Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crucial role for central carbon metabolism in the bacterial L-form switch and killing by β-lactam antibiotics

Abstract

The peptidoglycan cell wall is an essential structure for the growth of most bacteria. However, many are capable of switching into a wall-deficient L-form state in which they are resistant to antibiotics that target cell wall synthesis under osmoprotective conditions, including host environments. L-form cells may have an important role in chronic or recurrent infections. The cellular pathways involved in switching to and from the L-form state remain poorly understood. This work shows that the lack of a cell wall, or blocking its synthesis with β-lactam antibiotics, results in an increased flux through glycolysis. This leads to the production of reactive oxygen species from the respiratory chain, which prevents L-form growth. Compensating for the metabolic imbalance by slowing down glycolysis, activating gluconeogenesis or depleting oxygen enables L-form growth in Bacillus subtilis, Listeria monocytogenes and Staphylococcus aureus. These effects do not occur in Enterococcus faecium, which lacks the respiratory chain pathway. Our results collectively show that when cell wall synthesis is blocked under aerobic and glycolytic conditions, perturbation of cellular metabolism causes cell death. We provide a mechanistic framework for many anecdotal descriptions of the optimal conditions for L-form growth and non-lytic killing by β-lactam antibiotics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Blocking PG synthesis causes glycolysis-mediated cell death.
Fig. 2: Glycolysis-mediated cell death is suppressed under gluconeogenic conditions.
Fig. 3: L-form growth under gluconeogenic conditions.
Fig. 4: Increase in glycolytic flux and ROS toxicity during L-form transitions.
Fig. 5: S. aureus escapes from β-lactam killing under gluconeogenic conditions.
Fig. 6: Bacteria lacking the RC pathway evade glycolysis-mediated β-lactam killing.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author on request.

References

  1. Klieneberger, E. The natural occurrence of pleuropneumonia-like organisms in apparent symbiosis with Streptobacillus moniliformis and other bacteria. J. Pathol. Bacteriol. 40, 93–105 (1935).

    Article  Google Scholar 

  2. Allan, E. J., Hoischen, C. & Gumpert, J. Bacterial L-forms. Adv. Appl. Microbiol. 68, 1–39 (2009).

    Article  CAS  Google Scholar 

  3. Domingue, G. J. Sr. & Woody, H. B. Bacterial persistence and expression of disease. Clin. Microbiol. Rev. 10, 320–344 (1997).

    Article  Google Scholar 

  4. Errington, J., Mickiewicz, K., Kawai, Y. & Wu, L. J. L-form bacteria, chronic diseases and the origins of life. Phil. Trans. R. Soc. B 371, 20150494 (2016).

    Article  Google Scholar 

  5. Kawai, Y., Mickiewicz, K. & Errington, J. Lysozyme counteracts β-lactam antibiotics by promoting the emergence of L-form bacteria. Cell 172, 1038–1049 (2018).

    Article  CAS  Google Scholar 

  6. Leaver, M., Dominguez-Cuevas, P., Coxhead, J. M., Daniel, R. A. & Errington, J. Life without a wall or division machine in Bacillus subtilis. Nature 457, 849–853 (2009).

    Article  CAS  Google Scholar 

  7. Domínguez-Cuevas, P., Mercier, R., Leaver, M., Kawai, Y. & Errington, J. The rod to L-form transition of Bacillus subtilis is limited by a requirement for the protoplast to escape from the cell wall sacculus. Mol. Microbiol. 83, 52–66 (2012).

    Article  Google Scholar 

  8. Mercier, R., Kawai, Y. & Errington, J. Excess membrane synthesis drives a primitive mode of cell proliferation. Cell 152, 997–1007 (2013).

    Article  CAS  Google Scholar 

  9. Kawai, Y. et al. Cell growth of wall-free L-form bacteria is limited by oxidative damage. Curr. Biol. 25, 1613–1618 (2015).

    Article  CAS  Google Scholar 

  10. Huber, T. W. & Brinkley, A. W. Growth of cell wall-defective variants of Escherichia coli: comparison of aerobic and anaerobic induction frequencies. J. Clin. Microbiol. 6, 166–171 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Jutras, B. L. & Jacobs-Wagner, C. Bacterial evolution: what goes around comes around. Curr. Biol. 25, R496–R498 (2015).

    Article  CAS  Google Scholar 

  12. Willett, H. P. in Zinsser’s Microbiology 20th edn (eds Joklik, W. K., Willett, H. P. & Amos, D. B.) 53−75 (Appleton & Lange, 1992).

  13. Van Schaik, W. et al. Pyrosequencing-based comparative genome analysis of the nosocomial pathogen Enterococcus faecium and identification of a large transferable pathogenicity island. BMC Genom. 11, 239 (2010).

    Article  Google Scholar 

  14. Julsing, M. K., Rijpkema, M., Woerdenbag, H. J., Quax, W. J. & Kayser, O. Functional analysis of genes involved in the biosynthesis of isoprene in Bacillus subtilis. Appl. Microbiol. Biotechnol. 75, 1377–1384 (2007).

    Article  CAS  Google Scholar 

  15. Blencke, H. M. et al. Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: regulation of the central metabolic pathways. Metab. Eng. 5, 133–149 (2003).

    Article  CAS  Google Scholar 

  16. Winkler, W. C., Nahvi, A., Roth, A., Collins, J. A. & Breaker, R. R. Control of gene expression by a natural metabolite-responsive ribozyme. Nature 428, 281–286 (2004).

    Article  CAS  Google Scholar 

  17. Gyan, S., Shiohira, Y., Sato, I., Takeuchi, M. & Sato, T. Regulatory loop between redox sensing of the NADH/NAD+ ratio by Rex (YdiH) and oxidation of NADH by NADH dehydrogenase Ndh in Bacillus subtilis. J. Bacteriol. 188, 7062–7071 (2006).

    Article  CAS  Google Scholar 

  18. Santana, M. et al. Molecular cloning, sequencing, and physiological characterization of the qox operon from Bacillus subtilis encoding the aa 3-600 quinol oxidase. J. Biol. Chem. 267, 10225–10231 (1992).

    CAS  PubMed  Google Scholar 

  19. Mogi, T. Over-expression and characterization of Bacillus subtilis heme O synthase. J. Biochem. 145, 669–675 (2009).

    Article  CAS  Google Scholar 

  20. Töwe, S. et al. The MarR-type repressor MhqR (YkvE) regulates multiple dioxygenases/glyoxalases and an azoreductase which confer resistance to 2-methylhydroquinone and catechol in Bacillus subtilis. Mol. Microbiol. 66, 40–54 (2007).

    Article  Google Scholar 

  21. Deutscher, J., Francke, C. & Postma, P. W. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol. Mol. Biol. Rev. 70, 939–1031 (2006).

    Article  CAS  Google Scholar 

  22. Pereira, Y., Petit-Glatron, M. F. & Chambert, R. yveB, encoding endolevanase LevB, is part of the sacByveByveA levansucrase tricistronic operon in Bacillus subtilis. Microbiology 147, 3413–3419 (2001).

    Article  CAS  Google Scholar 

  23. Görke, B. & Stülke, J. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat. Rev. Microbiol. 6, 613–624 (2008).

    Article  Google Scholar 

  24. Kleijn, R. J. et al. Metabolic fluxes during strong carbon catabolite repression by malate in Bacillus subtilis. J. Biol. Chem. 285, 1587–1596 (2010).

    Article  CAS  Google Scholar 

  25. Schilling, O. et al. Transcriptional and metabolic responses of Bacillus subtilis to the availability of organic acids: transcription regulation is important but not sufficient to account for metabolic adaptation. Appl. Environ. Microbiol. 73, 499–507 (2007).

    Article  CAS  Google Scholar 

  26. Lovering, A. L., Safadi, S. S. & Strynadka, N. C. Structural perspective of peptidoglycan biosynthesis and assembly. Annu. Rev. Biochem. 81, 451–478 (2012).

    Article  CAS  Google Scholar 

  27. Kawai, Y., Mercier, R. & Errington, J. Bacterial cell morphogenesis does not require a preexisting template structure. Curr. Biol. 24, 863–867 (2014).

    Article  CAS  Google Scholar 

  28. Drummen, G. P., van Liebergen, L. C., Op den Kamp, J. A. & Post, J. A. C11-BODIPY581/591, an oxidation-sensitive fluorescent lipid peroxidation probe: (micro)spectroscopic characterization and validation of methodology. Free Radic. Biol. Med. 33, 473–490 (2002).

    Article  CAS  Google Scholar 

  29. Chubukov, V. et al. Transcriptional regulation is insufficient to explain substrate-induced flux changes in Bacillus subtilis. Mol. Syst. Biol. 9, 709 (2013).

    Article  CAS  Google Scholar 

  30. Chandrangsu, P., Loi, V. V., Antelmann, H. & Helmann, J. D. The role of bacillithiol in Gram-positive Firmicutes. Antioxid. Redox Signal. 28, 445–462 (2018).

    Article  CAS  Google Scholar 

  31. Wu, J. A., Kusuma, C., Mond, J. J. & Kokai-Kun, J. F. Lysostaphin disrupts Staphylococcus aureus and Staphylococcus epidermidis biofilms on artificial surfaces. Antimicrob. Agents Chemother. 47, 3407–3414 (2003).

    Article  CAS  Google Scholar 

  32. Han, J. et al. Glycerol uptake is important for L-form formation and persistence in Staphylococcus aureus. PLoS ONE 9, e108325 (2014).

    Article  Google Scholar 

  33. Mercier, R., Kawai, Y. & Errington, J. General principles for the formation and proliferation of a wall-free (L-form) state in bacteria. eLife 3, e04629 (2014).

    Article  Google Scholar 

  34. Cho, H., Uehara, T. & Bernhardt, T. G. Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell 159, 1300–1311 (2014).

    Article  CAS  Google Scholar 

  35. Rae, C. S., Geissler, A., Adamson, P. C. & Portnoy, D. A. Mutations of the Listeria monocytogenes peptidoglycan N-deacetylase and O-acetylase result in enhanced lysozyme sensitivity, bacteriolysis, and hyperinduction of innate immune pathways. Infect. Immun. 79, 3596–3606 (2011).

    Article  CAS  Google Scholar 

  36. Burke, T. P. et al. Listeria monocytogenes is resistant to lysozyme through the regulation, not the acquisition, of cell wall-modifying enzymes. J. Bacteriol. 196, 3756–3767 (2014).

    Article  Google Scholar 

  37. Rodríguez-Tébar, A., Rojo, F. & Vazquez, D. Interaction of β-lactam antibiotics with penicillin-binding proteins from Bacillus megaterium. Eur. J. Biochem. 126, 161–166 (1982).

    Article  Google Scholar 

  38. Kohanski, M. A., Dwyer, D. J., Hayete, B., Lawrence, C. A. & Collins, J. J. A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130, 797–810 (2007).

    Article  CAS  Google Scholar 

  39. Dwyer, D. J., Collins, J. J. & Walker, G. C. Unraveling the physiological complexities of antibiotic lethality. Annu. Rev. Pharmacol. Toxicol. 55, 313–332 (2015).

    Article  CAS  Google Scholar 

  40. Van Acker, H. & Coenye, T. The role of reactive oxygen species in antibiotic-mediated killing of bacteria. Trends Microbiol. 25, 456–466 (2017).

    Article  Google Scholar 

  41. Lobritz, M. A. et al. Antibiotic efficacy is linked to bacterial cellular respiration. Proc. Natl Acad. Sci. USA 112, 8173–8180 (2015).

    Article  CAS  Google Scholar 

  42. Belenky, P. et al. Bactericidal antibiotics induce toxic metabolic perturbations that lead to cellular damage. Cell Rep. 13, 968–980 (2015).

    Article  CAS  Google Scholar 

  43. Ladjouzi, R. et al. Loss of antibiotic tolerance in Sod-deficient mutants is dependent on the energy source and arginine catabolism in Enterococci. J. Bacteriol. 197, 3283–3293 (2015).

    Article  CAS  Google Scholar 

  44. Dienes, L. & Weinberger, H. J. The L forms of bacteria. Bacteriol. Rev. 15, 245–288 (1951).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Spizizen, J. Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate. Proc. Natl Acad. Sci. USA 44, 1072–1078 (1958).

    Article  CAS  Google Scholar 

  46. Adams, D. W., Wu, L. J., Czaplewski, L. G. & Errington, J. Multiple effects of benzamide antibiotics on FtsZ function. Mol. Microbiol. 80, 68–84 (2011).

    Article  CAS  Google Scholar 

  47. Vagner, V., Dervyn, E. & Ehrlich, S. D. A vector for systematic gene inactivation in Bacillus subtilis. Microbiology 144, 3097–3104 (1998).

    Article  CAS  Google Scholar 

  48. Quisel, J. D., Burkholder, W. F. & Grossman, A. D. In vivo effects of sporulation kinases on mutant Spo0A proteins in Bacillus subtilis. J. Bacteriol. 183, 6573–6578 (2001).

    Article  CAS  Google Scholar 

  49. Agapova, A. et al. Flexible nitrogen utilisation by the metabolic generalist pathogen Mycobacterium tuberculosis. eLife 8, e41129 (2019).

    Article  Google Scholar 

  50. Larrouy-Maumus, G. et al. Cell-envelope remodeling as a determinant of phenotypic antibacterial tolerance in Mycobacterium tuberculosis. ACS Infect. Dis. 2, 352–360 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Cossart for the L. monocytogenes strains. All work in the Errington lab was funded by a European Research Council award (grant no. 670980). Work in the L.P.S.d.C. lab was supported by a Wellcome Trust New Investigator Award (104785/B/14/Z). The L.P.S.d.C. lab is also funded by the Francis Crick Institute, which receives its core funding from Cancer Research UK (FC001060), the UK Medical Research Council (FC001060) and the Wellcome Trust (FC001060).

Author information

Authors and Affiliations

Authors

Contributions

Y.K. performed and analysed most of the experiments. R.M. and K.M. contributed strain constructions and preliminary genetic and microscopic experiments. A.S. and L.P.S.d.C. performed and analysed the metabolome and mass spectrometry experiments. All authors contributed to the experimental design and concepts. Y.K. and J.E. wrote the main text with contributions from all other authors.

Corresponding authors

Correspondence to Yoshikazu Kawai or Jeff Errington.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary Figs. 1–4, Legend for Supplementary Video 1, Supplementary Tables 1–3 and Supplementary References.

Reporting Summary

Supplementary Video 1

Contrasting effects of glucose and succinate on L-form death/growth phenotype (related to Fig. 3).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawai, Y., Mercier, R., Mickiewicz, K. et al. Crucial role for central carbon metabolism in the bacterial L-form switch and killing by β-lactam antibiotics . Nat Microbiol 4, 1716–1726 (2019). https://doi.org/10.1038/s41564-019-0497-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-019-0497-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing