Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An enzymatic pathway in the human gut microbiome that converts A to universal O type blood

Abstract

Access to efficient enzymes that can convert A and B type red blood cells to ‘universal’ donor O would greatly increase the supply of blood for transfusions. Here we report the functional metagenomic screening of the human gut microbiome for enzymes that can remove the cognate A and B type sugar antigens. Among the genes encoded in our library of 19,500 expressed fosmids bearing gut bacterial DNA, we identify an enzyme pair from the obligate anaerobe Flavonifractor plautii that work in concert to efficiently convert the A antigen to the H antigen of O type blood, via a galactosamine intermediate. The X-ray structure of the N-acetylgalactosamine deacetylase reveals the active site and mechanism of the founding member of an esterase family. The galactosaminidase expands activities within the CAZy family GH36. Their ability to completely convert A to O of the same rhesus type at very low enzyme concentrations in whole blood will simplify their incorporation into blood transfusion practice, broadening blood supply.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Basic A, B and H antigens on RBCs.
Fig. 2: Overview of ORFs on the sequenced fosmids.
Fig. 3: Combinatorial activity of FpCBM32 and FpGH36 on A antigen substrate.
Fig. 4: Deacetylation pathway for A antigen cleavage.
Fig. 5: Crystal structure of FpGalNAc deacetylase.
Fig. 6: Validation of enzymatic blood type conversion.

Data availability

The datasets generated and/or analysed during this study are available from the corresponding author on reasonable request. Structure datasets generated during the current study are available in the PDB repository under accession numbers 6N1A and 6N1B. The protein CspGH36 identified during the current study is deposited in GenBank under the accession code MK500922.

References

  1. 1.

    Daniels, G. The molecular definition of red cell antigens. ISBT Sci. Ser. 5, 300–302 (2010).

    Article  Google Scholar 

  2. 2.

    Garratty, G. Modulating the red cell membrane to produce universal/stealth donor red cells suitable for transfusion. Vox Sang. 94, 87–95 (2008).

    CAS  PubMed  Google Scholar 

  3. 3.

    Goldstein, J., Siviglia, G., Hurst, R., Lenny, L. & Reich, L. Group-B erythrocytes enzymatically converted to Group-O survive normally in A, B, and O individuals. Science 215, 168–170 (1982).

    CAS  Article  Google Scholar 

  4. 4.

    Kruskall, M. S. et al. Transfusion to blood group A and O patients of group B RBCs that have been enzymatically converted to group O. Transfusion 40, 1290–1298 (2000).

    CAS  Article  Google Scholar 

  5. 5.

    Clausen, H. & Hakomori, S. Abh and related histo-blood group antigens - immunochemical differences in carrier isotypes and their distribution. Vox Sang. 56, 1–20 (1989).

    CAS  Article  Google Scholar 

  6. 6.

    Liu, Q. P. et al. Bacterial glycosidases for the production of universal red blood cells. Nat. Biotechnol. 25, 454–464 (2007).

    CAS  Article  Google Scholar 

  7. 7.

    Anderson, K. M. et al. A clostridial endo-beta-galactosidase that cleaves both blood group A and B glycotopes. J. Biol. Chem. 280, 7720–7728 (2005).

    CAS  Article  Google Scholar 

  8. 8.

    Kwan, D. H. et al. Toward efficient enzymes for the generation of universal blood through structure-guided directed evolution. J. Am. Chem. Soc. 137, 5695–5705 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    Handelsman, J. Metagenomics: Application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. R. 68, 669–685 (2004).

    CAS  Article  Google Scholar 

  10. 10.

    Amann, R. I. et al. Combination of 16S ribosomal-RNA-targeted oligonucleotide probes with flow-cytometry for analyzing mixed microbial-populations. Appl. Environ. Microbiol. 56, 1919–1925 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Tailford, L. E., Crost, E. H., Kavanaugh, D. & Juge, N. Mucin glycan foraging in the human gut microbiome. Front. Genet. 6, 81 (2015).

    Article  Google Scholar 

  12. 12.

    Lombard, V., Ramulu, H. G., Drula, E., Coutinho, P. M. & Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490–D495 (2014).

    CAS  Article  Google Scholar 

  13. 13.

    Konwar, K. M. et al. MetaPathwaysv2.5: quantitative functional, taxonomic and usability improvements. Bioinformatics 31, 3345–3347 (2015).

    CAS  Article  Google Scholar 

  14. 14.

    Li, H. et al. The outer mucus layer hosts a distinct intestinal microbial niche. Nat. Commun. 6, 8292 (2015).

    CAS  Article  Google Scholar 

  15. 15.

    Yip, V. L. Y. et al. An unusual mechanism of glycoside hydrolysis involving redox and elimination steps by a family 4 beta-glycosidase from Thermotoga maritima. J. Am. Chem. Soc. 126, 8354–8355 (2004).

    CAS  Article  Google Scholar 

  16. 16.

    Chapanian, R. et al. Enhancement of biological reactions on cell surfaces via macromolecular crowding. Nat. Commun. 5, 4683 (2014).

    CAS  Article  Google Scholar 

  17. 17.

    Comfort, D. A. et al. Biochemical analysis of Thermotoga maritima GH36 alpha-galactosidase (TmGalA) confirms the mechanistic commonality of clan GH-D glycoside hydrolases. Biochemistry 46, 3319–3330 (2007).

    CAS  Article  Google Scholar 

  18. 18.

    Fredslund, F. et al. Crystal structure of alpha-galactosidase from Lactobacillus acidophilus NCFM: insight into tetramer formation and substrate binding. J. Mol. Biol. 412, 466–480 (2011).

    CAS  Article  Google Scholar 

  19. 19.

    Calcutt, M. J., Hsieh, H. Y., Chapman, L. F. & Smith, D. S. Identification, molecular cloning and expression of an alpha-N-acetylgalactosaminidase gene from Clostridium perfringens. FEMS Microbiol. Lett. 214, 77–80 (2002).

    CAS  PubMed  Google Scholar 

  20. 20.

    Gerbal, A., Maslet, C. & Salmon, C. Immunological aspects of the acquired B antigen. Vox Sang. 28, 398–403 (1975).

    CAS  Article  Google Scholar 

  21. 21.

    Judd, W. J. & Annesley, T. M. The acquired-B phenomenon. Transfus. Med. Rev. 10, 111–117 (1996).

    CAS  Article  Google Scholar 

  22. 22.

    Marcus, D. M., Kabat, E. A. & Schiffman, G. Immunochemical studies on blood groups. XXXI. Destruction of blood group a activity by an enzyme from Clostridium tertium which deacetylates N-acetylgalactosamine in intact blood group substances. Biochemistry 3, 437–443 (1964).

    CAS  Article  Google Scholar 

  23. 23.

    Yamamoto, H. & Iseki, S. Development of H-specificity in A substance by A-decomposing enzyme from Clostridium tertium A. P. Jpn Acad. 44, 263 (1968).

    CAS  Article  Google Scholar 

  24. 24.

    Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858 (2015).

    CAS  Article  Google Scholar 

  25. 25.

    Blair, D. E., Schuttelkopf, A. W., MacRae, J. I. & van Aalten, D. M. F. Structure and metal-dependent mechanism of peptidoglycan deacetylase, a streptococcal virulence factor. Proc. Natl Acad. Sci. USA 102, 15429–15434 (2005).

    CAS  Article  Google Scholar 

  26. 26.

    Ficko-Blean, E. & Boraston, A. B. The interaction of a carbohydrate-binding module from a Clostridium perfringens N-acetyl-beta-hexosaminidase with its carbohydrate receptor. J. Biol. Chem. 281, 37748–37757 (2006).

    CAS  Article  Google Scholar 

  27. 27.

    Cohen, M., Hurtado-Ziola, N. & Varki, A. ABO blood group glycans modulate sialic acid recognition on erythrocytes. Glycobiology 19, 1349–1349 (2009).

    Google Scholar 

  28. 28.

    Hyono, A. et al. Impacts of papain and neuraminidase enzyme treatment on electrohydrodynamics and IgG-mediated agglutination of type A red blood cells. Langmuir 25, 10873–10885 (2009).

    CAS  Article  Google Scholar 

  29. 29.

    Varki, A. et al. Symbol nomenclature for graphical representations of glycans. Glycobiology 25, 1323–1324 (2015).

    CAS  Article  Google Scholar 

  30. 30.

    Kwan, D. H., Ernst, S., Kötzler, M. P. & Withers, S. G. Chemoenzymatic synthesis of a type 2 blood group a tetrasaccharide and development of high-throughput assays enables a platform for screening blood group antigen-cleaving enzymes. Glycobiology 25, 806–811 (2015).

    CAS  Article  Google Scholar 

  31. 31.

    Armstrong, Z., Rahfeld, P. & Withers, S. G. Discovery of new glycosidases from metagenomic libraries. Methods Enzymol. Chem. Glycobiol. A 597, 3–23 (2017).

    CAS  Article  Google Scholar 

  32. 32.

    Lee, S. & Hallam, S. J. Extraction of high molecular weight genomic DNA from soils and sediments. J. Vis. Exp. 33, e1569 (2009).

    Google Scholar 

  33. 33.

    Lee, E., Chuang, H. Y., Kim, J. W., Ideker, T. & Lee, D. Inferring pathway activity toward precise disease classification. PloS Comput. Biol. 4, e1000217 (2008).

    Article  Google Scholar 

  34. 34.

    Jeong, J. K. et al. Characterization of the Streptococcus pneumoniae BgaC protein as a novel surface beta-galactosidase with specific hydrolysis activity for the gal beta 1-3GlcNAc moiety of oligosaccharides. J. Bacteriol. 191, 3011–3023 (2009).

    CAS  Article  Google Scholar 

  35. 35.

    Singh, A. K. et al. Unravelling the multiple functions of the architecturally intricate Streptococcus pneumoniae beta-galactosidase, BgaA. PLoS Pathog. 10, e1004364 (2014).

    Article  Google Scholar 

  36. 36.

    Katayama, T. et al. Molecular cloning and characterization of Bifidobacterium bifidum 1,2-alpha-L-fucosidase (AfcA), a novel inverting glycosidase (glycoside hydrolase family 95). J. Bacteriol. 186, 4885–4893 (2004).

    CAS  Article  Google Scholar 

  37. 37.

    Williams, S. J. & Withers, S. G. Glycosynthases: mutant glycosidases for glycoside synthesis. Aust. J. Chem. 55, 3–12 (2002).

    CAS  Article  Google Scholar 

  38. 38.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS  Article  Google Scholar 

  39. 39.

    Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv https://arxiv.org/abs/1303.3997 (2013).

  40. 40.

    Li, D., Liu, C. M., Luo, R., Sadakane, K. & Lam, T. W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).

    CAS  Article  Google Scholar 

  41. 41.

    Treangen, T. J., Sommer, D. D., Angly, F. E., Koren, S. & Pop, M. Next generation sequence assembly with AMOS. Curr. Protoc. Bioinformatics 33, 11.8.1–11.8.18 (2011).

    Google Scholar 

  42. 42.

    Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).

    Article  Google Scholar 

  43. 43.

    Engler, C., Kandzia, R. & Marillonnet, S. A one pot, one step, precision cloning method with high throughput capability. PLoS ONE 3, e3647 (2008).

    Article  Google Scholar 

  44. 44.

    Studier, F. W. Protein production by auto-induction in high-density shaking cultures. Protein Expr. Purif. 41, 207–234 (2005).

    CAS  Article  Google Scholar 

  45. 45.

    Klock, H. E., Koesema, E. J., Knuth, M. W. & Lesley, S. A. Combining the polymerase incomplete primer extension method for cloning and mutagenesis with microscreening to accelerate structural genomics efforts. Proteins 71, 982–994 (2008).

    CAS  Article  Google Scholar 

  46. 46.

    Palmier, M. O. & Van Doren, S. R. Rapid determination of enzyme kinetics from fluorescence: overcoming the inner filter effect. Anal. Biochem. 371, 43–51 (2007).

    CAS  Article  Google Scholar 

  47. 47.

    Kabsch, W. XDS. Acta Crystallogr. D 66, 125–132 (2010).

    CAS  Article  Google Scholar 

  48. 48.

    Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution? Acta Crystallogr. D 69, 1204–1214 (2013).

    CAS  Article  Google Scholar 

  49. 49.

    Skubak, P. & Pannu, N. S. Automatic protein structure solution from weak X-ray data. Nat. Commun. 4, 2777 (2013).

    Article  Google Scholar 

  50. 50.

    Potterton, L. et al. CCP4i2: the new graphical user interface to the CCP4 program suite. Acta Crystallogr. D 74, 68–84 (2018).

    CAS  Article  Google Scholar 

  51. 51.

    Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    Article  Google Scholar 

  52. 52.

    Vagin, A. A. et al. REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr. D 60, 2184–2195 (2004).

    Article  Google Scholar 

  53. 53.

    Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).

    CAS  Article  Google Scholar 

  54. 54.

    Zheng, L., Baumann, U. & Reymond, J. L. An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Res. 32, e115 (2004).

    Article  Google Scholar 

  55. 55.

    Vocadlo, D. J., Wicki, J., Rupitz, K. & Withers, S. G. Mechanism of Thermoanaerobacterium saccharolyticum ss-xylosidase: kinetic studies. Biochemistry 41, 9727–9735 (2002).

    CAS  Article  Google Scholar 

  56. 56.

    Jones, D. R. et al. SACCHARIS: an automated pipeline to streamline discovery of carbohydrate active enzyme activities within polyspecific families and de novo sequence datasets. Biotechnol. Biofuels 11, 27 (2018).

    Article  Google Scholar 

  57. 57.

    Yin, Y. B. et al. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 40, W445–W451 (2012).

    CAS  Article  Google Scholar 

  58. 58.

    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

    CAS  Article  Google Scholar 

  59. 59.

    Stamatakis, A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006).

    CAS  Article  Google Scholar 

  60. 60.

    Stamatakis, A., Hoover, P. & Rougemont, J. A rapid bootstrap algorithm for the RAxML web servers. Syst. Biol. 57, 758–771 (2008).

    Article  Google Scholar 

  61. 61.

    Eddy, S. R. Profile hidden Markov models. Bioinformatics 14, 755–763 (1998).

    CAS  Article  Google Scholar 

  62. 62.

    Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    CAS  Article  Google Scholar 

  63. 63.

    Matsen, F. A., Hoffman, N. G., Gallagher, A. & Stamatakis, A. A format for phylogenetic placements. PLoS ONE 7, e31009 (2012).

    CAS  Article  Google Scholar 

  64. 64.

    Letunic, I. & Bork, P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245 (2016).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank H. Brumer for the use of his Dionex high-performance liquid chromatography system, H.-M. Chen for the synthesis of Gal-α-MU and GalNAc-α-MU and T. Lowary for a set of α-GalNAc-containing oligosaccharide substrates. We acknowledge the participation of the Protein-Glycan Interaction Resource of the CFG (supporting grant R24 GM098791) and the National Center for Functional Glycomics at Beth Israel Deaconess Medical Center, Harvard Medical School (supporting grant P41 GM103694). We thank L. Worrall and N. Cavaney for collecting the X-ray diffraction data and the Canadian Light source for access. The infrastructure at the Centre for Blood Research is supported by the Canada Foundation for Innovation and the British Columbia Knowledge Development Fund. J.N.K. is a recipient of a Michael Smith Foundation for Health Research Scholar award. P.R. was supported by a Leopoldina-Postdoc-Fellowship from the Deutsche Akademie der Naturforscher Leopoldina. Financial support from the Canadian Institutes for Health Research (CIHR grant MOP-136940) is gratefully acknowledged by J.N.K. and S.G.W. H.M. is supported by a Canadian Blood Services-MITACS fellowship and an NSERC CREATE Nanomat scholarship.

Author information

Affiliations

Authors

Contributions

P.R. performed the majority of the screening and characterization work as well as preparing figures and tables and providing a first draft of the manuscript; L.S. performed all work related to three-dimensional structural analysis; H.M. performed the majority of the testing with RBCs, in conjunction with I.C., and contributed to the writing; C.M.-L. performed much of the bioinformatics analysis; S.J.H. provided expertise in metagenomic analysis and supervision of the bioinformatics; J.N.K. supervised all work related to testing with RBCs and edited the manuscript; S.G.W. conceived the project, supervised the enzymology and coordinated the writing of the manuscript.

Corresponding author

Correspondence to Stephen G. Withers.

Ethics declarations

Competing interests

The University of British Columbia has filed a patent related to this work on which P.R., J.N.K. and S.G.W. are named as authors.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion, Supplementary References, Supplementary Figs. 1–22 and Supplementary Tables 1–18.

Reporting Summary

Supplementary Datasets 1 and 2

FpGalNAcDeAc_D2ext glycan array data and circular dichroism spectrometer data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rahfeld, P., Sim, L., Moon, H. et al. An enzymatic pathway in the human gut microbiome that converts A to universal O type blood. Nat Microbiol 4, 1475–1485 (2019). https://doi.org/10.1038/s41564-019-0469-7

Download citation

Further reading

Search

Quick links