Quantitative microbiome profiling disentangles inflammation- and bile duct obstruction-associated microbiota alterations across PSC/IBD diagnoses


Recent work has highlighted the importance of confounder control in microbiome association studies1,2. For instance, multiple pathologies previously linked to gut ecosystem dysbiosis display concomitant changes in stool consistency3,4,5,6, a major covariate of microbiome variation2,7. In those cases, observed microbiota alterations could largely reflect variation in faecal water content. Moreover, stool moisture variation has been linked to fluctuations in faecal microbial load, inducing artefacts in relative abundance profile analyses8,9. Hence, the identification of associations between the gut microbiota and specific disease manifestations in pathologies with complex aetiologies requires a deconfounded, quantitative assessment of microbiome variation. Here, we revisit a disease association microbiome data set comprising 106 patients with primary sclerosing cholangitis (PSC) and/or inflammatory bowel disease10. Assessing quantitative taxon abundances9, we study microbiome alterations beyond symptomatic stool moisture variation. We observe an increased prevalence of a low cell count Bacteroides 2 enterotype across the pathologies studied, with microbial loads correlating inversely with intestinal and systemic inflammation markers. Quantitative analyses allow us to differentiate between taxa associated with either intestinal inflammation severity (Fusobacterium) or cholangitis/biliary obstruction (Enterococcus) among previously suggested PSC marker genera. We identify and validate a near-exclusion pattern between the inflammation-associated Fusobacterium and Veillonella genera, with Fusobacterium detection being restricted to Crohn’s disease and patients with PSC–Crohn’s disease. Overall, through absolute quantification and confounder control, we single out clear-cut microbiome markers associated with pathophysiological manifestations and disease diagnosis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Microbial composition of the PSC/IBD cohort diverges from healthy controls.
Fig. 2: Associations between PSC and/or IBD diagnoses, faecal cell counts and inflammatory burden in the PSC/IBD/mHC cohort.
Fig. 3: Quantitative genera profile associations with moisture, biliary obstruction and inflammation burden in the PSC/IBD/mHC cohort.

Data availability

Raw amplicon sequencing data that support the findings of this study have been deposited at the European Genome-phenome Archive (EGA), with accession no. EGAS00001003600. The genus-level QMP matrix can be downloaded at http://raeslab.org/software/QMP2/.

Code availability

The R code used to compute QMPs can be found at https://github.com/raeslab/QMP/.


  1. 1.

    Zhernakova, A. et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352, 565–569 (2016).

    CAS  Article  Google Scholar 

  2. 2.

    Falony, G. et al. Population-level analysis of gut microbiome variation. Science 352, 560–564 (2016).

    CAS  Article  Google Scholar 

  3. 3.

    Knudsen, K. et al. Gastrointestinal transit time in Parkinson’s disease using a magnetic tracking system. J. Park. Dis. 7, 471–479 (2017).

    Google Scholar 

  4. 4.

    Frøslie, K. F., Jahnsen, J., Moum, B. A. & Vatn, M. H. Mucosal healing ininflammatory bowel disease: results from a Norwegian population-based cohort. Gastroenterology 133, 412–422 (2007).

    Article  Google Scholar 

  5. 5.

    Krishnan, B., Babu, S., Walker, J., Walker, A. B. & Pappachan, J. M. Gastrointestinal complications of diabetes mellitus. World J. Diabetes 4, 51–63 (2013).

    Article  Google Scholar 

  6. 6.

    Probert, C. S., Emmett, P. M. & Heaton, K. W. Some determinants of whole-gut transit time: a population-based study. QJM 88, 311–315 (1995).

    CAS  PubMed  Google Scholar 

  7. 7.

    Vandeputte, D. et al. Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut 65, 57–62 (2016).

    CAS  Article  Google Scholar 

  8. 8.

    Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: and this is not optional. Front. Microbiol. 8, 2224 (2017).

    Article  Google Scholar 

  9. 9.

    Vandeputte, D. et al. Quantitative microbiome profiling links gut community variation to microbial load. Nature 551, 507–511 (2017).

    CAS  Article  Google Scholar 

  10. 10.

    Sabino, J. et al. Primary sclerosing cholangitis is characterised by intestinal dysbiosis independent from IBD. Gut 65, 1681–1689 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    Baumgart, D. C. & Carding, S. R. Inflammatory bowel disease: cause and immunobiology. Lancet 369, 1627–1640 (2007).

    CAS  Article  Google Scholar 

  12. 12.

    Hirschfield, G. M., Karlsen, T. H., Lindor, K. D. & Adams, D. H. Primary sclerosing cholangitis. Lancet 382, 1587–1599 (2013).

    Article  Google Scholar 

  13. 13.

    Hov, J. R. & Kummen, M. Intestinal microbiota in primary sclerosing cholangitis. Curr. Opin. Gastroenterol. 33, 85–92 (2017).

    PubMed  Google Scholar 

  14. 14.

    Holmes, I., Harris, K. & Quince, C. Dirichlet multinomial mixtures: generative models for microbial metagenomics. PLoS ONE 7, e30126 (2012).

    CAS  Article  Google Scholar 

  15. 15.

    Ding, T. & Schloss, P. D. Dynamics and associations of microbial community types across the human body. Nature 509, 357–360 (2014).

    CAS  Article  Google Scholar 

  16. 16.

    Falony, G., Vieira-Silva, S. & Raes, J. Richness and ecosystem development across faecal snapshots of the gut microbiota. Nat. Microbiol. 3, 526–528 (2018).

    CAS  Article  Google Scholar 

  17. 17.

    Shah, S. B. & Hanauer, S. B. Treatment of diarrhea in patients with inflammatory bowel disease: concepts and cautions. Rev. Gastroenterol. Disord. 7, S3–S10 (2007).

    PubMed  Google Scholar 

  18. 18.

    Kostic, A. D. et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14, 207–215 (2013).

    CAS  Article  Google Scholar 

  19. 19.

    van den Bogert, B., Meijerink, M., Zoetendal, E. G., Wells, J. M. & Kleerebezem, M. Immunomodulatory properties of Streptococcus and Veillonella isolates from the human small intestine microbiota. PLoS ONE 9, e114277 (2014).

    Article  Google Scholar 

  20. 20.

    Zhou, P., Li, X., Huang, I.-H. & Qi, F. Veillonella catalase protects the growth of Fusobacterium nucleatum in microaerophilic and Streptococcus gordonii-resident environments. Appl. Environ. Microbiol. 83, e01079-17 (2017).

    Article  Google Scholar 

  21. 21.

    Pohl, J., Ring, A., Stremmel, W. & Stiehl, A. The role of dominant stenoses in bacterial infections of bile ducts in primary sclerosing cholangitis. Eur. J. Gastroenterol. Hepatol. 18, 69–74 (2006).

    Article  Google Scholar 

  22. 22.

    Michaux, C. et al. SlyA is a transcriptional regulator involved in the virulence of Enterococcus faecalis. Infect. Immun. 79, 2638–2645 (2011).

    CAS  Article  Google Scholar 

  23. 23.

    Dignass, A. et al. Second European evidence-based consensus on the diagnosis and management of ulcerative colitis part 1: definitions and diagnosis. J. Crohns Colitis 6, 965–990 (2012).

    Article  Google Scholar 

  24. 24.

    Van Assche, G. et al. The second European evidence-based consensus on the diagnosis and management of Crohn’s disease: definitions and diagnosis. J. Crohns Colitis 4, 7–27 (2010).

    Article  Google Scholar 

  25. 25.

    Lindor, K. D., Kowdley, K. V. & Harrison, M. E. ACG Clinical Guideline: primary sclerosing cholangitis. Am. J. Gastroenterol. 110, 646–659 (2015).

    CAS  Article  Google Scholar 

  26. 26.

    Prest, E. I., Hammes, F., Kötzsch, S., van Loosdrecht, M. C. M. & Vrouwenvelder, J. S. Monitoring microbiological changes in drinking water systems using a fast and reproducible flow cytometric method. Water Res. 47, 7131–7142 (2013).

    CAS  Article  Google Scholar 

  27. 27.

    Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120 (2013).

    CAS  Article  Google Scholar 

  28. 28.

    Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).

    Article  Google Scholar 

  29. 29.

    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).

    CAS  Article  Google Scholar 

  30. 30.

    Tito, R. Y. et al. Brief report: daialister as a microbial marker of disease activity in spondyloarthritis. Arthritis Rheumatol. 69, 114–121 (2017).

    CAS  Article  Google Scholar 

  31. 31.

    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    CAS  Article  Google Scholar 

  32. 32.

    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

    CAS  Article  Google Scholar 

  33. 33.

    Stoddard, S. F., Smith, B. J., Hein, R., Roller, B. R. K. & Schmidt, T. M. rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res. 43, D593–D598 (2015).

    CAS  Article  Google Scholar 

  34. 34.

    Dereeper, A. et al. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 36, W465–W469 (2008).

    CAS  Article  Google Scholar 

  35. 35.

    Oksanen, J. et al. vegan: community ecology package. R package version 2.2-1 https://CRAN.R-project.org/package=vegan (2015).

  36. 36.

    McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).

    CAS  Article  Google Scholar 

  37. 37.

    Ogle, D. H. FSA: fisheries stock analysis. R package version 0.8.13 https://github.com/droglenc/FSA (2017).

  38. 38.

    Hothorn, T., Hornik, K., van de Wiel, M. A. & Zeileis, A. A Lego system for conditional inference. Am. Stat. 60, 257–263 (2006).

    Article  Google Scholar 

  39. 39.

    Morgan, M. DirichletMultinomial: Dirichlet-multinomial mixture model machine learning for microbiome data. R package version 1.18.0 http://bioconductor.org/packages/DirichletMultinomial/ (2017).

  40. 40.

    Delignette-Muller, M. & Dutang, C. fitdistrplus: an R package for fitting distributions. J. Stat. Softw. 64, 1–34 (2015).

    Article  Google Scholar 

Download references


We thank all study participants for their valuable contribution. We thank K. Verbeke for facilitating moisture content determinations. The development of QMP analysis was funded by a KU Leuven CREA grant. S.V.-S., G.K. and M.V.-C. were supported by a (post-)doctoral fellowship from the Research Foundation Flanders (FWO Vlaanderen). S.V. and S.v.d.M. are Senior Clinical Researchers of the FWO Vlaanderen. This work was co-funded by VIB, the Rega Institute for Medical Research, KU Leuven, the FWO EOS program (30770923), FP7 METACARDIS (305312) and H2020 SYSCID (733100).

Author information




This study was conceived by J.S., S.V. and J.R. Experiments were designed by J.S., G.F. and J.R. Sampling of the different cohorts was set up and carried out by J.S., S.v.d.M., S.V.-S., C.C. and G.F. Experiments were performed by J.S. (calprotectin measurements), G.K. (flow cytometry analysis and moisture content) and C.C. (QMP analysis of the validation cohort). Statistical analyses were planned and executed by J.S., S.V.-S., M.V.-C., I.C. and G.F. S.V.-S., G.F., S.V. and J.R. drafted the manuscript. All authors revised the article and approved the final version for publication.

Corresponding authors

Correspondence to Séverine Vermeire or Jeroen Raes.

Ethics declarations

Competing interests

J.R., S.V., S.V.-S., J.S., M.V.-C., G.F. and G.K. are inventors on the patent application PCT/EP2018/084920 in the name of VIB VZW, Katholieke Universiteit Leuven, KU Leuven R&D and Vrije Universiteit Brussel covering the microbiome features associated with inflammation described in this article.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9, Supplementary Table legends.

Reporting Summary

Supplementary Data 1

Supplementary Tables 1–11.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vieira-Silva, S., Sabino, J., Valles-Colomer, M. et al. Quantitative microbiome profiling disentangles inflammation- and bile duct obstruction-associated microbiota alterations across PSC/IBD diagnoses. Nat Microbiol 4, 1826–1831 (2019). https://doi.org/10.1038/s41564-019-0483-9

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing