Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

RocS drives chromosome segregation and nucleoid protection in Streptococcus pneumoniae

Abstract

Chromosome segregation in bacteria is poorly understood outside some prominent model strains1,2,3,4,5 and even less is known about how it is coordinated with other cellular processes. This is the case for the opportunistic human pathogen Streptococcus pneumoniae (the pneumococcus)6, which lacks the Min and the nucleoid occlusion systems7, and possesses only an incomplete chromosome partitioning Par(A)BS system, in which ParA is absent8. The bacterial tyrosine kinase9 CpsD, which is required for capsule production, was previously found to interfere with chromosome segregation10. Here, we identify a protein of unknown function that interacts with CpsD and drives chromosome segregation. RocS (Regulator of Chromosome Segregation) is a membrane-bound protein that interacts with both DNA and the chromosome partitioning protein ParB to properly segregate the origin of replication region to new daughter cells. In addition, we show that RocS interacts with the cell division protein FtsZ and hinders cell division. Altogether, this work reveals that RocS is the cornerstone of a nucleoid protection system ensuring proper chromosome segregation and cell division in coordination with the biogenesis of the protective capsular layer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effect of rocS deletion on capsule production and nucleoid distribution.
Fig. 2: oriC segregation patterns in WT and ΔrocS cells.
Fig. 3: Localization of GFP-RocS and derivatives and the effect on nucleoid localization.
Fig. 4: Deletion of rocS in phospho-ablative and phospho-mimetic CpsD mutants and a model for the RocS nucleoid protection system.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author on request. The ChIP-seq data were deposited at the NCBI Sequence Read Archive (accession number PRJNA511435) and Gene Expression Omnibus (accession number GSE129717).

References

  1. Toro, E. & Shapiro, L. Bacterial chromosome organization and segregation. Cold Spring Harb. Perspect. Biol. 2, a000349 (2010).

    Article  Google Scholar 

  2. Reyes-Lamothe, R., Nicolas, E. & Sherratt, D. J. Chromosome replication and segregation in bacteria. Annu. Rev. Genet. 46, 121–143 (2012).

    Article  CAS  Google Scholar 

  3. Wang, X., Montero Llopis, P. & Rudner, D. Z. Organization and segregation of bacterial chromosomes. Nat. Rev. Genet. 14, 191–203 (2013).

    Article  CAS  Google Scholar 

  4. Badrinarayanan, A., Le, T. B. & Laub, M. T. Bacterial chromosome organization and segregation. Annu. Rev. Cell Dev. Biol. 31, 171–199 (2015).

    Article  CAS  Google Scholar 

  5. Bohm, K. et al. Novel chromosome organization pattern in actinomycetales-overlapping replication cycles combined with diploidy. mBio 8, e00511-17 (2017).

    Article  Google Scholar 

  6. Grangeasse, C. Rewiring the pneumococcal cell cycle with serine/threonine- and tyrosine-kinases. Trends Microbiol. 24, 713–724 (2016).

    Article  CAS  Google Scholar 

  7. Pinho, M. G., Kjos, M. & Veening, J. W. How to get (a)round: mechanisms controlling growth and division of coccoid bacteria. Nat. Rev. Microbiol. 11, 601–614 (2013).

    Article  CAS  Google Scholar 

  8. Minnen, A., Attaiech, L., Thon, M., Gruber, S. & Veening, J. W. SMC is recruited to oriC by ParB and promotes chromosome segregation in Streptococcus pneumoniae. Mol. Microbiol. 81, 676–688 (2011).

    Article  CAS  Google Scholar 

  9. Grangeasse, C., Nessler, S. & Mijakovic, I. Bacterial tyrosine kinases: evolution, biological function and structural insights. Phil. T. R. Soc. B 367, 2640–2655 (2012).

    Article  CAS  Google Scholar 

  10. Nourikyan, J. et al. Autophosphorylation of the bacterial tyrosine-kinase CpsD connects capsule synthesis with the cell cycle in Streptococcus pneumoniae. PLoS Genet. 11, e1005518 (2015).

    Article  Google Scholar 

  11. Morona, J. K., Morona, R., Miller, D. C. & Paton, J. C. Mutational analysis of the carboxy-terminal (YGX)(4) repeat domain of CpsD, an autophosphorylating tyrosine kinase required for capsule biosynthesis in Streptococcus pneumoniae. J. Bacteriol. 185, 3009–3019 (2003).

    Article  CAS  Google Scholar 

  12. Yother, J. Capsules of Streptococcus pneumoniae and other bacteria: paradigms for polysaccharide biosynthesis and regulation. Annu. Rev. Microbiol. 65, 563–581 (2011).

    Article  CAS  Google Scholar 

  13. Henriques, M. X., Rodrigues, T., Carido, M., Ferreira, L. & Filipe, S. R. Synthesis of capsular polysaccharide at the division septum of Streptococcus pneumoniae is dependent on a bacterial tyrosine kinase. Mol. Microbiol. 82, 515–534 (2011).

    Article  CAS  Google Scholar 

  14. Mirouze, N., Claverys, J.-P. & Noirot, P. Identification du Produit D’un Gène Tardif Impliqué dans la Régulation de la Compétence et dans le Processing de l’ADN lors de la Transformation Naturelle Chez S. pneumoniae. PhD thesis, Paul Sabatier Univ. (2007).

  15. Bechet, E. et al. Tyrosine-kinases in bacteria: from a matter of controversy to the status of key regulatory enzymes. Amino Acids 37, 499–507 (2009).

    Article  CAS  Google Scholar 

  16. Kjos, M. & Veening, J. W. Tracking of chromosome dynamics in live Streptococcus pneumoniae reveals that transcription promotes chromosome segregation. Mol. Microbiol. 91, 1088–1105 (2014).

    Article  CAS  Google Scholar 

  17. Yamanaka, K., Ogura, T., Niki, H. & Hiraga, S. Identification of two new genes, mukE and mukF, involved in chromosome partitioning in Escherichia coli. Mol. Gen. Genet. 250, 241–251 (1996).

    CAS  PubMed  Google Scholar 

  18. Slager, J., Kjos, M., Attaiech, L. & Veening, J. W. Antibiotic-induced replication stress triggers bacterial competence by increasing gene dosage near the origin. Cell 157, 395–406 (2014).

    Article  CAS  Google Scholar 

  19. Francia, M. V., Weaver, K. E., Goicoechea, P., Tille, P. & Clewell, D. B. Characterization of an active partition system for the Enterococcus faecalis pheromone-responding plasmid pAD1. J. Bacteriol. 189, 8546–8555 (2007).

    Article  CAS  Google Scholar 

  20. van Raaphorst, R., Kjos, M. & Veening, J. W. Chromosome segregation drives division site selection in Streptococcus pneumoniae. Proc. Natl Acad. Sci. USA 114, E5959–E5968 (2017).

    Article  CAS  Google Scholar 

  21. Zhou, H. & Lutkenhaus, J. Membrane binding by MinD involves insertion of hydrophobic residues within the C-terminal amphipathic helix into the bilayer. J. Bacteriol. 185, 4326–4335 (2003).

    Article  CAS  Google Scholar 

  22. Aravind, L., Anantharaman, V., Balaji, S., Babu, M. M. & Iyer, L. M. The many faces of the helix-turn-helix domain: transcription regulation and beyond. FEMS Microbiol. Rev. 29, 231–262 (2005).

    Article  CAS  Google Scholar 

  23. Tapias, A., Lopez, G. & Ayora, S. Bacillus subtilis LrpC is a sequence-independent DNA-binding and DNA-bending protein which bridges DNA. Nucleic Acids Res. 28, 552–559 (2000).

    Article  CAS  Google Scholar 

  24. Leipe, D. D., Wolf, Y. I., Koonin, E. V. & Aravind, L. Classification and evolution of P-loop GTPases and related ATPases. J. Mol. Biol. 317, 41–72 (2002).

    Article  CAS  Google Scholar 

  25. Gerdes, K., Howard, M. & Szardenings, F. Pushing and pulling in prokaryotic DNA segregation. Cell 141, 927–942 (2010).

    Article  CAS  Google Scholar 

  26. Wu, L. J. & Errington, J. Coordination of cell division and chromosome segregation by a nucleoid occlusion protein in Bacillus subtilis. Cell 117, 915–925 (2004).

    Article  CAS  Google Scholar 

  27. Bernhardt, T. G. & de Boer, P. A. SlmA, a nucleoid-associated, FtsZ binding protein required for blocking septal ring assembly over chromosomes in E. coli. Mol. Cell 18, 555–564 (2005).

    Article  CAS  Google Scholar 

  28. Fleurie, A. et al. Interplay of the serine/threonine-kinase StkP and the paralogs DivIVA and GpsB in pneumococcal cell elongation and division. PLoS Genet. 10, e1004275 (2014).

    Article  Google Scholar 

  29. Fenton, A. K., Mortaji, L. E., Lau, D. T., Rudner, D. Z. & Bernhardt, T. G. CozE is a member of the MreCD complex that directs cell elongation in Streptococcus pneumoniae. Nat. Microbiol. 2, 16237 (2016).

    Article  Google Scholar 

  30. Bullock, W. O., Fernandez, J. M. & Short, J. M. A high efficiency plasmid transforming recA Escherichia coli strain with β-galactosidase selection. Biotechniques 5, 376 (1987).

    CAS  Google Scholar 

  31. Studier, F. W. & Moffatt, B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189, 113–130 (1986).

    Article  CAS  Google Scholar 

  32. Sung, C. K., Li, H., Claverys, J. P. & Morrison, D. A. An rpsL cassette, janus, for gene replacement through negative selection in Streptococcus pneumoniae. Appl. Environ. Microbiol. 67, 5190–5196 (2001).

    Article  CAS  Google Scholar 

  33. Berg, K. H., Biornstad, T. J., Straume, D. & Havarstein, L. S. Peptide-regulated gene depletion system developed for use in Streptococcus pneumoniae. J. Bacteriol. 193, 5207–5215 (2011).

    Article  CAS  Google Scholar 

  34. Cortay, J. C. et al. In vitro asymmetric binding of the pleiotropic regulatory protein, FruR, to the ace operator controlling glyoxylate shunt enzyme synthesis. J. Biol. Chem. 269, 14885–14891 (1994).

    CAS  PubMed  Google Scholar 

  35. Fleurie, A. et al. Mutational dissection of the S/T-kinase StkP reveals crucial roles in cell division of Streptococcus pneumoniae. Mol. Microbiol. 83, 746–758 (2012).

    Article  CAS  Google Scholar 

  36. Marchadier, E. et al. An expanded protein-protein interaction network in Bacillus subtilis reveals a group of hubs: exploration by an integrative approach. Proteomics 11, 2981–2991 (2011).

    Article  CAS  Google Scholar 

  37. James, P., Halladay, J. & Craig, E. A. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144, 1425–1436 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. de Jong, I. G., Beilharz, K., Kuipers, O. P. & Veening, J. W. Live cell imaging of Bacillus subtilis and Streptococcus pneumoniae using automated time-lapse microscopy. J. Vis. Exp. 28, 3145 (2011).

    Google Scholar 

  39. Ducret, A., Quardokus, E. M. & Brun, Y. V. MicrobeJ, a tool for high throughput bacterial cell detection and quantitative analysis. Nat. Microbiol. 1, 16077 (2016).

    Article  CAS  Google Scholar 

  40. Jerabek-Willemsen, M., Wienken, C. J., Braun, D., Baaske, P. & Duhr, S. Molecular interaction studies using microscale thermophoresis. Assay Drug Dev. Technol. 9, 342–353 (2011).

    Article  CAS  Google Scholar 

  41. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the \(2^{-{\rm{\Delta}}{\rm{\Delta}}{\rm{C}}_{{\rm{T}}}}\) method. Methods 25, 402–408 (2001).

    Article  CAS  Google Scholar 

  42. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article  CAS  Google Scholar 

  43. Eddy, S. R. A new generation of homology search tools based on probabilistic inference. Genome Inf. 23, 205–211 (2009).

    Google Scholar 

  44. Criscuolo, A. & Gribaldo, S. BMGE (block mapping and gathering with entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210 (2010).

    Article  Google Scholar 

  45. Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).

    Article  CAS  Google Scholar 

  46. Jones, D. T. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292, 195–202 (1999).

    Article  CAS  Google Scholar 

  47. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  Google Scholar 

  48. Slager, J., Aprianto, R. & Veening, J. W. Deep genome annotation of the opportunistic human pathogen Streptococcus pneumoniae D39. Nucleic Acids Res. 46, 9971–9989 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work by the Grangeasse lab is supported by grants from the CNRS, the University of Lyon, the Agence National de la Recherche (ANR-10-BLAN-1303-01 and ANR-15-CE32-0001-01), the Region Auvergne-Rhône-Alpes (financial support for C.M. and P.S.G.), the ‘Fondation pour la Recherche Médicale’ (financial support for N.D. (ING20150532637) and C.M. (FDT20170437272)) and the Bettencourt-Schueller Foundation. Work by the Veening lab is supported by the Swiss National Science Foundation (project grant 31003A_172861), a JPIAMR grant (50-52900-98-202) from the Netherlands Organization for Health Research and Development (ZonMW) and the ERC consolidator grant 771534-PneumoCaTChER. We thank S. Ravaud for help in RocS structural predictions, A. Fenton (University of Sheffield, Sheffield, UK) for providing us with the D39∆cps strain and K. Weaver (University of South Dakota, Vermillion, SD, USA) for providing the pAD1 plasmid. We acknowledge the contribution of the Protein Science of the SFR Biosciences Gerland-Lyon Sud (UMS344/US8).

Author information

Authors and Affiliations

Authors

Contributions

C.G. directed the study. C.M. conducted the cell imaging experiments and analyses with A.D., the genetic experiments with J.N., and the protein purification experiments and western blot analysis with J.-P.L., C.F. and S.N.N. C.M. and N.D. implemented the oriC localization system. J.-P.L. performed the microscale thermophoresis experiments. C.M. and J.S. performed the oriC/ter ratio and ChIP-seq experiments. M.-F.N.-G. performed the yeast two-hybrid experiments. P.S.G. performed the phylogeny analyses. All authors designed and analysed the data. C.G. and J.-W.V. wrote the manuscript and all authors edited the manuscript.

Corresponding author

Correspondence to Christophe Grangeasse.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–23, Supplementary Video legends, and Supplementary Tables 1 and 2.

Reporting Summary

Supplementary Video 1

Nucleoid segregation in wild-type R800 cells.

Supplementary Video 2

Absence of chromosome segregation in ∆rocS cells.

Supplementary Video 3

Chromosome pinching in ∆rocS cells.

Supplementary Video 4

Localization of GFP-RocS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mercy, C., Ducret, A., Slager, J. et al. RocS drives chromosome segregation and nucleoid protection in Streptococcus pneumoniae. Nat Microbiol 4, 1661–1670 (2019). https://doi.org/10.1038/s41564-019-0472-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-019-0472-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing