Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

DNA-uptake pili of Vibrio cholerae are required for chitin colonization and capable of kin recognition via sequence-specific self-interaction

Abstract

How bacteria colonize surfaces and how they distinguish the individuals around them are fundamental biological questions. Type IV pili are a widespread and multipurpose class of cell surface polymers. Here we directly visualize the DNA-uptake pilus of Vibrio cholerae, which is produced specifically during growth on its natural habitat—chitinous surfaces. As predicted, these pili are highly dynamic and retract before DNA uptake during competence for natural transformation. Interestingly, DNA-uptake pili can also self-interact to mediate auto-aggregation. This capability is conserved in disease-causing pandemic strains, which typically encode the same major pilin subunit, PilA. Unexpectedly, however, we discovered that extensive strain-to-strain variability in PilA (present in environmental isolates) creates a set of highly specific interactions, enabling cells producing pili composed of different PilA subunits to distinguish between one another. We go on to show that DNA-uptake pili bind to chitinous surfaces and are required for chitin colonization under flow, and that pili capable of self-interaction connect cells on chitin within dense pili networks. Our results suggest a model whereby DNA-uptake pili function to promote inter-bacterial interactions during surface colonization. Moreover, they provide evidence that type IV pili could offer a simple and potentially widespread mechanism for bacterial kin recognition.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Direct observation of dynamic DNA-uptake pili.
Fig. 2: Competent cells auto-aggregate in the absence of pilus retraction.
Fig. 3: A1552 PilA is sufficient for aggregation in a non-pandemic strain.
Fig. 4: PilA variability governs auto-aggregation and enables kin-recognition.
Fig. 5: The unusual tail of ATCC25872/V52 PilA inhibits aggregation.
Fig. 6: DNA-uptake pili form networks on chitin surfaces.

Data availability

The data that support the findings of this study are available from the corresponding authors upon request.

References

  1. 1.

    Maier, B. & Wong, G. C. L. How bacteria use type IV pili machinery on surfaces. Trends Microbiol. 23, 775–788 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Berry, J. L. & Pelicic, V. Exceptionally widespread nanomachines composed of type IV pilins: the prokaryotic Swiss Army knives. FEMS Microbiol. Rev. 39, 134–154 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Giltner, C. L., Nguyen, Y. & Burrows, L. L. Type IV pilin proteins: versatile molecular modules. Microbiol. Mol. Biol. Rev. 76, 740–772 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Chang, Y. W. et al. Architecture of the type IVa pilus machine. Science 351, aad2001 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  5. 5.

    Craig, L. et al. Type IV pilus structure by cryo-electron microscopy and crystallography: implications for pilus assembly and functions. Mol. Cell 23, 651–662 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Gold, V. A., Salzer, R., Averhoff, B. & Kuhlbrandt, W. Structure of a type IV pilus machinery in the open and closed state. eLife 4, e07380 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  7. 7.

    Kolappan, S. et al. Structure of the Neisseria meningitidis type IV pilus. Nat. Commun. 7, 13015 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Merz, A. J., So, M. & Sheetz, M. P. Pilus retraction powers bacterial twitching motility. Nature 407, 98–102 (2000).

    CAS  Article  Google Scholar 

  9. 9.

    Skerker, J. M. & Berg, H. C. Direct observation of extension and retraction of type IV pili. Proc. Natl Acad. Sci. USA 98, 6901–6904 (2001).

    CAS  Article  Google Scholar 

  10. 10.

    Jakovljevic, V., Leonardy, S., Hoppert, M. & Sogaard-Andersen, L. PilB and PilT are ATPases acting antagonistically in type IV pilus function in Myxococcus xanthus. J. Bacteriol. 190, 2411–2421 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    McCallum, M., Tammam, S., Khan, A., Burrows, L. L. & Howell, P. L. The molecular mechanism of the type IVa pilus motors. Nat. Commun. 8, 15091 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Waldor, M. K. & Mekalanos, J. J. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272, 1910–1914 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Chiang, S. L., Taylor, R. K., Koomey, M. & Mekalanos, J. J. Single amino acid substitutions in the N-terminus of Vibrio cholerae TcpA affect colonization, autoagglutination, and serum resistance. Mol. Microbiol. 17, 1133–1142 (1995).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Taylor, R. K., Miller, V. L., Furlong, D. B. & Mekalanos, J. J. Use of phoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin. Proc. Natl Acad. Sci. USA 84, 2833–2837 (1987).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Kirn, T. J., Lafferty, M. J., Sandoe, C. M. & Taylor, R. K. Delineation of pilin domains required for bacterial association into microcolonies and intestinal colonization by Vibrio cholerae. Mol. Microbiol. 35, 896–910 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Chiavelli, D. A., Marsh, J. W. & Taylor, R. K. The mannose-sensitive hemagglutinin of Vibrio cholerae promotes adherence to zooplankton. Appl. Environ. Microbiol. 67, 3220–3225 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Moorthy, S. & Watnick, P. I. Genetic evidence that the Vibrio cholerae monolayer is a distinct stage in biofilm development. Mol. Microbiol. 52, 573–587 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Utada, A. S. et al. Vibrio cholerae use pili and flagella synergistically to effect motility switching and conditional surface attachment. Nat. Commun. 5, 4913 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Watnick, P. I., Fullner, K. J. & Kolter, R. A role for the mannose-sensitive hemagglutinin in biofilm formation by Vibrio cholerae El Tor. J. Bacteriol. 181, 3606–3609 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Watnick, P. I. & Kolter, R. Steps in the development of a Vibrio cholerae El Tor biofilm. Mol. Microbiol. 34, 586–595 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Tamplin, M. L., Gauzens, A. L., Huq, A., Sack, D. A. & Colwell, R. R. Attachment of Vibrio cholerae serogroup O1 to zooplankton and phytoplankton of Bangladesh waters. Appl. Environ. Microbiol. 56, 1977–1980 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Blokesch, M. Competence-induced type VI secretion might foster intestinal colonization by Vibrio cholerae. Bioessays 37, 1163–1168 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Colwell, R. R. et al. Reduction of cholera in Bangladeshi villages by simple filtration. Proc. Natl Acad. Sci. USA 100, 1051–1055 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Meibom, K. L. et al. The Vibrio cholerae chitin utilization program. Proc. Natl Acad. Sci. USA 101, 2524–2529 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Meibom, K. L., Blokesch, M., Dolganov, N. A., Wu, C. Y. & Schoolnik, G. K. Chitin induces natural competence in Vibrio cholerae. Science 310, 1824–1827 (2005).

    CAS  Article  Google Scholar 

  26. 26.

    Johnston, C., Martin, B., Fichant, G., Polard, P. & Claverys, J. P. Bacterial transformation: distribution, shared mechanisms and divergent control. Nat. Rev. Microbiol. 12, 181–196 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Seitz, P. & Blokesch, M. DNA-uptake machinery of naturally competent Vibrio cholerae. Proc. Natl Acad. Sci. USA 110, 17987–17992 (2013).

    CAS  Article  Google Scholar 

  28. 28.

    Seitz, P. et al. ComEA is essential for the transfer of external DNA into the periplasm in naturally transformable Vibrio cholerae cells. PLoS Genet. 10, e1004066 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  29. 29.

    Seitz, P. & Blokesch, M. DNA transport across the outer and inner membranes of naturally transformable Vibrio cholerae is spatially but not temporally coupled. mBio 5, e01409–14 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  30. 30.

    Wolfgang, M. et al. PilT mutations lead to simultaneous defects in competence for natural transformation and twitching motility in piliated Neisseria gonorrhoeae. Mol. Microbiol. 29, 321–330 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Gangel, H. et al. Concerted spatio-temporal dynamics of imported DNA and ComE DNA uptake protein during gonococcal transformation. PLoS Pathog. 10, e1004043 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Laurenceau, R. et al. A type IV pilus mediates DNA binding during natural transformation in Streptococcus pneumoniae. PLoS Pathog. 9, e1003473 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Ellison, C. K. et al. Obstruction of pilus retraction stimulates bacterial surface sensing. Science 358, 535–538 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Lo Scrudato, M. & Blokesch, M. The regulatory network of natural competence and transformation of Vibrio cholerae. PLoS Genet. 8, e1002778 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Jones, C. J. et al. C-di-GMP regulates motile to sessile transition by modulating MshA pili biogenesis and near-surface motility behavior in Vibrio cholerae. PLoS Pathog. 11, e1005068 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  36. 36.

    Fong, J. C., Syed, K. A., Klose, K. E. & Yildiz, F. H. Role of Vibrio polysaccharide (vps) genes in VPS production, biofilm formation and Vibrio cholerae pathogenesis. Microbiology 156, 2757–2769 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Biais, N., Ladoux, B., Higashi, D., So, M. & Sheetz, M. Cooperative retraction of bundled type IV pili enables nanonewton force generation. PLoS Biol. 6, e87 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  38. 38.

    Joelsson, A., Liu, Z. & Zhu, J. Genetic and phenotypic diversity of quorum-sensing systems in clinical and environmental isolates of Vibrio cholerae. Infect. Immun. 74, 1141–1147 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Aagesen, A. M. & Häse, C. C. Sequence analyses of type IV pili from Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus. Microb. Ecol. 64, 509–524 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Aldova, E., Laznickova, K., Stepankova, E. & Lietava, J. Isolation of nonagglutinable vibrios from an enteritis outbreak in Czechoslovakia. J. Infect. Dis. 118, 25–31 (1968).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Chun, J. et al. Comparative genomics reveals mechanism for short-term and long-term clonal transitions in pandemic Vibrio cholerae. Proc. Natl Acad. Sci. USA 106, 15442–15447 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Li, M., Shimada, T., Morris, J. G. Jr., Sulakvelidze, A. & Sozhamannan, S. Evidence for the emergence of non-O1 and non-O139 Vibrio cholerae strains with pathogenic potential by exchange of O-antigen biosynthesis regions. Infect. Immun. 70, 2441–2453 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    DiRita, V. J., Neely, M., Taylor, R. K. & Bruss, P. M. Differential expression of the ToxR regulon in classical and El Tor biotypes of Vibrio cholerae is due to biotype-specific control over toxT expression. Proc. Natl Acad. Sci. USA 93, 7991–7995 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Jude, B. A. & Taylor, R. K. The physical basis of type 4 pilus-mediated microcolony formation by Vibrio cholerae O1. J. Struct. Biol. 175, 1–9 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Lim, M. S. et al. Vibrio cholerae El Tor TcpA crystal structure and mechanism for pilus-mediated microcolony formation. Mol. Microbiol. 77, 755–770 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Rhine, J. A. & Taylor, R. K. TcpA pilin sequences and colonization requirements for O1 and O139 Vibrio cholerae. Mol. Microbiol. 13, 1013–1020 (1994).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Ellison, C. K. et al. Retraction of DNA-bound type IV competence pili initiates DNA uptake during natural transformation in Vibrio cholerae. Nat. Microbiol. 3, 773–780 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Hélaine, S. et al. PilX, a pilus-associated protein essential for bacterial aggregation, is a key to pilus-facilitated attachment of Neisseria meningitidis to human cells. Mol. Microbiol. 55, 65–77 (2005).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  49. 49.

    Shime-Hattori, A. et al. Two type IV pili of Vibrio parahaemolyticus play different roles in biofilm formation. FEMS Microbiol. Lett. 264, 89–97 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Krebs, S. J. & Taylor, R. K. Protection and attachment of Vibrio cholerae mediated by the toxin-coregulated pilus in the infant mouse model. J. Bacteriol. 193, 5260–5270 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Hang, L. et al. Use of in vivo-induced antigen technology (IVIAT) to identify genes uniquely expressed during human infection with Vibrio cholerae. Proc. Natl Acad. Sci. USA 100, 8508–8513 (2003).

    PubMed  Article  PubMed Central  Google Scholar 

  52. 52.

    Oldewurtel, E. R., Kouzel, N., Dewenter, L., Henseler, K. & Maier, B. Differential interaction forces govern bacterial sorting in early biofilms. eLife 4, e10811 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Chamot-Rooke, J. et al. Posttranslational modification of pili upon cell contact triggers N. meningitidis dissemination. Science 331, 778–782 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. 54.

    Smukalla, S. et al. FLO1 is a variable green beard gene that drives biofilm-like cooperation in budding yeast. Cell 135, 726–737 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Hirose, S., Benabentos, R., Ho, H. I., Kuspa, A. & Shaulsky, G. Self-recognition in social amoebae is mediated by allelic pairs of tiger genes. Science 333, 467–470 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Pathak, D. T., Wei, X., Dey, A. & Wall, D. Molecular recognition by a polymorphic cell surface receptor governs cooperative behaviors in bacteria. PLoS Genet. 9, e1003891 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  57. 57.

    Strassmann, J. E., Gilbert, O. M. & Queller, D. C. Kin discrimination and cooperation in microbes. Annu. Rev. Microbiol. 65, 349–367 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  58. 58.

    Wall, D. Kin recognition in bacteria. Annu. Rev. Microbiol. 70, 143–160 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Borgeaud, S., Metzger, L. C., Scrignari, T. & Blokesch, M. The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer. Science 347, 63–67 (2015).

    CAS  Article  Google Scholar 

  60. 60.

    Trunk, T., Khalil, H. S. & Leo, J. C. Bacterial autoaggregation. AIMS Microbiol. 4, 140–164 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61.

    Yildiz, F. H. & Schoolnik, G. K. Role of rpoS in stress survival and virulence of Vibrio cholerae. J. Bacteriol. 180, 773–784 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Matthey, N., Drebes Dörr, N. C. & Blokesch, M. Long-read-based genome sequences of pandemic and environmental Vibrio cholerae strains. Microbiol. Resour. Announc. 7, e01574-18 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Blokesch, M. A quorum sensing-mediated switch contributes to natural transformation of Vibrio cholerae. Mob. Genet. Elements 2, 224–227 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  64. 64.

    Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1989).

  65. 65.

    De Souza Silva, O. & Blokesch, M. Genetic manipulation of Vibrio cholerae by combining natural transformation with FLP recombination. Plasmid 64, 186–195 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  66. 66.

    Marvig, R. L. & Blokesch, M. Natural transformation of Vibrio cholerae as a tool—optimizing the procedure. BMC Microbiol. 10, 155 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  67. 67.

    Blokesch, M. TransFLP—a method to genetically modify Vibrio cholerae based on natural transformation and FLP-recombination. J. Vis. Exp. 68, e3761 (2012).

    Google Scholar 

  68. 68.

    Van der Henst, C. et al. Molecular insights into Vibrio cholerae’s intra-amoebal host-pathogen interactions. Nat. Commun. 9, 3460 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  69. 69.

    Gurung, I., Berry, J. L., Hall, A. M. J. & Pelicic, V. Cloning-independent markerless gene editing in Streptococcus sanguinis: novel insights in type IV pilus biology. Nucleic Acids Res. 45, e40 (2017).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  70. 70.

    Bao, Y., Lies, D. P., Fu, H. & Roberts, G. P. An improved Tn7-based system for the single-copy insertion of cloned genes into chromosomes of Gram-negative bacteria. Gene 109, 167–168 (1991).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  71. 71.

    Yamamoto, S. et al. Regulation of natural competence by the orphan two-component system sensor kinase ChiS involves a non-canonical transmembrane regulator in Vibrio cholerae. Mol. Microbiol. 91, 326–347 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  72. 72.

    Dalia, A. B., Lazinski, D. W. & Camilli, A. Identification of a membrane-bound transcriptional regulator that links chitin and natural competence in Vibrio cholerae. mBio 5, e01028–01013 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  73. 73.

    Yamamoto, S. et al. Identification of a chitin-induced small RNA that regulates translation of the tfoX gene, encoding a positive regulator of natural competence in Vibrio cholerae. J. Bacteriol. 193, 1953–1965 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. 74.

    Lo Scrudato, M. & Blokesch, M. A transcriptional regulator linking quorum sensing and chitin induction to render Vibrio cholerae naturally transformable. Nucleic Acids Res. 41, 3644–3658 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. 75.

    Jaskólska, M., Stutzmann, S., Stoudmann, C. & Blokesch, M. QstR-dependent regulation of natural competence and type VI secretion in Vibrio cholerae. Nucleic Acids Res. 46, 10619–10634 (2018).

    PubMed  PubMed Central  Google Scholar 

  76. 76.

    Blair, K. M., Turner, L., Winkelman, J. T., Berg, H. C. & Kearns, D. B. A molecular clutch disables flagella in the Bacillus subtilis biofilm. Science 320, 1636–1638 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  77. 77.

    Kearse, M. et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  78. 78.

    Keymer, D. P., Miller, M. C., Schoolnik, G. K. & Boehm, A. B. Genomic and phenotypic diversity of coastal Vibrio cholerae strains is linked to environmental factors. Appl. Environ. Microbiol. 73, 3705–3714 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. 79.

    Purdy, A., Rohwer, F., Edwards, R., Azam, F. & Bartlett, D. H. A glimpse into the expanded genome content of Vibrio cholerae through identification of genes present in environmental strains. J. Bacteriol. 187, 2992–3001 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Blokesch laboratory for scientific discussions and I. Mateus-Gonzalez for assistance with bioinformatics analyses. The authors also thank A. Boehm, S. Pukatzki, J. Mekalanos, J. Reidl and members of the Institut National de Recherche Biomédicale of the Democratic Republic of the Congo for providing V. cholerae strains and V. Pelicic for advice on pheS-mediated counter-selection. Work on this issue was supported by a Marie Skłodowska-Curie Individual Fellowship (703340, CMDNAUP) to D.W.A. and by EPFL intramural funding and an ERC Starting (309064-VIR4ENV) and Consolidator (724630-CholeraIndex) Grant from the European Research Council to M.B. M.B. is a Howard Hughes Medical Institute (HHMI) International Research Scholar (grant no. 55008726).

Author information

Affiliations

Authors

Contributions

Conception, design and analysis were carried out by D.W.A. and M.B. D.W.A., S.S., C.S. and M.B. performed the research. D.W.A and M.B. wrote the manuscript.

Corresponding authors

Correspondence to David. W. Adams or Melanie Blokesch.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1, Supplementary References, Supplementary Figs. 1–21, Supplementary Video legends.

Reporting Summary

Supplementary File 1

Details of the 647 V. cholerae genomes used for bioinformatic analyses.

Supplementary File 2

DNA sequences of pilA and the deduced amino acid sequences of the proteins they encode from a collection of 22 environmental and clinical V. cholerae strains.

Supplementary Video 1

DNA-uptake pili exhibit rapid assembly dynamics.

Supplementary Video 2

Additional examples of dynamic DNA-uptake pili.

Supplementary Video 3

High time-resolution imaging of pilus extension and retraction.

Supplementary Video 4

Retraction of an unusually long pilus.

Supplementary Video 5

Pilus retraction followed by DNA-uptake.

Supplementary Video 6

Cells lacking pilT produce multiple static pili.

Supplementary Video 7

Additional examples of static pili in retraction deficient cells.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Adams, D.W., Stutzmann, S., Stoudmann, C. et al. DNA-uptake pili of Vibrio cholerae are required for chitin colonization and capable of kin recognition via sequence-specific self-interaction. Nat Microbiol 4, 1545–1557 (2019). https://doi.org/10.1038/s41564-019-0479-5

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing