Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The secreted kinase ROP17 promotes Toxoplasma gondii dissemination by hijacking monocyte tissue migration

Abstract

The protozoan parasite Toxoplasma gondii is thought to exploit monocyte trafficking to facilitate dissemination across endothelial barriers such as the blood–brain barrier. Here, we analysed the migration of parasitized monocytes in model endothelial and interstitial environments. We report that infection enhanced monocyte locomotion on the surface of endothelial cells, but profoundly inhibited monocyte transmigration across endothelial barriers. By contrast, infection robustly increased monocyte and macrophage migration through collagen-rich tissues in a Rho–ROCK-dependent manner consistent with integrin-independent interstitial migration. We further demonstrated that the secreted T.gondii protein kinase ROP17 was required for enhanced tissue migration. In vivo, ROP17-deficient parasites failed to upregulate monocyte tissue migration and exhibited an early dissemination delay, leading to prolonged mouse survival. Our findings indicate that the parasite-induced changes in monocyte motility primarily facilitate the transport of T.gondii through tissues and promote systemic dissemination, rather than shuttle parasites across the blood–brain barrier via extravasation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: TEM and adherence of infected THP-1 and primary monocytes.
Fig. 2: Locomotion of infected THP-1 monocytes on the hCMEC/D3 model of the BBB.
Fig. 3: Migration of infected cells through 3D collagen matrices and skin tissue.
Fig. 4: Enhanced tissue migration may involve Rho–ROCK and requires parasite ROP17.
Fig. 5: Role of ROP17 during in vivo infection.
Fig. 6: In vivo and ex vivo motility of splenic CX3CR1GFP/+ cells infected with WT and Δrop17 parasites.

Data availability

All data generated and analysed during this study are included within the paper and the associated Supplementary Information.

References

  1. 1.

    Montoya, J. G. & Liesenfeld, O. Toxoplasmosis. Lancet 363, 1965–1976 (2004).

    CAS  Article  Google Scholar 

  2. 2.

    Santiago-Tirado, F. H. & Doering, T. L. False friends: phagocytes as Trojan horses in microbial brain infections. PLoS Pathog. 13, e1006680 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  3. 3.

    Harker, K. S., Ueno, N. & Lodoen, M. B. Toxoplasma gondii dissemination: a parasite’s journey through the infected host. Parasite Immunol. 37, 141–149 (2015).

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Dubey, J. P. Bradyzoite-induced murine toxoplasmosis: stage conversion, pathogenesis, and tissue cyst formation in mice fed bradyzoites of different strains of Toxoplasma gondii. J. Eukaryot. Microbiol. 44, 592–602 (1997).

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Dubey, J. P., Speer, C. A., Shen, S. K., Kwok, O. C. & Blixt, J. A. Oocyst-induced murine toxoplasmosis: life cycle, pathogenicity, and stage conversion in mice fed Toxoplasma gondii oocysts. J. Parasitol. 83, 870–882 (1997).

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Gregg, B. et al. Replication and distribution of Toxoplasma gondii in the small intestine after oral infection with tissue cysts. Infect. Immun. 81, 1635–1643 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Joeris, T., Muller-Luda, K., Agace, W. W. & Mowat, A. M. Diversity and functions of intestinal mononuclear phagocytes. Mucosal Immunol. 10, 845–864 (2017).

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Dunay, I. R. et al. Gr1+ inflammatory monocytes are required for mucosal resistance to the pathogen Toxoplasma gondii. Immunity 29, 306–317 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Konradt, C. et al. Endothelial cells are a replicative niche for entry of Toxoplasma gondii to the central nervous system. Nat. Microbiol. 1, 16001 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Ley, K., Laudanna, C., Cybulsky, M. I. & Nourshargh, S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat. Rev. Immunol. 7, 678–689 (2007).

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Courret, N. et al. CD11c- and CD11b-expressing mouse leukocytes transport single Toxoplasma gondii tachyzoites to the brain. Blood 107, 309–316 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Ueno, N. et al. Real-time imaging of Toxoplasma-infected human monocytes under fluidic shear stress reveals rapid translocation of intracellular parasites across endothelial barriers. Cell. Microbiol. 16, 580–595 (2014).

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Lambert, H., Dellacasa-Lindberg, I. & Barragan, A. Migratory responses of leukocytes infected with Toxoplasma gondii. Microbes Infect. 13, 96–102 (2011).

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Ueno, N. & Lodoen, M. B. From the blood to the brain: avenues of eukaryotic pathogen dissemination to the central nervous system. Curr. Opin. Microbiol. 26, 53–59 (2015).

    PubMed  Article  Google Scholar 

  15. 15.

    Cook, J. H., Ueno, N. & Lodoen, M. B. Toxoplasma gondii disrupts β1 integrin signaling and focal adhesion formation during monocyte hypermotility. J. Biol. Chem. 293, 3374–3385 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Harker, K. S. et al. Toxoplasma gondii modulates the dynamics of human monocyte adhesion to vascular endothelium under fluidic shear stress. J. Leukoc. Biol. 93, 789–800 (2013).

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Olafsson, E. B., Varas-Godoy, M. & Barragan, A. Toxoplasma gondii infection shifts dendritic cells into an amoeboid rapid migration mode encompassing podosome dissolution, secretion of TIMP-1, and reduced proteolysis of extracellular matrix. Cell. Microbiol. 20, e12808 (2018).

    Article  CAS  Google Scholar 

  18. 18.

    Lambert, H., Vutova, P. P., Adams, W. C., Loré, K. & Barragan, A. The Toxoplasma gondii-shuttling function of dendritic cells is linked to the parasite genotype. Infect. Immun. 77, 1679–1688 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Fuks, J. M. et al. GABAergic signaling is linked to a hypermigratory phenotype in dendritic cells infected by Toxoplasma gondii. PLoS Pathog. 8, e1003051 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Weidner, J. M. et al. Rapid cytoskeleton remodelling in dendritic cells following invasion by Toxoplasma gondii coincides with the onset of a hypermigratory phenotype. Cell. Microbiol. 15, 1735–1752 (2013).

    CAS  PubMed  Google Scholar 

  21. 21.

    Daniels, B. P. et al. Immortalized human cerebral microvascular endothelial cells maintain the properties of primary cells in an in vitro model of immune migration across the blood brain barrier. J. Neurosci. Methods 212, 173–179 (2013).

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    van Kooyk, Y. & Figdor, C. G. Avidity regulation of integrins: the driving force in leukocyte adhesion. Curr. Opin. Cell Biol. 12, 542–547 (2000).

    PubMed  Article  Google Scholar 

  23. 23.

    Onken, M. D. et al. Endothelial monolayers and transendothelial migration depend on mechanical properties of the substrate. Cytoskeleton (Hoboken) 71, 695–706 (2014).

    CAS  Article  Google Scholar 

  24. 24.

    Belin, B. J., Goins, L. M. & Mullins, R. D. Comparative analysis of tools for live cell imaging of actin network architecture. Bioarchitecture 4, 189–202 (2014).

    Article  Google Scholar 

  25. 25.

    Charras, G. & Paluch, E. Blebs lead the way: how to migrate without lamellipodia. Nat. Rev. Mol. Cell Biol. 9, 730–736 (2008).

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Lammermann, T. et al. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453, 51–55 (2008).

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Kanatani, S., Uhlen, P. & Barragan, A. Infection by Toxoplasma gondii induces amoeboid-like migration of dendritic cells in a three-dimensional collagen matrix. PLoS ONE 10, e0139104 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  28. 28.

    Wolf, K. et al. Collagen-based cell migration models in vitro and in vivo. Semin. Cell Dev. Biol. 20, 931–941 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Weber, M. & Sixt, M. Live cell imaging of chemotactic dendritic cell migration in explanted mouse ear preparations. Methods Mol. Biol. 1013, 215–226 (2013).

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Cougoule, C. et al. Blood leukocytes and macrophages of various phenotypes have distinct abilities to form podosomes and to migrate in 3D environments. Eur. J. Cell Biol. 91, 938–949 (2012).

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Van Goethem, E., Poincloux, R., Gauffre, F., Maridonneau-Parini, I. & Le Cabec, V. Matrix architecture dictates three-dimensional migration modes of human macrophages: differential involvement of proteases and podosome-like structures. J. Immunol. 184, 1049–1061 (2010).

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Lämmermann, T. & Germain, R. N. The multiple faces of leukocyte interstitial migration. Semin. Immunopathol. 36, 227–251 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Shang, X. et al. Rational design of small molecule inhibitors targeting RhoA subfamily Rho GTPases. Chem. Biol. 19, 699–710 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Martiny-Baron, G. et al. Selective inhibition of protein kinase C isozymes by the indolocarbazole Go 6976. J. Biol. Chem. 268, 9194–9197 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Rizvi, S. A. et al. Identification and characterization of a small molecule inhibitor of formin-mediated actin assembly. Chem. Biol. 16, 1158–1168 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Nolen, B. J. et al. Characterization of two classes of small molecule inhibitors of Arp2/3 complex. Nature 460, 1031–1034 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Hunter, C. A. & Sibley, L. D. Modulation of innate immunity by Toxoplasma gondii virulence effectors. Nat. Rev. Microbiol. 10, 766–778 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Hakimi, M. A., Olias, P. & Sibley, L. D. Toxoplasma effectors targeting host signaling and transcription. Clin. Microbiol. Rev. 30, 615–645 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Etheridge, R. D. et al. The Toxoplasma pseudokinase ROP5 forms complexes with ROP18 and ROP17 kinases that synergize to control acute virulence in mice. Cell Host Microbe 15, 537–550 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Hodge, R. G. & Ridley, A. J. Regulating Rho GTPases and their regulators. Nat. Rev. Mol. Cell Biol. 17, 496–510 (2016).

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Talevich, E. & Kannan, N. Structural and evolutionary adaptation of rhoptry kinases and pseudokinases, a family of coccidian virulence factors. BMC Evolut. Biol. 13, 117 (2013).

    CAS  Article  Google Scholar 

  42. 42.

    Guilluy, C., Garcia-Mata, R. & Burridge, K. Rho protein crosstalk: another social network? Trends Cell Biol. 21, 718–726 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Fox, B. A. et al. The Toxoplasma gondii Rhoptry kinome is essential for chronic infection. mBio 7, e00193-16 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Swirski, F. K. et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325, 612–616 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Renkawitz, J. & Sixt, M. Mechanisms of force generation and force transmission during interstitial leukocyte migration. EMBO Rep. 11, 744–750 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Hakansson, S., Charron, A. J. & Sibley, L. D. Toxoplasma evacuoles: a two-step process of secretion and fusion forms the parasitophorous vacuole. EMBO J. 20, 3132–3144 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Panas, M. W. et al. Translocation of dense granule effectors across the parasitophorous vacuole membrane in Toxoplasma-infected cells requires the activity of ROP17, a rhoptry protien kinase. Preprint at https://doi.org/10.1101/613208 (2019).

  48. 48.

    Weksler, B. B. et al. Blood–brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J. 19, 1872–1874 (2005).

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Kreisel, D. et al. In vivo two-photon imaging reveals monocyte-dependent neutrophil extravasation during pulmonary inflammation. Proc. Natl Acad. Sci. USA 107, 18073–18078 (2010).

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Zinselmeyer, B. H. et al. Chapter 16. Two-photon microscopy and multidimensional analysis of cell dynamics. Methods Enzymol. 461, 349–378 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Kowarz, E., Loscher, D. & Marschalek, R. Optimized Sleeping Beauty transposons rapidly generate stable transgenic cell lines. Biotechnol. J. 10, 647–653 (2015).

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Alaganan, A., Fentress, S. J., Tang, K., Wang, Q. & Sibley, L. D. Toxoplasma GRA7 effector increases turnover of immunity-related GTPases and contributes to acute virulence in the mouse. Proc. Natl Acad. Sci. USA 111, 1126–1131 (2014).

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Schaefer, L. H., Schuster, D. & Herz, H. Generalized approach for accelerated maximum likelihood based image restoration applied to three-dimensional fluorescence microscopy. J. Microsc. 204, 99–107 (2001).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

We thank J. A. Cooper for constructive comments; R. Klein and T. Doering for sharing the hCMEC/D3 cells; T. Fehniger for facilitating the acquisition of primary human monocytes; F. Santiago and H. Salimi for advice regarding the BBB model; S. Kim, L. Yang and the Washington University School of Medicine In vivo Imaging Core for technical support and fluorescent reporter mice for the intravital imaging experiments; and G. Randolph for generously sharing the CX3CR1GFP/+ mice. Work was supported in part by grants from the National Science Foundation to L.L.D. (DGE-1143954), and from the National Institutes of Health to M.J.M. (R01AI077600) and L.D.S. (AI034036).

Author information

Affiliations

Authors

Contributions

L.L.D. and L.D.S. designed the experiments and wrote the manuscript. N.G.J. generated the T.gondii strains used for time-lapse microscopy. Q.W. collaborated on the design and execution of animal studies. M.D.O. collaborated on the design and interpretation of the Rho GTPase inhibitor studies. L.L.D. and M.J.M. designed and performed the two-photon imaging experiments. L.L.D. performed all other experiments and analysed the data. L.D.S. supervised the study. All authors critically reviewed and approved the manuscript.

Corresponding author

Correspondence to L. David Sibley.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6, Supplementary Video legends, Supplementary Tables 1–3 and Supplementary References.

Reporting Summary

Supplementary Video 1

Uninfected THP-1 monocyte motility on hCMEC/D3 (shown in Fig. 2).

Supplementary Video 2

Infected THP-1 monocyte motility on hCMEC/D3 (shown in Fig. 2).

Supplementary Video 3

Infected THP-1 monocyte motility on hCMEC/D3 (shown in Fig. 2).

Supplementary Video 4

Uninfected CX3CR1GFP/+ cell migrating in spleen (shown in Fig. 6).

Supplementary Video 5

Infected CX3CR1GFP/+ cell migrating in spleen (shown in Fig. 6).

Supplementary Video 6

Infected CX3CR1GFP/+ cell migrating in spleen (shown in Fig. 6).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Drewry, L.L., Jones, N.G., Wang, Q. et al. The secreted kinase ROP17 promotes Toxoplasma gondii dissemination by hijacking monocyte tissue migration. Nat Microbiol 4, 1951–1963 (2019). https://doi.org/10.1038/s41564-019-0504-8

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing