Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Host serum iron modulates dengue virus acquisition by mosquitoes

Abstract

A blood meal is the primary route through which mosquitoes acquire an arbovirus infection. Blood components or their metabolites may regulate the susceptibility of mosquitoes to arboviruses. Here we report that serum iron in human blood influences dengue virus acquisition by mosquitoes. Dengue virus acquisition by Aedes aegypti was inversely correlated with the iron concentration in serum from human donors. In a mouse–mosquito acquisition model, iron supplementation reduced dengue virus prevalence and viral load, whereas neutralization of serum iron facilitated dengue virus infection in A. aegypti mosquitoes. Of note, mosquitoes feeding on iron-deficient (sideropenic) mice exhibited a higher prevalence of dengue virus. Reversal of the sideropenic status of hosts largely reduced dengue virus acquisition and infection by mosquitoes. Serum iron, rather than haem-bound iron, was utilized by the mosquito iron metabolism pathway to boost the activity of reactive oxygen species in the gut epithelium, subsequently inhibiting infection by dengue virus. On the basis of these results, a status of iron deficiency in the human population might contribute to the vectorial permissiveness to dengue virus, thereby facilitating its spread by mosquitoes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Correlations between basic blood constituents and DENV infectivity in A. aegypti.
Fig. 2: Iron supplementation suppresses DENV acquisition by mosquitoes.
Fig. 3: Mosquito iron metabolism resists DENV infection via ROS activation.
Fig. 4: Iron-deficiency status in the host facilitates DENV acquisition by mosquitoes.
Fig. 5: Reversal of the sideropenic status in hosts reduces DENV acquisition by the mosquitoes.

Similar content being viewed by others

Data availability

The sequencing data were deposited in the Short Read Archive (NCBI) under accession number GSE119036. The data that support the findings of this study are available from the corresponding author upon request.

References

  1. Rigau-Perez, J. G. et al. Dengue and dengue haemorrhagic fever. Lancet 352, 971–977 (1998).

    CAS  PubMed  Google Scholar 

  2. Bhatt, S. et al. The global distribution and burden of dengue. Nature 496, 504–507 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kraemer, M. U. et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. eLife 4, e08347 (2015).

    PubMed  PubMed Central  Google Scholar 

  4. Franz, A. W., Kantor, A. M., Passarelli, A. L. & Clem, R. J. Tissue barriers to arbovirus infection in mosquitoes. Viruses 7, 3741–3767 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Cheng, G., Liu, Y., Wang, P. & Xiao, X. Mosquito defense strategies against viral infection. Trends Parasitol. 32, 177–186 (2016).

    PubMed  Google Scholar 

  6. Nguyet, M. N. et al. Host and viral features of human dengue cases shape the population of infected and infectious Aedes aegypti mosquitoes. Proc. Natl Acad. Sci. USA 110, 9072–9077 (2013).

    PubMed  Google Scholar 

  7. Wagar, Z. L., Tree, M. O., Mpoy, M. C. & Conway, M. J. Low density lipopolyprotein inhibits flavivirus acquisition in Aedes aegypti. Insect Mol. Biol. 26, 734–742 (2017).

    CAS  PubMed  Google Scholar 

  8. Zhu, Y. et al. Blood meal acquisition enhances arbovirus replication in mosquitoes through activation of the GABAergic system. Nat. Commun. 8, 1262 (2017).

    PubMed  PubMed Central  Google Scholar 

  9. Bennink, S., Kiesow, M. J. & Pradel, G. The development of malaria parasites in the mosquito midgut. Cell. Microbiol. 18, 905–918 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Simon, N. et al. Malaria parasites co-opt human factor H to prevent complement-mediated lysis in the mosquito midgut. Cell Host Microbe 13, 29–41 (2013).

    CAS  PubMed  Google Scholar 

  11. Drexler, A. L. et al. Human IGF1 regulates midgut oxidative stress and epithelial homeostasis to balance lifespan and Plasmodium falciparum resistance in Anopheles stephensi. PLoS Pathog. 10, e1004231 (2014).

    PubMed  PubMed Central  Google Scholar 

  12. Liu, Y. et al. Evolutionary enhancement of Zika virus infectivity in Aedes aegypti mosquitoes. Nature 545, 482–486 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu, J. et al. Flavivirus NS1 protein in infected host sera enhances viral acquisition by mosquitoes. Nat. Microbiol. 1, 16087 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Gibson, S. Micronutrient intakes, micronutrient status and lipid profiles among young people consuming different amounts of breakfast cereals: further analysis of data from the National Diet and Nutrition Survey of Young People aged 4 to 18 years. Public Health Nutr. 6, 815–820 (2003).

    PubMed  Google Scholar 

  15. Gibson, S. & Boyd, A. Associations between added sugars and micronutrient intakes and status: further analysis of data from the National Diet and Nutrition Survey of Young People aged 4 to 18 years. Br. J. Nutr. 101, 100–107 (2009).

    CAS  PubMed  Google Scholar 

  16. Rivera-Perez, C., Clifton, M. E. & Noriega, F. G. How micronutrients influence the physiology of mosquitoes. Curr. Opin. Insect Sci. 23, 112–117 (2017).

    PubMed  PubMed Central  Google Scholar 

  17. Keberle, H. The biochemistry of desferrioxamine and its relation to iron metabolism. Ann. NY Acad. Sci. 119, 758–768 (1964).

    CAS  PubMed  Google Scholar 

  18. Guo, X. et al. Nasal delivery of nanoliposome-encapsulated ferric ammonium citrate can increase the iron content of rat brain. J. Nanobiotechnology 15, 42 (2017).

    PubMed  PubMed Central  Google Scholar 

  19. Andrews, N. C. & Schmidt, P. J. Iron homeostasis. Annu. Rev. Physiol. 69, 69–85 (2007).

    CAS  PubMed  Google Scholar 

  20. Elsayed, M. E., Sharif, M. U. & Stack, A. G. Transferrin saturation: a body iron biomarker. Adv. Clin. Chem. 75, 71–97 (2016).

    CAS  PubMed  Google Scholar 

  21. Sugimura, R. et al. Haematopoietic stem and progenitor cells from human pluripotent stem cells. Nature 545, 432–438 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Tang, X. & Zhou, B. Iron homeostasis in insects: insights from Drosophila studies. IUBMB life 65, 863–872 (2013).

    CAS  PubMed  Google Scholar 

  23. Nichol, H., Law, J. H. & Winzerling, J. J. Iron metabolism in insects. Annu. Rev. Entomol. 47, 535–559 (2002).

    CAS  PubMed  Google Scholar 

  24. Walter-Nuno, A. B., Taracena, M. L., Mesquita, R. D., Oliveira, P. L. & Paiva-Silva, G. O. Silencing of iron and heme-related genes revealed a paramount role of iron in the physiology of the hematophagous vector Rhodnius prolixus. Front. Genet. 9, 19 (2018).

    PubMed  PubMed Central  Google Scholar 

  25. Whiten, S. R., Eggleston, H. & Adelman, Z. N. Ironing out the details: exploring the role of iron and heme in blood-sucking arthropods. Front. Physiol. 8, 1134 (2017).

    PubMed  Google Scholar 

  26. Zhou, G. et al. Fate of blood meal iron in mosquitoes. J. Insect Physiol. 53, 1169–1178 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Latunde-Dada, G. O., Takeuchi, K., Simpson, R. J. & McKie, A. T. Haem carrier protein 1 (HCP1): expression and functional studies in cultured cells. FEBS Lett. 580, 6865–6870 (2006).

    CAS  PubMed  Google Scholar 

  28. Andrews, N. C. Understanding heme transport. New Engl. J. Med. 353, 2508–2509 (2005).

    CAS  PubMed  Google Scholar 

  29. Altruda, F., Poli, V., Restagno, G. & Silengo, L. Structure of the human hemopexin gene and evidence for intron-mediated evolution. J. Mol. Evol. 27, 102–108 (1988).

    CAS  PubMed  Google Scholar 

  30. Wassell, J. Haptoglobin: function and polymorphism. Clin. Lab. 46, 547–552 (2000).

    CAS  PubMed  Google Scholar 

  31. Sim, S., Jupatanakul, N. & Dimopoulos, G. Mosquito immunity against arboviruses. Viruses 6, 4479–4504 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Pan, X. et al. Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti. Proc. Natl Acad. Sci. USA 109, E23–E31 (2012).

    PubMed  Google Scholar 

  33. Oliveira, J. H. M. et al. Catalase protects Aedes aegypti from oxidative stress and increases midgut infection prevalence of Dengue but not Zika. PLoS Negl. Trop. Dis. 11, e0005525 (2017).

    PubMed  PubMed Central  Google Scholar 

  34. Wen, D. et al. N-glycosylation of viral E protein is the determinant for vector midgut invasion by flaviviruses. mBio 9, e00046-18 (2018).

    PubMed  PubMed Central  Google Scholar 

  35. Halasi, M. et al. ROS inhibitor N-acetyl-l-cysteine antagonizes the activity of proteasome inhibitors. Biochem. J. 454, 201–208 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Denic, S. & Agarwal, M. M. Nutritional iron deficiency: an evolutionary perspective. Nutrition 23, 603–614 (2007).

    CAS  PubMed  Google Scholar 

  37. Carr, W. R. & Gelfand, M. Serum iron and iron binding capacity of the African in Southern Rhodesia. Trans. R. Soc. Trop. Med. Hyg. 55, 452–458 (1961).

    CAS  PubMed  Google Scholar 

  38. Yanoff, L. B. et al. Inflammation and iron deficiency in the hypoferremia of obesity. Int. J. Obes. 31, 1412–1419 (2007).

    CAS  Google Scholar 

  39. Cassat, J. E. & Skaar, E. P. Iron in infection and immunity. Cell Host Microbe 13, 509–519 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Drakesmith, H. & Prentice, A. Viral infection and iron metabolism. Nat. Rev. Microbiol. 6, 541–552 (2008).

    CAS  PubMed  Google Scholar 

  41. Drakesmith, H. & Prentice, A. M. Hepcidin and the iron-infection axis. Science 338, 768–772 (2012).

    CAS  PubMed  Google Scholar 

  42. Oliveira Gde, A., Lieberman, J. & Barillas-Mury, C. Epithelial nitration by a peroxidase/NOX5 system mediates mosquito antiplasmodial immunity. Science 335, 856–859 (2012).

    PubMed  Google Scholar 

  43. Sadrzadeh, S. M., Graf, E., Panter, S. S., Hallaway, P. E. & Eaton, J. W. Hemoglobin. A biologic fenton reagent. J. Biol. Chem. 259, 14354–14356 (1984).

    CAS  PubMed  Google Scholar 

  44. Champion, C. J. & Xu, J. The impact of metagenomic interplay on the mosquito redox homeostasis. Free Radic. Biol. Med. 105, 79–85 (2017).

    CAS  PubMed  Google Scholar 

  45. Geiser, D. L. & Winzerling, J. J. Insect transferrins: multifunctional proteins. Biochim. Biophys. Acta 1820, 437–451 (2012).

    CAS  PubMed  Google Scholar 

  46. Gonzales, K. K., Tsujimoto, H. & Hansen, I. A. Blood serum and BSA, but neither red blood cells nor hemoglobin can support vitellogenesis and egg production in the dengue vector Aedes aegypti. PeerJ 3, e938 (2015).

    PubMed  PubMed Central  Google Scholar 

  47. Fillebeen, C. & Pantopoulos, K. Iron inhibits replication of infectious hepatitis C virus in permissive Huh7.5.1 cells. J. Hepatol. 53, 995–999 (2010).

    CAS  PubMed  Google Scholar 

  48. Fillebeen, C. et al. Iron inactivates the RNA polymerase NS5B and suppresses subgenomic replication of hepatitis C Virus. J. Biol. Chem. 280, 9049–9057 (2005).

    CAS  PubMed  Google Scholar 

  49. Wang, H. et al. Antiviral effects of ferric ammonium citrate. Cell Discov. 4, 14 (2018).

    PubMed  PubMed Central  Google Scholar 

  50. Rose, P. P. et al. Natural resistance-associated macrophage protein is a cellular receptor for sindbis virus in both insect and mammalian hosts. Cell Host Microbe 10, 97–104 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Tsujimoto, H., Anderson, M. A. E., Myles, K. M. & Adelman, Z. N. Identification of candidate iron transporters from the ZIP/ZnT gene families in the mosquito Aedes aegypti. Front. Physiol. 9, 380 (2018).

    PubMed  PubMed Central  Google Scholar 

  52. Salam, N. et al. Global prevalence and distribution of coinfection of malaria, dengue and chikungunya: a systematic review. BMC Public Health 18, 710 (2018).

    PubMed  PubMed Central  Google Scholar 

  53. Gwamaka, M. et al. Iron deficiency protects against severe Plasmodium falciparum malaria and death in young children. Clin. Infect. Dis. 54, 1137–1144 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Clark, M. A. et al. Host iron status and iron supplementation mediate susceptibility to erythrocytic stage Plasmodium falciparum. Nat. Commun. 5, 4446 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Sazawal, S. et al. Effects of routine prophylactic supplementation with iron and folic acid on admission to hospital and mortality in preschool children in a high malaria transmission setting: community-based, randomised, placebo-controlled trial. Lancet 367, 133–143 (2006).

    CAS  PubMed  Google Scholar 

  56. Gangaidzo, I. T. et al. Association of pulmonary tuberculosis with increased dietary iron. J. Infect. Dis. 184, 936–939 (2001).

    CAS  PubMed  Google Scholar 

  57. Sanchez, K. K. et al. Cooperative metabolic adaptations in the host can favor asymptomatic infection and select for attenuated virulence in an enteric pathogen. Cell 175, 146–158 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Doherty, C. P. Host-pathogen interactions: the role of iron. J. Nutr. 137, 1341–1344 (2007).

    CAS  PubMed  Google Scholar 

  59. Lachowicz, J. I. et al. Nutritional iron deficiency: the role of oral iron supplementation. Curr. Med. Chem. 21, 3775–3784 (2014).

    CAS  PubMed  Google Scholar 

  60. Oppenheimer, S. J. Iron and its relation to immunity and infectious disease. J. Nutr 131, 616S–633S (2001).

    CAS  PubMed  Google Scholar 

  61. Oppenheimer, S. J. et al. Iron supplementation increases prevalence and effects of malaria: report on clinical studies in Papua New Guinea. Trans. R. Soc. Trop. Med. Hyg. 80, 603–612 (1986).

    CAS  PubMed  Google Scholar 

  62. Agarwal, A., Panda, M. & Dash, P. K. Impact of transmission cycles and vector competence on global expansion and emergence of arboviruses. Rev. Med. Virol. 27, e1941 (2017).

    Google Scholar 

  63. Jupatanakul, N., Sim, S. & Dimopoulos, G. The insect microbiome modulates vector competence for arboviruses. Viruses 6, 4294–4313 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Lambrechts, L. & Failloux, A. B. Vector biology prospects in dengue research. Mem. Inst. Oswaldo Cruz 107, 1080–1082 (2012).

    PubMed  Google Scholar 

  65. Angeles, I. T., Schultink, W. J., Matulessi, P., Gross, R. & Sastroamidjojo, S. Decreased rate of stunting among anemic Indonesian preschool children through iron supplementation. Am. J. Clin. Nutr. 58, 339–342 (1993).

    CAS  PubMed  Google Scholar 

  66. Xiao, X. et al. Complement-related proteins control the flavivirus infection of Aedes aegypti by inducing antimicrobial peptides. PLoS Pathog. 10, e1004027 (2014).

    PubMed  PubMed Central  Google Scholar 

  67. Wu, P. et al. A gut commensal bacterium promotes mosquito permissiveness to arboviruses. Cell Host Microbe 25, 101–112 (2019).

    CAS  PubMed  Google Scholar 

  68. Ciota, A. T. & Kramer, L. D. Vector–virus interactions and transmission dynamics of West Nile virus. Viruses 5, 3021–3047 (2013).

    PubMed  PubMed Central  Google Scholar 

  69. Bandyopadhyay, S. et al. Iron-deficient erythropoiesis in blood donors and red blood cell recovery after transfusion: initial studies with a mouse model. Blood Transfus. 15, 158–164 (2017).

    PubMed  PubMed Central  Google Scholar 

  70. Cheng, G. et al. A C-type lectin collaborates with a CD45 phosphatase homolog to facilitate West Nile virus infection of mosquitoes. Cell 142, 714–725 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Sanchez-Varga, I., Harrington, L. C., Black, W. C. T. & Olson, K. E. Analysis of salivary glands and saliva from Aedes albopictus and Aedes aegypti infected with chikungunya viruses. Insects 10, 39 (2019).

    Google Scholar 

Download references

Acknowledgements

This work was funded by grants from the National Key Research and Development Plan of China (2017YFC1201004, 2018YFA0507202, 2018ZX09711003-004-003, 2016ZX10004001-008 and 2016YFD0500400), the National Natural Science Foundation of China (31825001, 81730063 and 81571975) and Shenzhen San-Ming Project for prevention and research on vector-borne diseases (SZSM201611064). G.C. is a Newton Advanced Fellow awarded by the Academy of Medical Sciences and the Newton Fund. We thank the core facilities of the Center for Life Sciences and Center of Biomedical Analysis (Tsinghua University) for technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

G.C. designed the experiments and wrote the manuscript; Y.Z. performed the majority of the experiments and analysed data; L.T., Q.Li., K.N., P.S., C.Y., X.Y. and P.Wu. helped with the RNA isolation and qPCR detection. T.W. provided the human blood samples. Q.Liu. provided the field-derived mosquitoes. I.W., Z.B. and P.Wang. contributed experimental suggestions and contributed to the writing of the manuscript. All authors reviewed, critiqued and provided comments on the text.

Corresponding author

Correspondence to Gong Cheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–18 and Supplementary Tables 1–5.

Reporting Summary

Supplementary Dataset 1

Datasets for Figs. 1a–17b.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Tong, L., Nie, K. et al. Host serum iron modulates dengue virus acquisition by mosquitoes. Nat Microbiol 4, 2405–2415 (2019). https://doi.org/10.1038/s41564-019-0555-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-019-0555-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing