Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An archaeal origin of the Wood–Ljungdahl H4MPT branch and the emergence of bacterial methylotrophy

Abstract

The tetrahydromethanopterin (H4MPT) methyl branch of the Wood–Ljungdahl pathway is shared by archaeal and bacterial metabolisms that greatly contribute to the global carbon budget and greenhouse gas fluxes: methanogenesis and methylotrophy, including methanotrophy1,2,3. It has been proposed that the H4MPT branch dates back to the last universal common ancestor4,5,6. Interestingly, it has been identified in numerous recently sequenced and mostly uncultured non-methanogenic and non-methylotrophic archaeal and bacterial lineages, where its function remains unclear5,7. Here, we have examined the distribution and phylogeny of the enzymes involved in the H4MPT branch and the biosynthesis of its cofactors in over 6,400 archaeal and bacterial genomes. We find that a full Wood–Ljungdahl H4MPT pathway is widespread in Archaea and is likely ancestral to this domain, whereas this is not the case for Bacteria. Moreover, the inclusion of recently sequenced lineages leads to an important shortening of the branch separating Archaea and Bacteria with respect to previous phylogenies of the H4MPT branch. Finally, the genes for the pathway are colocalized in many of the recently sequenced archaeal lineages, similar to bacteria. Together, these results weaken the last universal common ancestor hypothesis and rather favour an origin of the H4MPT branch in Archaea and its subsequent transfer to Bacteria. We propose a scenario for its potential initial role in the first bacterial recipients and its evolution up to the emergence of aerobic methylotrophy. Finally, we discuss how an ancient horizontal transfer not only triggered the emergence of key metabolic processes but also important transitions in Earth’s history.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the WL pathway reactions and their relationships with other methylotrophy modules.
Fig. 2: Phylogenomic and synteny data supporting the transfer of the H4MPT branch and its cofactor biosynthesis.
Fig. 3: Scenario for the origin and evolution of the H4MPT methyl branch in Bacteria.
Fig. 4: Metabolic prediction of Limitata with main biochemical reactions.

Similar content being viewed by others

Data availability

All raw data (HMM profiles, initial and trimmed alignments, and full trees in Newick format) are available in Supplementary Data 4.

References

  1. Singh, B. K., Bardgett, R. D., Smith, P. & Reay, D. S. Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat. Rev. Microbiol. 8, 779–790 (2010).

    CAS  PubMed  Google Scholar 

  2. Chistoserdova, L. & Kalyuzhnaya, M. G. Current trends in methylotrophy. Trends Microbiol. 26, 703–714 (2018).

    CAS  PubMed  Google Scholar 

  3. Borrel, G. et al. Wide diversity of methane and short-chain alkane metabolisms in uncultured archaea. Nat. Microbiol. 4, 603–613 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Chistoserdova, L. et al. The enigmatic planctomycetes may hold a key to the origins of methanogenesis and methylotrophy. Mol. Biol. Evol. 21, 1234–1241 (2004).

    CAS  PubMed  Google Scholar 

  5. Chistoserdova, L. Wide distribution of genes for tetrahydromethanopterin/methanofuran-linked C1 transfer reactions argues for their presence in the common ancestor of bacteria and archaea. Front. Microbiol. 7, 1425 (2016).

    PubMed  PubMed Central  Google Scholar 

  6. Weiss, M. C. et al. The physiology and habitat of the last universal common ancestor. Nat. Microbiol. 1, 16116 (2016).

    CAS  PubMed  Google Scholar 

  7. Borrel, G., Adam, P. S. & Gribaldo, S. Methanogenesis and the Wood–Ljungdahl pathway: an ancient, versatile, and fragile association. Genome Biol. Evol. 8, 1706–1711 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Fuchs, G. Alternative pathways of carbon dioxide fixation: insights into the early evolution of life? Annu. Rev. Microbiol. 65, 631–658 (2011).

    CAS  PubMed  Google Scholar 

  9. Laso-Pérez, R. et al. Thermophilic archaea activate butane via alkyl-coenzyme M formation. Nature 539, 396–401 (2016).

    PubMed  Google Scholar 

  10. Chistoserdova, L. Modularity of methylotrophy, revisited. Environ. Microbiol. 13, 2603–2622 (2011).

    CAS  PubMed  Google Scholar 

  11. Chistoserdova, L., Vorholt, J. A., Thauer, R. K. & Lidstrom, M. E. C1 transfer enzymes and coenzymes linking methylotrophic bacteria and methanogenic archaea. Science 281, 99–102 (1998).

    CAS  PubMed  Google Scholar 

  12. Vorholt, J. A., Chistoserdova, L., Stolyar, S. M., Thauer, R. K. & Lidstrom, M. E. Distribution of tetrahydromethanopterin-dependent enzymes in methylotrophic bacteria and phylogeny of methenyl tetrahydromethanopterin cyclohydrolases. J. Bacteriol. 181, 5750–5757 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bauer, M. et al. Archaea-like genes for C1-transfer enzymes in planctomycetes: phylogenetic implications of their unexpected presence in this phylum. J. Mol. Evol. 59, 571–586 (2004).

    CAS  PubMed  Google Scholar 

  14. Kalyuzhnaya, M. G. et al. Analysis of gene islands involved in methanopterin-linked C1 transfer reactions reveals new functions and provides evolutionary insights. J. Bacteriol. 187, 4607–4614 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Butterfield, C. N. et al. Proteogenomic analyses indicate bacterial methylotrophy and archaeal heterotrophy are prevalent below the grass root zone. PeerJ 4, e2687 (2016).

    PubMed  PubMed Central  Google Scholar 

  16. Ettwig, K. F. et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464, 543–548 (2010).

    CAS  PubMed  Google Scholar 

  17. Muñoz-Velasco, I. et al. Methanogenesis on early stages of life: ancient but not primordial. Orig. Life Evol. Biosph. 48, 407–420 (2018).

    PubMed  Google Scholar 

  18. Raymann, K., Brochier-Armanet, C. & Gribaldo, S. The two-domain tree of life is linked to a new root for the archaea. Proc. Natl Acad. Sci. USA 112, 6670–6675 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Adam, P. S., Borrel, G., Brochier-Armanet, C. & Gribaldo, S. The growing tree of Archaea: new perspectives on their diversity, evolution and ecology. ISME J. 11, 2407–2425 (2017).

  20. Ramamoorthy, S. et al. Desulfosporosinus lacus sp. nov., a sulfate-reducing bacterium isolated from pristine freshwater lake sediments. Int. J. Syst. Evol. Microbiol. 56, 2729–2736 (2006).

    CAS  PubMed  Google Scholar 

  21. Davidova, I. A. et al. Dethiosulfatarculus sandiegensis gen. nov., sp. nov., isolated from a methanogenic paraffin-degrading enrichment culture and emended description of the family desulfarculaceae. Int. J. Syst. Evol. Microbiol. 66, 1242–1248 (2016).

    CAS  PubMed  Google Scholar 

  22. Adam, P. S., Borrel, G. & Gribaldo, S. Evolutionary history of carbon monoxide dehydrogenase/acetyl-CoA synthase, one of the oldest enzymatic complexes. Proc. Natl Acad. Sci. USA 115, E1166–E1173 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sousa, F. L. & Martin, W. F. Biochemical fossils of the ancient transition from geoenergetics to bioenergetics in prokaryotic one carbon compound metabolism. Biochim. Biophys. Acta 1837, 964–981 (2014).

    CAS  PubMed  Google Scholar 

  24. Chistoserdova, L., Rasche, M. E. & Lidstrom, M. E. Novel dephosphotetrahydromethanopterin biosynthesis genes discovered via mutagenesis in Methylobacterium extorquens AM1. J. Bacteriol. 187, 2508–2512 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Pomper, B. K., Saurel, O., Milon, A. & Vorholt, J. A. Generation of formate by the formyltransferase/hydrolase complex (Fhc) from Methylobacterium extorquens AM1. FEBS Lett. 523, 133–137 (2002).

    CAS  PubMed  Google Scholar 

  26. Wagner, T., Ermler, U. & Shima, S. The methanogenic CO2 reducing-and-fixing enzyme is bifunctional and contains 46 [4Fe-4S] clusters. Science 354, 114–117 (2016).

    CAS  PubMed  Google Scholar 

  27. Crowther, G. J., Kosaly, G. & Lidstrom, M. E. Formate as the main branch point for methylotrophic metabolism in Methylobacterium extorquens AM1. J. Bacteriol. 190, 5057–5062 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Bar-Even, A., Noor, E. & Milo, R. A survey of carbon fixation pathways through a quantitative lens. J. Exp. Bot. 63, 2325–2342 (2012).

    CAS  PubMed  Google Scholar 

  29. Figueroa, I. A. et al. Metagenomics-guided analysis of microbial chemolithoautotrophic phosphite oxidation yields evidence of a seventh natural CO2 fixation pathway. Proc. Natl Acad. Sci. USA 115, E92–E101 (2018).

    CAS  PubMed  Google Scholar 

  30. Vorholt, J. A., Marx, C. J., Lidstrom, M. E. & Thauer, R. K. Novel formaldehyde-activating enzyme in methylobacterium extorquens AM1 required for growth on methanol. J. Bacteriol. 182, 6645–6650 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lin, Z. & Sparling, R. Investigation of serine hydroxymethyltransferase in methanogens. Can. J. Microbiol. 44, 652–656 (1998).

    CAS  PubMed  Google Scholar 

  32. Schwartz, E., Fritsch, J. & Friedrich, B. in The Prokaryotes (eds Rosenberg, E. et al.) 119–199 (Springer, 2013).

  33. Begemann, M. B., Mormile, M. R., Sitton, O. C., Wall, J. D. & Elias, D. A. A streamlined strategy for biohydrogen production with Halanaerobium hydrogeniformans, an alkaliphilic bacterium. Front. Microbiol. 3, 93 (2012).

    PubMed  PubMed Central  Google Scholar 

  34. Maune, M. W. & Tanner, R. S. Description of Anaerobaculum hydrogeniformans sp. nov., an anaerobe that produces hydrogen from glucose, and emended description of the genus Anaerobaculum. Int. J. Syst. Evol. Microbiol. 62, 832–838 (2012).

    CAS  PubMed  Google Scholar 

  35. Liang, R., Grizzle, R. S., Duncan, K. E., McInerney, M. J. & Suflita, J. M. Roles of thermophilic thiosulfate-reducing bacteria and methanogenic archaea in the biocorrosion of oil pipelines. Front. Microbiol. 5, 89 (2014).

    PubMed  PubMed Central  Google Scholar 

  36. Kasting, J. F. Methane and climate during the Precambrian era. Precambrian Res. 137, 119–129 (2005).

    CAS  Google Scholar 

  37. Ueno, Y., Yamada, K., Yoshida, N., Maruyama, S. & Isozaki, Y. Evidence from fluid inclusions for microbial methanogenesis in the early archaean era. Nature 440, 516–519 (2006).

    CAS  PubMed  Google Scholar 

  38. Slotznick, S. P. & Fischer, W. W. Examining archean methanotrophy. Earth Planet. Sci. Lett. 441, 52–59 (2016).

    CAS  Google Scholar 

  39. Summons, R. E., Jahnke, L. L. & Roksandic, Z. Carbon isotopic fractionation in lipids from methanotrophic bacteria: relevance for interpretation of the geochemical record of biomarkers. Geochim. Cosmochim. Acta 58, 2853–2863 (1994).

    CAS  PubMed  Google Scholar 

  40. Jahnke, L. L., Summons, R. E., Hope, J. M. & Des Marais, D. J. Carbon isotopic fractionation in lipids from methanotrophic bacteria II: the effects of physiology and environmental parameters on the biosynthesis and isotopic signatures of biomarkers. Geochim. Cosmochim. Acta 63, 79–93 (1999).

    PubMed  Google Scholar 

  41. Battistuzzi, F. U. & Hedges, S. B. A major clade of prokaryotes with ancient adaptations to life on land. Mol. Biol. Evol. 26, 335–343 (2009).

    CAS  PubMed  Google Scholar 

  42. Haqq-Misra, J. D., Domagal-Goldman, S. D., Kasting, P. J. & Kasting, J. F. A revised, hazy methane greenhouse for the archean earth. Astrobiology 8, 1127–1137 (2008).

    CAS  PubMed  Google Scholar 

  43. Konhauser, K. O. et al. Oceanic nickel depletion and a methanogen famine before the great oxidation event. Nature 458, 750–753 (2009).

    CAS  PubMed  Google Scholar 

  44. Catling, D. C., Claire, M. W. & Zahnle, K. J. Anaerobic methanotrophy and the rise of atmospheric oxygen. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 265, 1867–1888 (2007).

  45. Daines, S. J. & Lenton, T. M. The effect of widespread early aerobic marine ecosystems on methane cycling and the great oxidation. Earth Planet. Sci. Lett. 434, 42–51 (2016).

    CAS  Google Scholar 

  46. Markowitz, V. M. et al. IMG: the integrated microbial genomes database and comparative analysis system. Nucleic Acids Res. 40, D666–D677 (2012).

    Google Scholar 

  47. Wrighton, K. C. et al. Fermentation, hydrogen, and sulfur metabolism in multiple uncultivated bacterial phyla. Science 337, 1661–1665 (2012).

    CAS  PubMed  Google Scholar 

  48. Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 11, 119 (2010).

    Google Scholar 

  49. Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y. & Morishima, K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45, D353–D361 (2017).

    CAS  PubMed  Google Scholar 

  50. Johnson, L. S., Eddy, S. R. & Portugaly, E. Hidden Markov model speed heuristic and iterative HMM search procedure. BMC Bioinforma. 11, 431 (2010).

    Google Scholar 

  51. Garcia, P. S., Jauffrit, F., Grangeasse, C. & Brochier-Armanet, C. GeneSpy, a user-friendly and flexible genomic context visualizer. Bioinformatics 35, 329–331 (2019).

    CAS  PubMed  Google Scholar 

  52. Abby, S. S., Néron, B., Ménager, H., Touchon, M. & Rocha, E. P. C. MacSyFinder: a program to mine genomes for molecular systems with an application to CRISPR–Cas systems. PLoS ONE 9, e110726 (2014).

    PubMed  PubMed Central  Google Scholar 

  53. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Criscuolo, A. & Gribaldo, S. BMGE (block mapping and gathering with entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210 (2010).

    PubMed  PubMed Central  Google Scholar 

  55. Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    CAS  PubMed  Google Scholar 

  56. Kobert, K., Salichos, L., Rokas, A. & Stamatakis, A. Computing the internode certainty and related measures from partial gene trees. Mol. Biol. Evol. 33, 1606–1617 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Stamatakis, A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006).

    CAS  PubMed  Google Scholar 

  58. Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2017).

    PubMed Central  Google Scholar 

  59. Lartillot, N., Lepage, T. & Blanquart, S. PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 25, 2286–2288 (2009).

    CAS  PubMed  Google Scholar 

  60. Kanehisa, M., Sato, Y. & Morishima, K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 428, 726–731 (2016).

    CAS  PubMed  Google Scholar 

  61. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS  PubMed  Google Scholar 

  62. Overbeek, R. et al. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res. 42, D206–D214 (2014).

    CAS  PubMed  Google Scholar 

  63. Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

P.S.A. is supported by a PhD fellowship from Université Paris Diderot and by funds from the PhD Programme ‘Frontières du Vivant (FdV)–Programme Bettencourt’. G.B. acknowledges support from the Institut Pasteur through a Roux–Cantarini fellowship. S.G. acknowledges funding from the French National Agency for Research Grant ArchEvol (ANR-16-CE02-0005-01).

Author information

Authors and Affiliations

Authors

Contributions

S.G. and P.S.A. designed the research. P.S.A. performed all phylogenomic analyses. P.S.A. and G.B. performed the genome synteny and metabolic reconstruction analyses. P.S.A., G.B. and S.G. analysed the data and wrote the paper.

Corresponding author

Correspondence to Simonetta Gribaldo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary Figs. 1–22, Supplementary zip file legend and Supplementary legends.

Reporting Summary

Supplementary Data 1

Accession numbers for utilized sequences.

Supplementary Data 2

Metabolic annotations of Limitata genomes.

Supplementary Data 3

Names and taxon IDs of taxa used to construct the local databank of bacterial and archaeal genomes.

Supplementary Data 4

HMM profiles for each gene used in this work for Archaea and Bacteria; initial and post-trimming multiple sequence alignments used to generate the phylogenies presented in this work; Newick files corresponding to each phylogeny presented in this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adam, P.S., Borrel, G. & Gribaldo, S. An archaeal origin of the Wood–Ljungdahl H4MPT branch and the emergence of bacterial methylotrophy. Nat Microbiol 4, 2155–2163 (2019). https://doi.org/10.1038/s41564-019-0534-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-019-0534-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing