Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The impact of antimicrobials on gonococcal evolution

Abstract

The sexually transmitted pathogen Neisseria gonorrhoeae is regarded as being on the way to becoming an untreatable superbug. Despite its clinical importance, little is known about its emergence and evolution, and how this corresponds with the introduction of antimicrobials. We present a genome-based phylogeographical analysis of 419 gonococcal isolates from across the globe. Results indicate that modern gonococci originated in Europe or Africa, possibly as late as the sixteenth century and subsequently disseminated globally. We provide evidence that the modern gonococcal population has been shaped by antimicrobial treatment of sexually transmitted infections as well as other infections, leading to the emergence of two major lineages with different evolutionary strategies. The well-described multidrug-resistant lineage is associated with high rates of homologous recombination and infection in high-risk sexual networks. A second, multisusceptible lineage is more associated with heterosexual networks, with potential implications for infection control.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Geographical and phylogenetic distribution of N.gonorrhoeae isolates.
Fig. 2: Global phylogeographical analysis.
Fig. 3: Evolution of AMR genetic determinants in N.gonorrhoeae.
Fig. 4: Characterization of the lineages of N.gonorrhoeae.

Data availability

All genomic data have been deposited in the European Nucleotide Archive (ENA) under project number PRJEB4024. Accession numbers for the particular strains are indicated in Supplementary Table 1. All other data supporting the findings of this study are available within the paper and its Supplementary Information files.

Code availability

The custom Perl script to convert xmfa to fasta files (xmfa2fas.pl) is available from https://gist.github.com/leosanbu/.

References

  1. 1.

    Newman, L. et al. Global estimates of the prevalence and incidence of four curable sexually transmitted infections in 2012 based on systematic review and global reporting. PLoS ONE 10, e0143304 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  2. 2.

    Unemo, M., Del Rio, C. & Shafer, W. M. Antimicrobial resistance expressed by Neisseria gonorrhoeae: a major global public health problem in the 21st century. Microbiol. Spectr. 4, EI10-0009-2015 (2016).

    Article  Google Scholar 

  3. 3.

    Fifer, H. et al. Failure of dual antimicrobial therapy in treatment of gonorrhea. N. Engl. J. Med. 374, 2504–2506 (2016).

    PubMed  Article  Google Scholar 

  4. 4.

    Wi, T. et al. Antimicrobial resistance in Neisseria gonorrhoeae: global surveillance and a call for international collaborative action. PLoS Med. 14, e1002344 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  5. 5.

    Fingerhuth, S. M., Bonhoeffer, S., Low, N. & Althaus, C. L. Antibiotic-resistant Neisseria gonorrhoeae spread faster with more treatment, not more sexual partners. PLoS Pathog. 12, e1005611 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  6. 6.

    Annual Epidemiological Report for 2016 (ECDC, 2018); https://ecdc.europa.eu/en/publications-data/gonorrhoea-annual-epidemiological-report-2016

  7. 7.

    Luys, G. A Textbook on Gonorrhoea and its Complications (Baillière, Tindall and Cox, 1913).

  8. 8.

    Grmek, M. Diseases in the Ancient Greek World (John Hopkins Univ. Press, 1989).

  9. 9.

    Oriel, J. D. The Scars of Venus: A History of Venereology (Springer, 1994).

  10. 10.

    Spratt, B. G. Hybrid penicillin-binding proteins in penicillin-resistant strains of Neisseria gonorrhoeae. Nature 332, 173–176 (1988).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Ohnishi, M. et al. Is Neisseria gonorrhoeae initiating a future era of untreatable gonorrhea?: Detailed characterization of the first strain with high-level resistance to ceftriaxone. Antimicrob. Agents Chemother. 55, 3538–3545 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Ohnishi, M. Ceftriaxone-resistant Neisseria gonorrhoeae, Japan. Emerg. Infect. Dis. 17, 148–149 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Lefebvre, B. et al. Ceftriaxone-resistant Neisseria gonorrhoeae, Canada, 2017. Emerg. Infect. Dis. 24, 381–383 (2018).

    CAS  PubMed Central  Article  Google Scholar 

  14. 14.

    Golparian, D. et al. Multidrug-resistant Neisseria gonorrhoeae isolate, belonging to the internationally spreading Japanese FC428 clone, with ceftriaxone resistance and intermediate resistance to azithromycin, Ireland, August 2018. Euro Surveill. 23, 1800617 (2018).

    PubMed Central  Article  Google Scholar 

  15. 15.

    Popovich, K. J. & Snitkin, E. S. Whole genome sequencing—implications for infection prevention and outbreak investigations. Curr. Infect. Dis. Rep. 19, 15 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Grad, Y. H. et al. Genomic epidemiology of Neisseria gonorrhoeae with reduced susceptibility to cefixime in the USA: a retrospective observational study. Lancet Infect. Dis. 14, 220–226 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Demczuk, W. et al. Whole-genome phylogenomic heterogeneity of Neisseria gonorrhoeae isolates with decreased cephalosporin susceptibility collected in Canada between 1989 and 2013. J. Clin. Microbiol. 53, 191–200 (2015).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  18. 18.

    De Silva, D. et al. Whole-genome sequencing to determine transmission of Neisseria gonorrhoeae: an observational study. Lancet Infect. Dis. 16, 1295–1303 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  19. 19.

    Didelot, X. et al. Genomic analysis and comparison of two gonorrhea outbreaks. mBio 7, e00525-16 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Chisholm, S. A. et al. An outbreak of high-level azithromycin resistant Neisseria gonorrhoeae in England. Sex Transm. Infect. 92, 365–367 (2016).

    PubMed  Article  Google Scholar 

  21. 21.

    Duchene, S. et al. Genome-scale rates of evolutionary change in bacteria. Microb. Genom. 2, e000094 (2016).

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Demczuk, W. et al. Neisseria gonorrhoeae sequence typing for antimicrobial resistance, a novel antimicrobial resistance multilocus typing scheme for tracking global dissemination of N. gonorrhoeae strains. J. Clin. Microbiol. 55, 1454–1468 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Cámara, J. et al. Molecular characterization of two high-level ceftriaxone-resistant Neisseria gonorrhoeae isolates detected in Catalonia, Spain. J. Antimicrob. Chemother. 67, 1858–1860 (2012).

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Unemo, M. et al. High-level cefixime- and ceftriaxone-resistant Neisseria gonorrhoeae in France: novel penA mosaic allele in a successful international clone causes treatment failure. Antimicrob. Agents Chemother. 56, 1273–1280 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Flett, F., Humphreys, G. O. & Saunders, J. R. Intraspecific and intergeneric mobilization of non-conjugative resistance plasmids by a 24.5 megadalton conjugative plasmid of Neisseria gonorrhoeae. J. Gen. Microbiol. 125, 123–129 (1981).

    CAS  PubMed  Google Scholar 

  26. 26.

    Demczuk, W. et al. Genomic epidemiology and molecular resistance mechanisms of azithromycin-resistant Neisseria gonorrhoeae in Canada from 1997 to 2014. J. Clin. Microbiol. 54, 1304–1313 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Harris, S. R. et al. Public health surveillance of multidrug-resistant clones of Neisseria gonorrhoeae in Europe: a genomic survey. Lancet Infect. Dis. 18, 758–768 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Hopkins, A. G. Globalization in World History (Pimlico, 2002).

  29. 29.

    McNeill, W. H. Plagues and Peoples (Doubleday, 1977).

  30. 30.

    Huovinen, P. Resistance to trimethoprim–sulfamethoxazole. Clin. Infect. Dis. 32, 1608–1614 (2001).

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Workowski, K. A. & Bolan, G. A. Sexually transmitted diseases treatment guidelines, 2015. MMWR Recomm. Rep. 64, 1–137 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Kenyon, C. R. & Schwartz, I. S. Effects of sexual network connectivity and antimicrobial drug use on antimicrobial resistance in Neisseria gonorrhoeae. Emerg. Infect. Dis. 24, 1195–1203 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Turner, K. M. & Garnett, G. P. The impact of the phase of an epidemic of sexually transmitted infection on the evolution of the organism. Sex. Transm. Infect. 78, i20–i30 (2002).

    PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Wilkinson, D. et al. Unrecognized sexually transmitted infections in rural South African women: a hidden epidemic. Bull. World Health Organ. 77, 22–28 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Hazel, A., Ponnaluri-Wears, S., Davis, G. S., Low, B. S. & Foxman, B. High prevalence of Neisseria gonorrhoeae in a remote, undertreated population of Namibian pastoralists. Epidemiol. Infect. 142, 2422–2432 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Grad, Y. H. et al. Genomic epidemiology of gonococcal resistance to extended spectrum cephalosporins, macrolides, and fluoroquinolones in the US, 2000–2013. J. Infect. Dis. 214, 1579–1587 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Unemo, M., Olcen, P., Berglund, T., Albert, J. & Fredlund, H. Molecular epidemiology of Neisseria gonorrhoeae: sequence analysis of the porB gene confirms presence of two circulating strains. J. Clin. Microbiol. 40, 3741–3749 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Unemo, M., Fasth, O., Fredlund, H., Limnios, A. & Tapsall, J. Phenotypic and genetic characterization of the 2008 WHO Neisseria gonorrhoeae reference strain panel intended for global quality assurance and quality control of gonococcal antimicrobial resistance surveillance for public health purposes. J. Antimicrob. Chemother. 63, 1142–1151 (2009).

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Li, H. et al. The sequence alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  40. 40.

    McKenna, A. et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Harris, S. R. et al. Evolution of MRSA during hospital transmission and intercontinental spread. Science 327, 469–474 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Darling, A. E., Mau, B. & Perna, N. T. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 5, e11147 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  43. 43.

    Piekarowicz, A. et al. Characterization of the dsDNA prophage sequences in the genome of Neisseria gonorrhoeae and visualization of productive bacteriophage. BMC Microbiol. 7, 66 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  44. 44.

    Croucher, N. J. et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 43, e15 (2015).

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Kurtz, S. et al. Versatile and open software for comparing large genomes. Genome Biol. 5, R12 (2004).

    PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Page, A. J. et al. SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. Microb. Genom. 2, e000056 (2016).

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Cheng, L., Connor, T. R., Siren, J., Aanensen, D. M. & Corander, J. Hierarchical and spatially explicit clustering of DNA sequences with BAPS software. Mol. Biol. Evol. 30, 1224–1228 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Stamatakis, A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006).

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Lemoine, F. et al. Renewing Felsenstein’s phylogenetic bootstrap in the era of big data. Nature 556, 452–456 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Page, A. J. et al. Robust high-throughput prokaryote de novo assembly and improvement pipeline for Illumina data. Microb. Genom. 2, e000083 (2016).

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Jolley, K. A. & Maiden, M. C. BIGSdb: scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 11, 595 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Martin, I. M., Ison, C. A., Aanensen, D. M., Fenton, K. A. & Spratt, B. G. Rapid sequence-based identification of gonococcal transmission clusters in a large metropolitan area. J. Infect. Dis. 189, 1497–1505 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. 54.

    Kwong, J. C. et al. NGMASTER: in silico multi-antigen sequence typing for Neisseria gonorrhoeae. Microb. Genom. 2, e000076 (2016).

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  56. 56.

    Hunt, M. et al. ARIBA: rapid antimicrobial resistance genotyping directly from sequencing reads. Microb. Genom. 3, e000131 (2017).

    PubMed  PubMed Central  Google Scholar 

  57. 57.

    Turner, A., Gough, K. R. & Leeming, J. P. Molecular epidemiology of tetM genes in Neisseria gonorrhoeae. Sex. Transm. Infect. 75, 60–66 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Dillon, J. R., Li, H., Yeung, K. & Aman, T. A. A PCR assay for discriminating Neisseria gonorrhoeae β-lactamase-producing plasmids. Mol. Cell. Probes 13, 89–92 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. 59.

    Kamvar, Z. N., Tabima, J. F. & Grunwald, N. J. Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–491 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Dray, S. & Dufour, A. B. The ade4 package: implementing the duality diagram for ecologists. J. Stat. Softw. 22, 1–20 (2007).

    Article  Google Scholar 

  62. 62.

    Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Jombart, T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Louis, T. A. Multivariate analysis of variance and repeated measures, a practical approach for behavioural scientists. D. J. Hand and C. C. Taylor, Chapman & Hall, London. Stat. Med. https://doi.org/10.1002/sim.4780081218 (1989).

    Article  Google Scholar 

  65. 65.

    Benjamini, Y. Discovering the false discovery rate. J. R. Stat. Soc. Series B Stat. Methodol. 72, 405–416 (2010).

    Article  Google Scholar 

  66. 66.

    Murray, G. G. et al. The effect of genetic structure on molecular dating and tests for temporal signal. Methods Ecol. Evol. 7, 80–89 (2016).

    PubMed  Article  Google Scholar 

  67. 67.

    Duchene, S., Duchene, D., Holmes, E. C. & Ho, S. Y. The performance of the date-randomization test in phylogenetic analyses of time-structured virus data. Mol. Biol. Evol. 32, 1895–1906 (2015).

    CAS  PubMed  Article  Google Scholar 

  68. 68.

    To, T. H., Jung, M., Lycett, S. & Gascuel, O. Fast dating using least-squares criteria and algorithms. Syst. Biol. 65, 82–97 (2016).

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  70. 70.

    Ansari, M. A. & Didelot, X. Bayesian inference of the evolution of a phenotype distribution on a phylogenetic tree. Genetics 204, 89–98 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. 71.

    Huelsenbeck, J. P., Nielsen, R. & Bollback, J. P. Stochastic mapping of morphological characters. Syst. Biol. 52, 131–158 (2003).

    PubMed  Article  Google Scholar 

  72. 72.

    Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Article  Google Scholar 

  73. 73.

    Bollback, J. P. SIMMAP: stochastic character mapping of discrete traits on phylogenies. BMC Bioinformatics 7, 88 (2006).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  74. 74.

    Unemo, M. & Shafer, W. M. Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: past, evolution, and future. Clin. Microbiol. Rev. 27, 587–613 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. 75.

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2008).

  76. 76.

    Page, A. J. et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31, 3691–3693 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77.

    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  78. 78.

    Letunic, I. & Bork, P. Interactive Tree of Life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. 79.

    Hadfield, J. et al. Phandango: an interactive viewer for bacterial population genomics. Bioinformatics 34, 292–293 (2018).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank H. To and O. Gascuel for their help with the LSD software, and the Pathogen Informatics group at the Wellcome Sanger Institute for informatics support. We also thank S. Szreter, T. Bayliss-Smith and P. Mitchell from the University of Cambridge, Cambridge, UK, for interesting discussions on the historical evidence of gonorrhoea infection. The Japanese isolates were kindly provided by Y. Watanabe and T. Kuroki, Department of Microbiology, Kanagawa Prefectural Institute of Public Health, Kanagawa, Japan. This work was funded by the Wellcome grant number 098051 and the Foundation for Medical Research at Örebro University Hospital, Örebro, Sweden. J.C. was funded by the ERC grant number 745258. Y.H.G. is supported by The Smith Family Foundation and the NIH/NIAID grant 1R01AI132606-01.

Author information

Affiliations

Authors

Contributions

S.R.H., M.U., S.D.B. and J.P. conceived and managed the study. L.S.B. and S.R.H. analysed the data and drafted the manuscript. D.G., M.U. and M.O. cultured isolates and extracted DNA. L.S.B., S.R.H., M.U. and Y.H.G. interpreted the data. J.C. provided statistical analysis. R.F. advised on historical interpretation. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Simon R. Harris.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10, Supplementary Tables 2 and 3, Supplementary Tables 5–7 and Supplementary Notes.

Reporting Summary

Supplementary Table 1

Additional strain information.

Supplementary Table 4

Prior and posterior continent assignments.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Busó, L., Golparian, D., Corander, J. et al. The impact of antimicrobials on gonococcal evolution. Nat Microbiol 4, 1941–1950 (2019). https://doi.org/10.1038/s41564-019-0501-y

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing