Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nat. Biotechnol. 35, 81–89 (2017).

    PubMed  Google Scholar 

  27. 27.

    Huang, L. et al. DbCAN-seq: a database of carbohydrate-active enzyme (CAZyme) sequence and annotation. Nucleic Acids Res. 46, D516–D521 (2018).

    CAS  PubMed  Google Scholar 

  28. 28.

    Owen, C. D. et al. Unravelling the specificity and mechanism of sialic acid recognition by the gut symbiont Ruminococcus gnavus. Nat. Commun. 8, 2196 (2017).

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Inoue, S. et al. A unique sialidase that cleaves the Neu5Gcα2→5-OglycolylNeu5Gc linkage: comparison of its specificity with that of three microbial sialidases toward four sialic acid dimers. Biochem. Biophys. Res. Commun. 280, 104–109 (2001).

    CAS  PubMed  Google Scholar 

  30. 30.

    Davies, L. R. L. et al. Metabolism of vertebrate amino sugars with N-glycolyl groups: resistance of α2-8-linked N-glycolylneuraminic acid to enzymatic cleavage. J. Biol. Chem. 287, 28917–28931 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Smits, S. A. et al. Seasonal cycling in the gut microbiome of the Hadza hunter–gatherers of Tanzania. Science 357, 802–805 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Schnorr, S. L. et al. Gut microbiome of the Hadza hunter–gatherers. Nat. Commun. 5, 3654 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Wood, P. L., Khan, M. A. & Moskal, J. R. Neurochemical analysis of amino acids, polyamines and carboxylic acids: GC–MS quantitation of tBDMS derivatives using ammonia positive chemical ionization. J. Chromatogr. B 831, 313–319 (2006).

    CAS  Google Scholar 

  34. 34.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

    CAS  PubMed  Google Scholar 

  36. 36.

    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. MetaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Kang, D. D., Froula, J., Egan, R. & Wang, Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3, e1165 (2015).

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells and metagenomes. Genome Res. 25, 1043–1055 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Aziz, R. K. et al. The RAST Server: rapid annotations using subsystems technology. BMC Genom. 9, 75 (2008).

    Google Scholar 

  42. 42.

    Li, Y. et al. Identifying selective inhibitors against the human cytosolic sialidase NEU2 by substrate specificity studies. Mol. Biosyst. 7, 1060–1072 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Bill Cai, T., Lu, D., Landerholm, M. & Wang, P. G. Sialated diazeniumdiolate: a new sialidase-activated nitric oxide donor. Org. Lett. 6, 4203–4205 (2004).

    PubMed  Google Scholar 

  44. 44.

    Ercégovic, T. & Magnusson, G. Highly stereoselective α-sialylation. Synthesis of GM3-saccharide and a bis-sialic acid unit. J. Org. Chem. 60, 3378–3384 (1995).

    Google Scholar 

  45. 45.

    Numata, M., Sugimoto, M., Shibayama, S. & Ogawa, T. A total synthesis of hematoside, α-NeuGc-(2→3)-β-Gal-(1→4)-β-Glc-(1→1)-Cer. Carbohydr. Res. 174, 73–85 (1988).

    CAS  PubMed  Google Scholar 

  46. 46.

    Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr. D 67, 271–281 (2011).

    CAS  PubMed  Google Scholar 

  47. 47.

    Evans, P. Scaling and assessment of data quality. Acta Crystallogr. D. 62, 72–82 (2006).

    PubMed  Google Scholar 

  48. 48.

    Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D. 67, 235–242 (2011).

    CAS  PubMed  Google Scholar 

  49. 49.

    Kabsch, W. XDS. Acta Crystallogr. D. 66, 125–132 (2010).

    CAS  PubMed  Google Scholar 

  50. 50.

    Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    CAS  PubMed  Google Scholar 

  51. 51.

    Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    CAS  PubMed  Google Scholar 

  52. 52.

    Moriarty, N. W., Grosse-Kunstleve, R. W. & Adams, P. D. Electronic ligand builder and optimization workbench (eLBOW): a tool for ligand coordinate and restraint generation. Acta Crystallogr. D 65, 1074–1080 (2009).

    CAS  PubMed  Google Scholar 

  53. 53.

    Tan, J., Zuniga, C. & Zengler, K. Unraveling interactions in microbial communities—from co-cultures to microbiomes. J. Microbiol. 53, 295–305 (2015).

    PubMed  Google Scholar 

  54. 54.

    Zengler, K. & Zaramela, L. S. The social network of microorganisms—how auxotrophies shape complex communities. Nat. Rev. Microbiol. 16, 383–390 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Zuñiga, C., Zaramela, L. & Zengler, K. Elucidation of complexity and prediction of interactions in microbial communities. Microb. Biotechnol. 10, 1500–1522 (2017).

    PubMed  PubMed Central  Google Scholar 

  56. 56.

    Schellenberger, J. et al. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat. Protoc. 6, 1290–1307 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all Zengler-, Varki- and Chang-lab members for helpful discussions. Research was supported in part by the National Institutes of Health under award no.R01GM32373 (to A.V.) and by the National Science Foundation under award no. IOS-1444435 (to G.C.). C.M. was supported by grants from the National Institutes of Health, USA (NIH grant no. T32GM8806) and by a Chancellor’s Research Excellence Scholarship (UCSD). F.A.-S. was partly supported by the Program Science Without Borders Bex 9254-13-7-Capes Brazil.

Author information

Affiliations

Authors

Contributions

L.S.Z., C.M., F.A.-S., A.V. and K.Z. conceptualized the study. L.S.Z., F.A.-S. and K.Z. wrote the manuscript with input from all authors. L.S.Z. and C.M. performed and analysed the microbiome experiments. L.S.Z. and S.L.D. performed the enzymatic characterization. L.S.Z., F.A.-S. and P.S. performed the animal work. S.D.R. performed the protein expression and crystallization experiments, assisted by J.H. and D.S. C.Z. performed the metabolic model analysis. L.C., M.B.G. and C.H.T. constructed the fosmid library and performed the compost sialidase activity assays. C.H.T., G.C., A.V. and K.Z. provided resources and supervised the study.

Corresponding author

Correspondence to Karsten Zengler.

Ethics declarations

Competing interests

L.S.Z., C.M., F.A.-S., S.R., S.L.D., G.C., A.V. and K.Z. have filed a patent application (number pending) that claims the use of sialidases to reduce Neu5Gc.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Data, Discussion, Figs. 1–16, Tables 1–5 and References.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zaramela, L.S., Martino, C., Alisson-Silva, F. et al. Gut bacteria responding to dietary change encode sialidases that exhibit preference for red meat-associated carbohydrates. Nat Microbiol 4, 2082–2089 (2019). https://doi.org/10.1038/s41564-019-0564-9

Download citation

Further reading