Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Sulfated glycosaminoglycans and low-density lipoprotein receptor contribute to Clostridium difficile toxin A entry into cells


Clostridium difficile toxin A (TcdA) is a major exotoxin contributing to disruption of the colonic epithelium during C. difficile infection. TcdA contains a carbohydrate-binding combined repetitive oligopeptides (CROPs) domain that mediates its attachment to cell surfaces, but recent data suggest the existence of CROPs-independent receptors. Here, we carried out genome-wide clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated protein 9 (Cas9)-mediated screens using a truncated TcdA lacking the CROPs, and identified sulfated glycosaminoglycans (sGAGs) and low-density lipoprotein receptor (LDLR) as host factors contributing to binding and entry of TcdA. TcdA recognizes the sulfation group in sGAGs. Blocking sulfation and glycosaminoglycan synthesis reduces TcdA binding and entry into cells. Binding of TcdA to the colonic epithelium can be reduced by surfen, a small molecule that masks sGAGs, by GM-1111, a sulfated heparan sulfate analogue, and by sulfated cyclodextrin, a sulfated small molecule. Cells lacking LDLR also show reduced sensitivity to TcdA, although binding between LDLR and TcdA are not detected, suggesting that LDLR may facilitate endocytosis of TcdA. Finally, GM-1111 reduces TcdA-induced fluid accumulation and tissue damage in the colon in a mouse model in which TcdA is injected into the caecum. These data demonstrate in vivo and pathological relevance of TcdA–sGAGs interactions, and reveal a potential therapeutic approach of protecting colonic tissues by blocking these interactions.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Genome-wide CRISPR–Cas9-mediated screen identifies host factors for TcdA.
Fig. 2: sGAGs contribute to cellular entry of TcdA1–1832.
Fig. 3: LDLR contributes to cellular entry of TcdA1–1832.
Fig. 4: sGAGs are major attachment factors for TcdA.
Fig. 5: Blocking sGAG–TcdA interactions reduces TcdA toxicity in the colon.

Data availability

The data that support the findings of this study are available from the corresponding authors upon request.


  1. 1.

    Theriot, C. M. & Young, V. B. Interactions between the gastrointestinal microbiome and Clostridium difficile. Annu. Rev. Microbiol. 69, 445–461 (2015).

    CAS  Article  Google Scholar 

  2. 2.

    Collins, J. et al. Dietary trehalose enhances virulence of epidemic Clostridium difficile. Nature 553, 291–294 (2018).

    CAS  Article  Google Scholar 

  3. 3.

    McDonald, L. C. et al. An epidemic, toxin gene-variant strain of Clostridium difficile. N. Engl. J. Med. 353, 2433–2441 (2005).

    CAS  Article  Google Scholar 

  4. 4.

    Hunt, J. J. & Ballard, J. D. Variations in virulence and molecular biology among emerging strains of Clostridium difficile. Microbiol. Mol. Biol. Rev. 77, 567–581 (2013).

    Article  Google Scholar 

  5. 5.

    Lessa, F. C. et al. Burden of Clostridium difficile infection in the United States. N. Engl. J. Med. 372, 825–834 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    Lyras, D. et al. Toxin B is essential for virulence of Clostridium difficile. Nature 458, 1176–1179 (2009).

    CAS  Article  Google Scholar 

  7. 7.

    Carter, G. P. et al. Defining the roles of TcdA and TcdB in localized gastrointestinal disease, systemic organ damage, and the host response during Clostridium difficile infections. mBio 6, e00551 (2015).

    CAS  PubMed  Google Scholar 

  8. 8.

    Kuehne, S. A. et al. The role of toxin A and toxin B in Clostridium difficile infection. Nature 467, 711–713 (2010).

    CAS  Article  Google Scholar 

  9. 9.

    Kuehne, S. A. et al. Importance of toxin A, toxin B, and CDT in virulence of an epidemic Clostridium difficile strain. J. Infect. Dis. 209, 83–86 (2014).

    CAS  Article  Google Scholar 

  10. 10.

    Aktories, K., Schwan, C. & Jank, T. Clostridium difficile toxin biology. Annu. Rev. Microbiol. 71, 281–307 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    Cowardin, C. A. et al. The binary toxin CDT enhances Clostridium difficile virulence by suppressing protective colonic eosinophilia. Nat. Microbiol. 1, 16108 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    Chumbler, N. M. et al. Crystal structure of Clostridium difficile toxin A. Nat. Microbiol. 1, 15002 (2016).

    CAS  Article  Google Scholar 

  13. 13.

    Krivan, H. C., Clark, G. F., Smith, D. F. & Wilkins, T. D. Cell surface binding site for Clostridium difficile enterotoxin: evidence for a glycoconjugate containing the sequence Galα1-3Galβ1-4GlcNAc. Infect. Immun. 53, 573–581 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Tucker, K. D. & Wilkins, T. D. Toxin A of Clostridium difficile binds to the human carbohydrate antigens I, X, and Y. Infect. Immun. 59, 73–78 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Teneberg, S. et al. Molecular mimicry in the recognition of glycosphingolipids by Galα3 Galβ4 GlcNAcβ-binding Clostridium difficile toxin A, human natural anti α-galactosyl IgG and the monoclonal antibody Gal-13: characterization of a binding-active human glycosphingolipid, non-identical with the animal receptor. Glycobiology 6, 599–609 (1996).

    CAS  Article  Google Scholar 

  16. 16.

    Genisyuerek, S. et al. Structural determinants for membrane insertion, pore formation and translocation of Clostridium difficile toxin B. Mol. Microbiol. 79, 1643–1654 (2011).

    CAS  Article  Google Scholar 

  17. 17.

    Olling, A. et al. The repetitive oligopeptide sequences modulate cytopathic potency but are not crucial for cellular uptake of Clostridium difficile toxin A. PLoS ONE 6, e17623 (2011).

    CAS  Article  Google Scholar 

  18. 18.

    Yuan, P. et al. Chondroitin sulfate proteoglycan 4 functions as the cellular receptor for Clostridium difficile toxin B. Cell Res. 25, 157–168 (2015).

    CAS  Article  Google Scholar 

  19. 19.

    LaFrance, M. E. et al. Identification of an epithelial cell receptor responsible for Clostridium difficile TcdB-induced cytotoxicity. Proc. Natl Acad. Sci. USA 112, 7073–7078 (2015).

    CAS  Article  Google Scholar 

  20. 20.

    Tao, L. et al. Frizzled proteins are colonic epithelial receptors for C. difficile toxin B. Nature 538, 350–355 (2016).

    CAS  Article  Google Scholar 

  21. 21.

    Chen, P. et al. Structural basis for recognition of frizzled proteins by Clostridium difficile toxin B. Science 360, 664–669 (2018).

    CAS  Article  Google Scholar 

  22. 22.

    Pothoulakis, C. et al. Rabbit sucrase-isomaltase contains a functional intestinal receptor for Clostridium difficile toxin A. J. Clin. Invest. 98, 641–649 (1996).

    CAS  Article  Google Scholar 

  23. 23.

    Na, X., Kim, H., Moyer, M. P., Pothoulakis, C. & LaMont, J. T. gp96 is a human colonocyte plasma membrane binding protein for Clostridium difficile toxin A. Infect. Immun. 76, 2862–2871 (2008).

    CAS  Article  Google Scholar 

  24. 24.

    Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11, 783–784 (2014).

    CAS  Article  Google Scholar 

  25. 25.

    Kreuger, J. & Kjellen, L. Heparan sulfate biosynthesis: regulation and variability. J. Histochem. Cytochem. 60, 898–907 (2012).

    Article  Google Scholar 

  26. 26.

    Chaves-Olarte, E. et al. UDP-glucose deficiency in a mutant cell line protects against glucosyltransferase toxins from Clostridium difficile and Clostridium sordellii. J. Biol. Chem. 271, 6925–6932 (1996).

    CAS  Article  Google Scholar 

  27. 27.

    Barth, H. et al. Low pH-induced formation of ion channels by Clostridium difficile toxin B in target cells. J. Biol. Chem. 276, 10670–10676 (2001).

    CAS  Article  Google Scholar 

  28. 28.

    Qa’Dan, M., Spyres, L. M. & Ballard, J. D. pH-induced conformational changes in Clostridium difficile toxin B. Infect. Immun. 68, 2470–2474 (2000).

    Article  Google Scholar 

  29. 29.

    Smith, R. D. & Lupashin, V. V. Role of the conserved oligomeric Golgi (COG) complex in protein glycosylation. Carbohydr. Res. 343, 2024–2031 (2008).

    CAS  Article  Google Scholar 

  30. 30.

    Foulquier, F. et al. TMEM165 deficiency causes a congenital disorder of glycosylation. Am. J. Hum. Genet. 91, 15–26 (2012).

    CAS  Article  Google Scholar 

  31. 31.

    Jae, L. T. et al. Deciphering the glycosylome of dystroglycanopathies using haploid screens for Lassa virus entry. Science 340, 479–483 (2013).

    CAS  Article  Google Scholar 

  32. 32.

    Tanaka, A. et al. Genome-wide screening uncovers the significance of N-sulfation of heparan sulfate as a host cell factor for chikungunya virus infection. J. Virol. 91, e00432-17 (2017).

    Article  Google Scholar 

  33. 33.

    Tian, S. et al. Genome-wide CRISPR screens for Shiga toxins and ricin reveal Golgi proteins critical for glycosylation. PLoS Biol. 16, e2006951 (2018).

    Article  Google Scholar 

  34. 34.

    Schuksz, M. et al. Surfen, a small molecule antagonist of heparan sulfate. Proc. Natl Acad. Sci. USA 105, 13075–13080 (2008).

    CAS  Article  Google Scholar 

  35. 35.

    Zhang, J. et al. Novel sulfated polysaccharides disrupt cathelicidins, inhibit RAGE and reduce cutaneous inflammation in a mouse model of rosacea. PLoS ONE 6, e16658 (2011).

    CAS  Article  Google Scholar 

  36. 36.

    Yamamoto, S. et al. Lipoprotein receptors redundantly participate in entry of hepatitis C virus. PLoS Pathog. 12, e1005610 (2016).

    Article  Google Scholar 

  37. 37.

    Fisher, C., Beglova, N. & Blacklow, S. C. Structure of an LDLRRAP complex reveals a general mode for ligand recognition by lipoprotein receptors. Mol. Cell 22, 277–283 (2006).

    CAS  Article  Google Scholar 

  38. 38.

    Finkelshtein, D., Werman, A., Novick, D., Barak, S. & Rubinstein, M. LDL receptor and its family members serve as the cellular receptors for vesicular stomatitis virus. Proc. Natl Acad. Sci. USA 110, 7306–7311 (2013).

    CAS  Article  Google Scholar 

  39. 39.

    Schorch, B. et al. LRP1 is a receptor for Clostridium perfringens TpeL toxin indicating a two-receptor model of clostridial glycosylating toxins. Proc. Natl Acad. Sci. USA 111, 6431–6436 (2014).

    CAS  Article  Google Scholar 

  40. 40.

    Griffin, C. C. et al. Isolation and characterization of heparan sulfate from crude porcine intestinal mucosal peptidoglycan heparin. Carbohydr. Res. 276, 183–197 (1995).

    CAS  Article  Google Scholar 

  41. 41.

    Bode, L. et al. Heparan sulfate and syndecan-1 are essential in maintaining murine and human intestinal epithelial barrier function. J. Clin. Investig. 118, 229–238 (2008).

    CAS  Article  Google Scholar 

  42. 42.

    Yamamoto, S. et al. Heparan sulfate on intestinal epithelial cells plays a critical role in intestinal crypt homeostasis via Wnt/β-catenin signaling. Am. J. Physiol. Gastrointest. Liver Physiol. 305, G241–G249 (2013).

    CAS  Article  Google Scholar 

  43. 43.

    Sauerborn, M., Leukel, P. & von Eichel-Streiber, C. The C-terminal ligand-binding domain of Clostridium difficile toxin A (TcdA) abrogates TcdA-specific binding to cells and prevents mouse lethality. FEMS Microbiol. Lett. 155, 45–54 (1997).

    CAS  Article  Google Scholar 

  44. 44.

    Zhang, Y. et al. The role of purified Clostridium difficile glucosylating toxins in disease pathogenesis utilizing a murine cecum injection model. Anaerobe 48, 249–256 (2017).

    CAS  Article  Google Scholar 

  45. 45.

    Lindahl, U., Couchman, J., Kimata, K. & Esko, J. D. Essentials of Glycobiology 3rd edn (eds Varki, A. et al.) Ch. 17 (Cold Spring Harbor Laboratory Press, 2015).

  46. 46.

    Kamhi, E., Joo, E. J., Dordick, J. S. & Linhardt, R. J. Glycosaminoglycans in infectious disease. Biol. Rev. Camb. Phil. Soc. 88, 928–943 (2013).

    Article  Google Scholar 

  47. 47.

    Jeon, H. & Blacklow, S. C. Structure and physiologic function of the low-density lipoprotein receptor. Annu. Rev. Biochem. 74, 535–562 (2005).

    CAS  Article  Google Scholar 

  48. 48.

    Agnello, V., Abel, G., Elfahal, M., Knight, G. B. & Zhang, Q. X. Hepatitis C virus and other flaviviridae viruses enter cells via low density lipoprotein receptor. Proc. Natl Acad. Sci. USA 96, 12766–12771 (1999).

    CAS  Article  Google Scholar 

  49. 49.

    Gustafsen, C. et al. Heparan sulfate proteoglycans present PCSK9 to the LDL receptor. Nat. Commun. 8, 503 (2017).

    Article  Google Scholar 

  50. 50.

    Bomsel, M. & Alfsen, A. Entry of viruses through the epithelial barrier: pathogenic trickery. Nat. Rev. Mol. Cell Biol. 4, 57–68 (2003).

    CAS  Article  Google Scholar 

Download references


We thank Y. Matsuura (Osaka University) and A. Jonathan (Harvard Medical School) for providing cDNA and cell lines, H. Tatge (Hannover Medical School) for toxin purification, J. Savage (Glycomira) for providing GM-1111 and C. Araneo (Harvard Medical School) for assisting flow cytometry analysis. This study was partially supported by National Institute of Health (NIH) grants (R01NS080833, R01AI132387, R01AI139087, and R21NS106159 to M.D.). R.G. acknowledges support by the Federal State of Lower Saxony, Niedersächsisches Vorab (VWZN2889, VWZN3215 and VWZN3266). M.D. and D.T.B. acknowledge support by the NIH-funded Harvard Digestive Disease Center (P30DK034854) and Boston Children’s Hospital Intellectual and Developmental Disabilities Research Center (P30HD18655). L.T. acknowledges support by the National Natural Science Foundation of China (Grant no. 31800128). M.D. and S.P.J.W hold the Investigator in the Pathogenesis of Infectious Disease award from the Burroughs Wellcome Fund.

Author information




L.T. and M.D. initiated and designed the project. L.T. and S.T. carried out the CRISPR–Cas9 screen. L.T., S.T. and J.Z. carried out colon loop ligation assays. S.T. and J.Z. carried out caecum-injection assays. Z.L., L.R.-M. and S.P.J.W. generated heparan sulfate-deficient cells, analysed cell surface heparan sulfate levels and provided related reagents. S.M. purified LDLR–Fc. R.G. provided TcdA and performed the experiment on CHO cells. D.T.B. and S.O. provided key reagents and advice. L.T. and M.D. wrote the manuscript with input from all co-authors.

Corresponding authors

Correspondence to Liang Tao or Min Dong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–9, raw images used in figures and legend for Supplementary Dataset.

Reporting Summary

Supplementary Data 1

Lists of all sgRNA sequences and target genes identified from CRISPR–Cas9 screen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tao, L., Tian, S., Zhang, J. et al. Sulfated glycosaminoglycans and low-density lipoprotein receptor contribute to Clostridium difficile toxin A entry into cells. Nat Microbiol 4, 1760–1769 (2019).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing