Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cephamycins inhibit pathogen sporulation and effectively treat recurrent Clostridioides difficile infection

Matters Arising to this article was published on 27 January 2020

Abstract

Spore-forming bacteria encompass a diverse range of genera and species, including important human and animal pathogens, and food contaminants. Clostridioides difficile is one such bacterium and is a global health threat because it is the leading cause of antibiotic-associated diarrhoea in hospitals. A crucial mediator of C. difficile disease initiation, dissemination and re-infection is the formation of spores that are resistant to current therapeutics, which do not target sporulation. Here, we show that cephamycin antibiotics inhibit C. difficile sporulation by targeting spore-specific penicillin-binding proteins. Using a mouse disease model, we show that combined treatment with the current standard-of-care antibiotic, vancomycin, and a cephamycin prevents disease recurrence. Cephamycins were found to have broad applicability as an anti-sporulation strategy, as they inhibited sporulation in other spore-forming pathogens, including the food contaminant Bacillus cereus. This study could directly and immediately affect treatment of C. difficile infection and advance drug development to control other important spore-forming bacteria that are problematic in the food industry (B. cereus), are potential bioterrorism agents (Bacillus anthracis) and cause other animal and human infections.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Visualization of C. difficile sporulation morphology of untreated and cefoxitin-treated M7404 cells and the in vitro effect of cephamycins on C. difficile M7404 sporulation.
Fig. 2: The in vitro effect of cephamycins on B. cereus, B. subtilis and P. sordellii sporulation.
Fig. 3: Identification of the sporulation-specific PBP cephamycin targets, their role in sporulation and interaction with the cephamycins.
Fig. 4: Co-administration of cefotetan and vancomycin prevents recurrent CDI.

Data availability

The data that support the findings of this study are available from the corresponding author on reasonable request.

References

  1. 1.

    Wang, S. T. et al. The forespore line of gene expression in Bacillus subtilis. J. Mol. Biol. 358, 16–37 (2006).

    CAS  Article  Google Scholar 

  2. 2.

    Swick, M. C., Koehler, T. M. & Driks, A. in Virulence Mechanisms of Bacterial Pathogens 5th edn (eds Kudva, I. T. et al.) Ch. 20 (American Society for Microbiology, 2016); https://doi.org/10.1128/microbiolspec.VMBF-0029-2015

  3. 3.

    Freeman, J. et al. The changing epidemiology of Clostridium difficile infections. Clin. Microbiol. Rev. 23, 529–549 (2010).

    CAS  Article  Google Scholar 

  4. 4.

    Rupnik, M., Wilcox, M. H. & Gerding, D. N. Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat. Rev. Microbiol. 7, 526–536 (2009).

    CAS  Article  Google Scholar 

  5. 5.

    Paredes-Sabja, D., Shen, A. & Sorg, J. A. Clostridium difficile spore biology: sporulation, germination, and spore structural proteins. Trends Microbiol. 22, 406–416 (2014).

    CAS  Article  Google Scholar 

  6. 6.

    Just, I. et al. Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature 375, 500–503 (1995).

    CAS  Article  Google Scholar 

  7. 7.

    Voth, D. E. & Ballard, J. D. Clostridium difficile toxins: mechanism of action and role in disease. Clin. Microbiol. Rev. 18, 247–263 (2005).

    CAS  Article  Google Scholar 

  8. 8.

    Hopkins, R. J. & Wilson, R. B. Treatment of recurrent Clostridium difficile colitis: a narrative review. Gastroenterol. Rep. 6, 21–28 (2018).

    Article  Google Scholar 

  9. 9.

    Miyamoto, T. et al. Penicillin-binding protein sensitive to cephalexin in sporulation of Bacillus cereus. Microbiol. Res. 152, 227–232 (1997).

    CAS  Article  Google Scholar 

  10. 10.

    Hao, J. & Kendrick, K. E. Visualization of penicillin-binding proteins during sporulation of Streptomyces griseus. J. Bacteriol. 180, 2125–2132 (1998).

    CAS  Article  Google Scholar 

  11. 11.

    Ivanova, N. et al. Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature 423, 87–91 (2003).

    CAS  Article  Google Scholar 

  12. 12.

    Aldape, M. J., Bryant, A. E. & Stevens, D. L. Clostridium sordellii infection: epidemiology, clinical findings, and current perspectives on diagnosis and treatment. Clin. Infect. Dis. 43, 1436–1446 (2006).

    CAS  Article  Google Scholar 

  13. 13.

    Kocaoglu, O. & Carlson, E. E. Penicillin-binding protein imaging probes. Curr. Protoc. Chem. Biol. 5, 239–250 (2013).

    Article  Google Scholar 

  14. 14.

    Fimlaid, K. A. et al. Global analysis of the sporulation pathway of Clostridium difficile. PLoS Genet. 9, e1003660 (2013).

    CAS  Article  Google Scholar 

  15. 15.

    Dembek, M. et al. High-throughput analysis of gene essentiality and sporulation in Clostridium difficile. mBio 6, e02383 (2015).

    Article  Google Scholar 

  16. 16.

    Daniel, R. A., Drake, S., Buchanan, C. E., Scholle, R. & Errington, J. The Bacillus subtilis spoVD gene encodes a mother-cell-specific penicillin-binding protein required for spore morphogenesis. J. Mol. Biol. 235, 209–220 (1994).

    CAS  Article  Google Scholar 

  17. 17.

    Wei, Y., McPherson, D. C. & Popham, D. L. A mother cell-specific class B penicillin-binding protein, PBP4b, in Bacillus subtilis. J. Bacteriol. 186, 258–261 (2004).

    CAS  Article  Google Scholar 

  18. 18.

    Hutton, M. L. et al. Bovine antibodies targeting primary and recurrent Clostridium difficile disease are a potent antibiotic alternative. Sci. Rep. 7, 3665 (2017).

    Article  Google Scholar 

  19. 19.

    Carter, G. P. et al. Defining the roles of TcdA and TcdB in localized gastrointestinal disease, systemic organ damage, and the host response during Clostridium difficile infections. mBio 6, e00551 (2015).

    CAS  Article  Google Scholar 

  20. 20.

    Garneau, J. R., Valiquette, L. & Fortier, L. C. Prevention of Clostridium difficile spore formation by sub-inhibitory concentrations of tigecycline and piperacillin/tazobactam. BMC Infect. Dis. 14, 29 (2014).

    Article  Google Scholar 

  21. 21.

    Debast, S. B., Bauer, M. P. & Kuijper, E. J. European Society of Clinical Microbiology and Infectious Diseases: update of the treatment guidance document for Clostridium difficile infection. Clin. Microbiol Infect. 20(Suppl. 2), 1–26 (2014).

    CAS  Article  Google Scholar 

  22. 22.

    Verhoef, T. I. & Morris, S. Cost-effectiveness and pricing of antibacterial drugs. Chem. Biol. Drug Des. 85, 4–13 (2015).

    CAS  Article  Google Scholar 

  23. 23.

    Reveles, K. R., Backo, J. L., Corvino, F. A., Zivkovic, M. & Broderick, K. C. Fidaxomicin versus vancomycin as a first-line treatment for Clostridium difficile-associated diarrhea in specific patient populations: a pharmacoeconomic evaluation. Pharmacotherapy 37, 1489–1497 (2017).

    CAS  Article  Google Scholar 

  24. 24.

    Pantziarka, P., Pirmohamed, P. & Mirza, N. New uses for old drugs. BMJ 361, k2701 (2018).

    Article  Google Scholar 

  25. 25.

    Frere, J. M. & Page, M. G. Penicillin-binding proteins: evergreen drug targets. Curr. Opin. Pharmacol. 18, 112–119 (2014).

    CAS  Article  Google Scholar 

  26. 26.

    Zervosen, A., Sauvage, E., Frere, J. M., Charlier, P. & Luxen, A. Development of new drugs for an old target: the penicillin binding proteins. Molecules 17, 12478–12505 (2012).

    CAS  Article  Google Scholar 

  27. 27.

    Lopez-Brea, S. G., Gómez-Torres, N. & Arribas, M. Á. in Microbiology in Dairy Processing: Challenges and Opportunities (ed. Poltronieri, P.) Ch. 2 (Wiley, 2017); https://doi.org/10.1002/9781119115007.ch2

    Google Scholar 

  28. 28.

    Sidarta, M., Li, D., Hederstedt, L. & Bukowska-Faniband, E. Forespore targeting of SpoVD in Bacillus subtilis is mediated by the N-terminal part of the protein. J. Bacteriol. 200, e00163-18 (2018).

    Article  Google Scholar 

  29. 29.

    Lam, S. W., Neuner, E. A., Fraser, T. G., Delgado, D. & Chalfin, D. B. Cost-effectiveness of three different strategies for the treatment of first recurrent Clostridium difficile infection diagnosed in a community setting. Infect. Control Hosp. Epidemiol. 39, 924–930 (2018).

    Article  Google Scholar 

  30. 30.

    Barbosa, C., Beardmore, R., Schulenburg, H. & Jansen, G. Antibiotic combination efficacy (ACE) networks for a Pseudomonas aeruginosa model. PLoS Biol. 16, e2004356 (2018).

    Article  Google Scholar 

  31. 31.

    Lyras, D. et al. Toxin B is essential for virulence of Clostridium difficile. Nature 458, 1176–1179 (2009).

    CAS  Article  Google Scholar 

  32. 32.

    Rabi, R. et al. Clostridium sordellii outer spore proteins maintain spore structural integrity and promote bacterial clearance from the gastrointestinal tract. PLoS Pathog. 14, e1007004 (2018).

    Article  Google Scholar 

  33. 33.

    Lyon, S. A., Hutton, M. L., Rood, J. I., Cheung, J. K. & Lyras, D. CdtR regulates TcdA and TcdB production in Clostridium difficile. PLoS Pathog. 12, e1005758 (2016).

    Article  Google Scholar 

  34. 34.

    Carter, G. P. et al. Expression of the large clostridial toxins is controlled by conserved regulatory mechanisms. Int. J. Med. Microbiol. 304, 1147–1159 (2014).

    CAS  Article  Google Scholar 

  35. 35.

    Anagnostopoulos, C. & Spizizen, J. Requirements for transformation in Bacillus subtilis. J. Bacteriol. 81, 741–746 (1961).

    CAS  Article  Google Scholar 

  36. 36.

    Mackin, K. E., Carter, G. P., Howarth, P., Rood, J. I. & Lyras, D. Spo0A differentially regulates toxin production in evolutionarily diverse strains of Clostridium difficile. PLoS ONE 8, e79666 (2013).

    Article  Google Scholar 

  37. 37.

    Carter, G. P. et al. The anti-sigma factor TcdC modulates hypervirulence in an epidemic BI/NAP1/027 clinical isolate of Clostridium difficile. PLoS Pathog. 7, e1002317 (2011).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Australian National Health and Medical Research Council grant APP1145760 and the Australian Research Council Future Fellowship FT12010077 awarded to D.L.

Author information

Affiliations

Authors

Contributions

Y.N.S. co-designed in vitro work, performed the majority of the experimental work and co-wrote the manuscript. M.L.H. co-designed and led in vivo experiments. M.M.A. performed toxin assays and made initial TEM observations of cefoxitin effects on spores. J.S. made initial observations of spore reduction with cefoxitin. N.D. co-designed and performed binding assays with compounds and targets. S.L.D. performed sporulation assays with other clades. B.A.C. performed cephalosporin sporulation experiments. S.M. co-designed binding assays and co-wrote the manuscript, and D.L. co-designed all experiments and co-wrote the manuscript.

Corresponding author

Correspondence to Dena Lyras.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6, Supplementary Tables 1–3 and Supplementary References.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Srikhanta, Y.N., Hutton, M.L., Awad, M.M. et al. Cephamycins inhibit pathogen sporulation and effectively treat recurrent Clostridioides difficile infection. Nat Microbiol 4, 2237–2245 (2019). https://doi.org/10.1038/s41564-019-0519-1

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing