Abstract
The tetrahydromethanopterin (H4MPT) methyl branch of the Wood–Ljungdahl pathway is shared by archaeal and bacterial metabolisms that greatly contribute to the global carbon budget and greenhouse gas fluxes: methanogenesis and methylotrophy, including methanotrophy1,2,3. It has been proposed that the H4MPT branch dates back to the last universal common ancestor4,5,6. Interestingly, it has been identified in numerous recently sequenced and mostly uncultured non-methanogenic and non-methylotrophic archaeal and bacterial lineages, where its function remains unclear5,7. Here, we have examined the distribution and phylogeny of the enzymes involved in the H4MPT branch and the biosynthesis of its cofactors in over 6,400 archaeal and bacterial genomes. We find that a full Wood–Ljungdahl H4MPT pathway is widespread in Archaea and is likely ancestral to this domain, whereas this is not the case for Bacteria. Moreover, the inclusion of recently sequenced lineages leads to an important shortening of the branch separating Archaea and Bacteria with respect to previous phylogenies of the H4MPT branch. Finally, the genes for the pathway are colocalized in many of the recently sequenced archaeal lineages, similar to bacteria. Together, these results weaken the last universal common ancestor hypothesis and rather favour an origin of the H4MPT branch in Archaea and its subsequent transfer to Bacteria. We propose a scenario for its potential initial role in the first bacterial recipients and its evolution up to the emergence of aerobic methylotrophy. Finally, we discuss how an ancient horizontal transfer not only triggered the emergence of key metabolic processes but also important transitions in Earth’s history.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
All raw data (HMM profiles, initial and trimmed alignments, and full trees in Newick format) are available in Supplementary Data 4.
References
Singh, B. K., Bardgett, R. D., Smith, P. & Reay, D. S. Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat. Rev. Microbiol. 8, 779–790 (2010).
Chistoserdova, L. & Kalyuzhnaya, M. G. Current trends in methylotrophy. Trends Microbiol. 26, 703–714 (2018).
Borrel, G. et al. Wide diversity of methane and short-chain alkane metabolisms in uncultured archaea. Nat. Microbiol. 4, 603–613 (2019).
Chistoserdova, L. et al. The enigmatic planctomycetes may hold a key to the origins of methanogenesis and methylotrophy. Mol. Biol. Evol. 21, 1234–1241 (2004).
Chistoserdova, L. Wide distribution of genes for tetrahydromethanopterin/methanofuran-linked C1 transfer reactions argues for their presence in the common ancestor of bacteria and archaea. Front. Microbiol. 7, 1425 (2016).
Weiss, M. C. et al. The physiology and habitat of the last universal common ancestor. Nat. Microbiol. 1, 16116 (2016).
Borrel, G., Adam, P. S. & Gribaldo, S. Methanogenesis and the Wood–Ljungdahl pathway: an ancient, versatile, and fragile association. Genome Biol. Evol. 8, 1706–1711 (2016).
Fuchs, G. Alternative pathways of carbon dioxide fixation: insights into the early evolution of life? Annu. Rev. Microbiol. 65, 631–658 (2011).
Laso-Pérez, R. et al. Thermophilic archaea activate butane via alkyl-coenzyme M formation. Nature 539, 396–401 (2016).
Chistoserdova, L. Modularity of methylotrophy, revisited. Environ. Microbiol. 13, 2603–2622 (2011).
Chistoserdova, L., Vorholt, J. A., Thauer, R. K. & Lidstrom, M. E. C1 transfer enzymes and coenzymes linking methylotrophic bacteria and methanogenic archaea. Science 281, 99–102 (1998).
Vorholt, J. A., Chistoserdova, L., Stolyar, S. M., Thauer, R. K. & Lidstrom, M. E. Distribution of tetrahydromethanopterin-dependent enzymes in methylotrophic bacteria and phylogeny of methenyl tetrahydromethanopterin cyclohydrolases. J. Bacteriol. 181, 5750–5757 (1999).
Bauer, M. et al. Archaea-like genes for C1-transfer enzymes in planctomycetes: phylogenetic implications of their unexpected presence in this phylum. J. Mol. Evol. 59, 571–586 (2004).
Kalyuzhnaya, M. G. et al. Analysis of gene islands involved in methanopterin-linked C1 transfer reactions reveals new functions and provides evolutionary insights. J. Bacteriol. 187, 4607–4614 (2005).
Butterfield, C. N. et al. Proteogenomic analyses indicate bacterial methylotrophy and archaeal heterotrophy are prevalent below the grass root zone. PeerJ 4, e2687 (2016).
Ettwig, K. F. et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464, 543–548 (2010).
Muñoz-Velasco, I. et al. Methanogenesis on early stages of life: ancient but not primordial. Orig. Life Evol. Biosph. 48, 407–420 (2018).
Raymann, K., Brochier-Armanet, C. & Gribaldo, S. The two-domain tree of life is linked to a new root for the archaea. Proc. Natl Acad. Sci. USA 112, 6670–6675 (2015).
Adam, P. S., Borrel, G., Brochier-Armanet, C. & Gribaldo, S. The growing tree of Archaea: new perspectives on their diversity, evolution and ecology. ISME J. 11, 2407–2425 (2017).
Ramamoorthy, S. et al. Desulfosporosinus lacus sp. nov., a sulfate-reducing bacterium isolated from pristine freshwater lake sediments. Int. J. Syst. Evol. Microbiol. 56, 2729–2736 (2006).
Davidova, I. A. et al. Dethiosulfatarculus sandiegensis gen. nov., sp. nov., isolated from a methanogenic paraffin-degrading enrichment culture and emended description of the family desulfarculaceae. Int. J. Syst. Evol. Microbiol. 66, 1242–1248 (2016).
Adam, P. S., Borrel, G. & Gribaldo, S. Evolutionary history of carbon monoxide dehydrogenase/acetyl-CoA synthase, one of the oldest enzymatic complexes. Proc. Natl Acad. Sci. USA 115, E1166–E1173 (2018).
Sousa, F. L. & Martin, W. F. Biochemical fossils of the ancient transition from geoenergetics to bioenergetics in prokaryotic one carbon compound metabolism. Biochim. Biophys. Acta 1837, 964–981 (2014).
Chistoserdova, L., Rasche, M. E. & Lidstrom, M. E. Novel dephosphotetrahydromethanopterin biosynthesis genes discovered via mutagenesis in Methylobacterium extorquens AM1. J. Bacteriol. 187, 2508–2512 (2005).
Pomper, B. K., Saurel, O., Milon, A. & Vorholt, J. A. Generation of formate by the formyltransferase/hydrolase complex (Fhc) from Methylobacterium extorquens AM1. FEBS Lett. 523, 133–137 (2002).
Wagner, T., Ermler, U. & Shima, S. The methanogenic CO2 reducing-and-fixing enzyme is bifunctional and contains 46 [4Fe-4S] clusters. Science 354, 114–117 (2016).
Crowther, G. J., Kosaly, G. & Lidstrom, M. E. Formate as the main branch point for methylotrophic metabolism in Methylobacterium extorquens AM1. J. Bacteriol. 190, 5057–5062 (2008).
Bar-Even, A., Noor, E. & Milo, R. A survey of carbon fixation pathways through a quantitative lens. J. Exp. Bot. 63, 2325–2342 (2012).
Figueroa, I. A. et al. Metagenomics-guided analysis of microbial chemolithoautotrophic phosphite oxidation yields evidence of a seventh natural CO2 fixation pathway. Proc. Natl Acad. Sci. USA 115, E92–E101 (2018).
Vorholt, J. A., Marx, C. J., Lidstrom, M. E. & Thauer, R. K. Novel formaldehyde-activating enzyme in methylobacterium extorquens AM1 required for growth on methanol. J. Bacteriol. 182, 6645–6650 (2000).
Lin, Z. & Sparling, R. Investigation of serine hydroxymethyltransferase in methanogens. Can. J. Microbiol. 44, 652–656 (1998).
Schwartz, E., Fritsch, J. & Friedrich, B. in The Prokaryotes (eds Rosenberg, E. et al.) 119–199 (Springer, 2013).
Begemann, M. B., Mormile, M. R., Sitton, O. C., Wall, J. D. & Elias, D. A. A streamlined strategy for biohydrogen production with Halanaerobium hydrogeniformans, an alkaliphilic bacterium. Front. Microbiol. 3, 93 (2012).
Maune, M. W. & Tanner, R. S. Description of Anaerobaculum hydrogeniformans sp. nov., an anaerobe that produces hydrogen from glucose, and emended description of the genus Anaerobaculum. Int. J. Syst. Evol. Microbiol. 62, 832–838 (2012).
Liang, R., Grizzle, R. S., Duncan, K. E., McInerney, M. J. & Suflita, J. M. Roles of thermophilic thiosulfate-reducing bacteria and methanogenic archaea in the biocorrosion of oil pipelines. Front. Microbiol. 5, 89 (2014).
Kasting, J. F. Methane and climate during the Precambrian era. Precambrian Res. 137, 119–129 (2005).
Ueno, Y., Yamada, K., Yoshida, N., Maruyama, S. & Isozaki, Y. Evidence from fluid inclusions for microbial methanogenesis in the early archaean era. Nature 440, 516–519 (2006).
Slotznick, S. P. & Fischer, W. W. Examining archean methanotrophy. Earth Planet. Sci. Lett. 441, 52–59 (2016).
Summons, R. E., Jahnke, L. L. & Roksandic, Z. Carbon isotopic fractionation in lipids from methanotrophic bacteria: relevance for interpretation of the geochemical record of biomarkers. Geochim. Cosmochim. Acta 58, 2853–2863 (1994).
Jahnke, L. L., Summons, R. E., Hope, J. M. & Des Marais, D. J. Carbon isotopic fractionation in lipids from methanotrophic bacteria II: the effects of physiology and environmental parameters on the biosynthesis and isotopic signatures of biomarkers. Geochim. Cosmochim. Acta 63, 79–93 (1999).
Battistuzzi, F. U. & Hedges, S. B. A major clade of prokaryotes with ancient adaptations to life on land. Mol. Biol. Evol. 26, 335–343 (2009).
Haqq-Misra, J. D., Domagal-Goldman, S. D., Kasting, P. J. & Kasting, J. F. A revised, hazy methane greenhouse for the archean earth. Astrobiology 8, 1127–1137 (2008).
Konhauser, K. O. et al. Oceanic nickel depletion and a methanogen famine before the great oxidation event. Nature 458, 750–753 (2009).
Catling, D. C., Claire, M. W. & Zahnle, K. J. Anaerobic methanotrophy and the rise of atmospheric oxygen. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 265, 1867–1888 (2007).
Daines, S. J. & Lenton, T. M. The effect of widespread early aerobic marine ecosystems on methane cycling and the great oxidation. Earth Planet. Sci. Lett. 434, 42–51 (2016).
Markowitz, V. M. et al. IMG: the integrated microbial genomes database and comparative analysis system. Nucleic Acids Res. 40, D666–D677 (2012).
Wrighton, K. C. et al. Fermentation, hydrogen, and sulfur metabolism in multiple uncultivated bacterial phyla. Science 337, 1661–1665 (2012).
Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 11, 119 (2010).
Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y. & Morishima, K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45, D353–D361 (2017).
Johnson, L. S., Eddy, S. R. & Portugaly, E. Hidden Markov model speed heuristic and iterative HMM search procedure. BMC Bioinforma. 11, 431 (2010).
Garcia, P. S., Jauffrit, F., Grangeasse, C. & Brochier-Armanet, C. GeneSpy, a user-friendly and flexible genomic context visualizer. Bioinformatics 35, 329–331 (2019).
Abby, S. S., Néron, B., Ménager, H., Touchon, M. & Rocha, E. P. C. MacSyFinder: a program to mine genomes for molecular systems with an application to CRISPR–Cas systems. PLoS ONE 9, e110726 (2014).
Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).
Criscuolo, A. & Gribaldo, S. BMGE (block mapping and gathering with entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210 (2010).
Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).
Kobert, K., Salichos, L., Rokas, A. & Stamatakis, A. Computing the internode certainty and related measures from partial gene trees. Mol. Biol. Evol. 33, 1606–1617 (2016).
Stamatakis, A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006).
Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2017).
Lartillot, N., Lepage, T. & Blanquart, S. PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 25, 2286–2288 (2009).
Kanehisa, M., Sato, Y. & Morishima, K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 428, 726–731 (2016).
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
Overbeek, R. et al. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res. 42, D206–D214 (2014).
Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).
Acknowledgements
P.S.A. is supported by a PhD fellowship from Université Paris Diderot and by funds from the PhD Programme ‘Frontières du Vivant (FdV)–Programme Bettencourt’. G.B. acknowledges support from the Institut Pasteur through a Roux–Cantarini fellowship. S.G. acknowledges funding from the French National Agency for Research Grant ArchEvol (ANR-16-CE02-0005-01).
Author information
Authors and Affiliations
Contributions
S.G. and P.S.A. designed the research. P.S.A. performed all phylogenomic analyses. P.S.A. and G.B. performed the genome synteny and metabolic reconstruction analyses. P.S.A., G.B. and S.G. analysed the data and wrote the paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Supplementary Information
Supplementary Figs. 1–22, Supplementary zip file legend and Supplementary legends.
Supplementary Data 1
Accession numbers for utilized sequences.
Supplementary Data 2
Metabolic annotations of Limitata genomes.
Supplementary Data 3
Names and taxon IDs of taxa used to construct the local databank of bacterial and archaeal genomes.
Supplementary Data 4
HMM profiles for each gene used in this work for Archaea and Bacteria; initial and post-trimming multiple sequence alignments used to generate the phylogenies presented in this work; Newick files corresponding to each phylogeny presented in this work.
Rights and permissions
About this article
Cite this article
Adam, P.S., Borrel, G. & Gribaldo, S. An archaeal origin of the Wood–Ljungdahl H4MPT branch and the emergence of bacterial methylotrophy. Nat Microbiol 4, 2155–2163 (2019). https://doi.org/10.1038/s41564-019-0534-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41564-019-0534-2
This article is cited by
-
Metagenomic insights into Heimdallarchaeia clades from the deep-sea cold seep and hydrothermal vent
Environmental Microbiome (2024)
-
Unraveling the phylogenomic diversity of Methanomassiliicoccales and implications for mitigating ruminant methane emissions
Genome Biology (2024)
-
Anaerobic degradation of organic carbon supports uncultured microbial populations in estuarine sediments
Microbiome (2023)
-
Phylogenetic and ecophysiological novelty of subsurface mercury methylators in mangrove sediments
The ISME Journal (2023)
-
Candidatus Alkanophaga archaea from Guaymas Basin hydrothermal vent sediment oxidize petroleum alkanes
Nature Microbiology (2023)