Anti-Siglec-1 antibodies block Ebola viral uptake and decrease cytoplasmic viral entry

Abstract

Several Ebola viruses cause outbreaks of lethal haemorrhagic fever in humans, but developing therapies tackle only Zaire Ebola virus. Dendritic cells (DCs) are targets of this infection in vivo. Here, we found that Ebola virus entry into activated DCs requires the sialic acid-binding Ig-like lectin 1 (Siglec-1/CD169), which recognizes sialylated gangliosides anchored to viral membranes. Blockage of the Siglec-1 receptor by anti-Siglec-1 monoclonal antibodies halted Ebola viral uptake and cytoplasmic entry, offering cross-protection against other ganglioside-containing viruses such as human immunodeficiency virus type 1.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Activation of DCs enhances Ebola viral binding and uptake via Siglec-1 recognition of gangliosides.
Fig. 2: Siglec-1 facilitates the uptake of Ebola viruses displaying envelope glycoproteins in VCCs.
Fig. 3: Ebola virus uptake by Siglec-1 facilitates cytoplasmic viral entry into activated DCs.
Fig. 4: Generation and characterization of anti-Siglec-1 mAbs.
Fig. 5: Anti-Siglec-1 mAbs inhibit HIV-1 and Ebola viral uptake.
Fig. 6: Anti-Siglec-1 mAbs block HIV-1 trans-infection and cytoplasmic Ebola entry.

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. 1.

    Sullivan, N. J., Sanchez, A., Rollin, P. E., Yang, Z. Y. & Nabel, G. J. Development of a preventive vaccine for Ebola virus infection in primates. Nature 408, 605–609 (2000).

    CAS  Article  Google Scholar 

  2. 2.

    Henao-Restrepo, A. M. et al. Efficacy and effectiveness of an rVSV-vectored vaccine expressing Ebola surface glycoprotein: interim results from the Guinea ring vaccination cluster-randomised trial. Lancet 386, 857–866 (2015).

    CAS  Article  Google Scholar 

  3. 3.

    Corti, D. et al. Protective monotherapy against lethal Ebola virus infection by a potently neutralizing antibody. Science 351, 1339–1342 (2016).

    CAS  Article  Google Scholar 

  4. 4.

    Geisbert, T. W. et al. Pathogenesis of Ebola hemorrhagic fever in cynomolgus macaques: evidence that dendritic cells are early and sustained targets of infection. Am. J. Pathol. 163, 2347–2370 (2003).

    CAS  Article  Google Scholar 

  5. 5.

    Bosio, C. M. et al. Ebola and Marburg viruses replicate in monocyte-derived dendritic cells without inducing the production of cytokines and full maturation. J. Infect. Dis. 188, 1630–1638 (2003).

    CAS  Article  Google Scholar 

  6. 6.

    Kondratowicz, A. S. et al. T-cell immunoglobulin and mucin domain 1 (TIM-1) is a receptor for Zaire Ebolavirus and Lake Victoria Marburgvirus. Proc. Natl Acad. Sci. USA 108, 8426–8431 (2011).

    CAS  Article  Google Scholar 

  7. 7.

    Martinez, O. et al. Zaire Ebola virus entry into human dendritic cells is insensitive to cathepsin L inhibition. Cell Microbiol. 12, 148–157 (2010).

    CAS  Article  Google Scholar 

  8. 8.

    Carette, J. E. et al. Ebola virus entry requires the cholesterol transporter Niemann–Pick C1. Nature 477, 340–343 (2011).

    CAS  Article  Google Scholar 

  9. 9.

    Côté, M. et al. Small molecule inhibitors reveal Niemann-Pick C1 is essential for Ebola virus infection. Nature 477, 344–348 (2011).

    Article  Google Scholar 

  10. 10.

    Moller-Tank, S. & Maury, W. Ebola virus entry: a curious and complex series of events. PLoS Pathog. 11, e1004731 (2015).

    Article  Google Scholar 

  11. 11.

    Rasmussen, A. L. Host factors in Ebola infection. Annu. Rev. Genom. Hum. Genet. 17, 333–351 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    Davey, R. A. et al. Mechanisms of Filovirus entry. Curr. Top. Microbiol. Immunol. 411, 323–352 (2017).

    CAS  PubMed  Google Scholar 

  13. 13.

    Wu, L. & KewalRamani, V. N. Dendritic-cell interactions with HIV: infection and viral dissemination. Nat. Rev. Immunol. 6, 859–868 (2006).

    CAS  Article  Google Scholar 

  14. 14.

    Cameron, P. U. et al. Dendritic cells exposed to human immunodeficiency virus type-1 transmit a vigorous cytopathic infection to CD4+ T cells. Science 257, 383–387 (1992).

    CAS  Article  Google Scholar 

  15. 15.

    Geijtenbeek, T. B. et al. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100, 587–597 (2000).

    CAS  Article  Google Scholar 

  16. 16.

    Izquierdo-Useros, N. et al. Siglec-1 Is a novel dendritic cell receptor that mediates HIV-1 trans-infection through recognition of viral membrane gangliosides. PLoS Biol. 10, e1001448 (2012).

    CAS  Article  Google Scholar 

  17. 17.

    Puryear, W. B. et al. Interferon-inducible mechanism of dendritic cell-mediated HIV-1 dissemination is dependent on Siglec-1/CD169. PLoS Pathog. 9, e1003291 (2013).

    CAS  Article  Google Scholar 

  18. 18.

    Izquierdo-Useros, N. et al. Sialyllactose in viral membrane gangliosides is a novel molecular recognition pattern for mature dendritic cell capture of HIV-1. PLoS Biol. 10, e1001315 (2012).

    CAS  Article  Google Scholar 

  19. 19.

    Chan, R. et al. Retroviruses human immunodeficiency virus and murine leukemia virus are enriched in phosphoinositides. J. Virol. 82, 11228–11238 (2008).

    CAS  Article  Google Scholar 

  20. 20.

    Kalvodova, L. et al. The lipidomes of vesicular stomatitis virus, Semliki Forest virus, and the host plasma membrane analyzed by quantitative shotgun mass spectrometry. J. Virol. 83, 7996–8003 (2009).

    CAS  Article  Google Scholar 

  21. 21.

    Bavari, S. et al. Lipid raft microdomains: a gateway for compartmentalized trafficking of Ebola and Marburg viruses. J. Exp. Med. 195, 593–602 (2002).

    CAS  Article  Google Scholar 

  22. 22.

    Feizpour, A. et al. Quantifying lipid contents in enveloped virus particles with plasmonic nanoparticles. Small 11, 1592–1602 (2015).

    CAS  Article  Google Scholar 

  23. 23.

    Kreuels, B. et al. A case of severe Ebola virus infection complicated by Gram-negative septicemia. N. Engl. J. Med. 371, 2394–2401 (2014).

    CAS  Article  Google Scholar 

  24. 24.

    Villinger, F. et al. Markedly elevated levels of interferon (IFN)-gamma, IFN-alpha, interleukin (IL)-2, IL-10, and tumor necrosis factor-alpha associated with fatal Ebola virus infection. J. Infect. Dis. 179, S188–S191 (1999).

    CAS  Article  Google Scholar 

  25. 25.

    Martin-Serrano, J., Perez-Caballero, D. & Bieniasz, P. D. Context-dependent effects of L domains and ubiquitination on viral budding. J. Virol. 78, 5554–5563 (2004).

    CAS  Article  Google Scholar 

  26. 26.

    Lin, G. et al. Differential N-linked glycosylation of human immunodeficiency virus and Ebola virus envelope glycoproteins modulates interactions with DC-SIGN and DC-SIGNR. J. Virol. 77, 1337–1346 (2003).

    CAS  Article  Google Scholar 

  27. 27.

    Panchal, R. G. et al. In vivo oligomerization and raft localization of Ebola virus protein VP40 during vesicular budding. Proc. Natl Acad. Sci. USA 100, 15936–15941 (2003).

    CAS  Article  Google Scholar 

  28. 28.

    Peskova, M., Heger, Z., Janda, P., Adam, V. & Pekarik, V. An enzymatic assay based on luciferase Ebola virus-like particles for evaluation of virolytic activity of antimicrobial peptides. Peptides 88, 87–96 (2017).

    CAS  Article  Google Scholar 

  29. 29.

    Hartnell, A. et al. Characterization of human sialoadhesin, a sialic acid binding receptor expressed by resident and inflammatory macrophage populations. Blood 97, 288–296 (2001).

    CAS  Article  Google Scholar 

  30. 30.

    Wang, J. H., Janas, A. M., Olson, W. J. & Wu, L. Functionally distinct transmission of human immunodeficiency virus type 1 mediated by immature and mature dendritic cells. J. Virol. 81, 8933–8943 (2007).

    CAS  Article  Google Scholar 

  31. 31.

    Izquierdo-Useros, N. et al. Maturation of blood-derived dendritic cells enhances human immunodeficiency virus type 1 capture and transmission. J. Virol. 81, 7559–7570 (2007).

    CAS  Article  Google Scholar 

  32. 32.

    Izquierdo-Useros, N. et al. Dynamic imaging of cell-free and cell-associated viral capture in mature dendritic cells. Traffic 12, 1702–1713 (2011).

    CAS  Article  Google Scholar 

  33. 33.

    Yu, H. J., Reuter, M. A. & McDonald, D. HIV traffics through a specialized, surface-accessible intracellular compartment during trans-infection of T cells by mature dendritic cells. PLoS Pathog. 4, e1000134 (2008).

    Article  Google Scholar 

  34. 34.

    Yuan, S. et al. TIM-1 acts a dual-attachment receptor for Ebolavirus by interacting directly with viral GP and the PS on the viral envelope. Protein Cell 6, 814–824 (2015).

    CAS  Article  Google Scholar 

  35. 35.

    Tscherne, D. M., Manicassamy, B. & García-Sastre, A. An enzymatic virus-like particle assay for sensitive detection of virus entry. J. Virol. Methods 163, 336–343 (2010).

    CAS  Article  Google Scholar 

  36. 36.

    Dahlmann, F. et al. Analysis of Ebola virus entry into macrophages. J. Infect. Dis. 212, S247–S257 (2015).

    CAS  Article  Google Scholar 

  37. 37.

    Martinez-Picado, J. et al. Identification of Siglec-1 null individuals infected with HIV-1. Nat. Commun. 7, 12412 (2016).

    CAS  Article  Google Scholar 

  38. 38.

    Brenchley, J. M. et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat. Med. 12, 1365–1371 (2006).

    CAS  Article  Google Scholar 

  39. 39.

    Pino, M. et al. HIV-1 immune activation induces Siglec-1 expression and enhances viral trans-infection in blood and tissue myeloid cells. Retrovirology 12, 37 (2015).

    Article  Google Scholar 

  40. 40.

    Martinez, O. et al. Ebola virus exploits a monocyte differentiation program to promote its entry. J. Virol. 87, 3801–3814 (2013).

    CAS  Article  Google Scholar 

  41. 41.

    Rempel, H., Calosing, C., Sun, B. & Pulliam, L. Sialoadhesin expressed on IFN-induced monocytes binds HIV-1 and enhances infectivity. PLoS ONE 3, e1967 (2008).

    Article  Google Scholar 

  42. 42.

    Moller-Tank, S., Kondratowicz, A. S., Davey, R. A., Rennert, P. D. & Maury, W. Role of the phosphatidylserine receptor TIM-1 in enveloped-virus entry. J. Virol. 87, 8327–8341 (2013).

    CAS  Article  Google Scholar 

  43. 43.

    Jemielity, S. et al. TIM-family proteins promote infection of multiple enveloped viruses through virion-associated phosphatidylserine. PLoS Pathog. 9, e1003232 (2013).

    CAS  Article  Google Scholar 

  44. 44.

    Steiniger, B., Barth, P., Herbst, B., Hartnell, A. & Crocker, P. R. The species-specific structure of microanatomical compartments in the human spleen: strongly sialoadhesin-positive macrophages occur in the perifollicular zone, but not in the marginal zone. Immunology 92, 307–316 (1997).

    CAS  Article  Google Scholar 

  45. 45.

    Lloyd-Evans, E. et al. Niemann-Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nat. Med. 14, 1247–1255 (2008).

    CAS  Article  Google Scholar 

  46. 46.

    Cook, J. D. & Lee, J. E. The secret life of viral entry glycoproteins: moonlighting in immune evasion. PLoS Pathog. 9, e1003258 (2013).

    CAS  Article  Google Scholar 

  47. 47.

    Kaletsky, R. L., Francica, J. R., Agrawal-Gamse, C. & Bates, P. Tetherin-mediated restriction of filovirus budding is antagonized by the Ebola glycoprotein. Proc. Natl Acad. Sci. USA 106, 2886–2891 (2009).

    CAS  Article  Google Scholar 

  48. 48.

    Derking, R. et al. Comprehensive antigenic map of a cleaved soluble HIV-1 envelope trimer. PLoS Pathog. 11, e1004767 (2015).

    Article  Google Scholar 

  49. 49.

    Myszka, D. G. Kinetic, equilibrium, and thermodynamic analysis of macromolecular interactions with BIACORE. Methods Enzym. 323, 325–340 (2000).

    CAS  Article  Google Scholar 

  50. 50.

    Ströher, U. et al. Infection and activation of monocytes by marburg and Ebola viruses. J. Virol. 75, 11025–11033 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

For their excellent assistance, advice and imaging processing we thank E. Rebollo and J. Boix from the Advanced Fluorescence Microscopy Unit IBMB-PCB. We are also grateful to A. M. García-Cabrero and M. Lozano from Protein Tools at CNB for mAb purification. At HUGTiP, we thank all surgeons from the Otorhinolaryngology Department for their support, and E. Sayós Ortega and L. Pérez-Roca from the Histopathology & Electron Microscopy Platform for their outstanding sample processing and management. We thank P. Resa-Infante for critical reading of our manuscript. We thank C. Muñoz-Fontela for helpful discussions. We thank C. Galvez for PCR identification of the Siglec-1 null individual. We also thank the Microscopy Core Facility at IGTP for providing access to the Zeiss 710 confocal microscope, and the Advanced Light Microscopy Unit at the Centre for Genomic Regulation (CRG, Barcelona, Spain) for access to the Leica STED microscope. J.M.-P. and N.I.-U. are supported by the Spanish Secretariat of State of Research, Development and Innovation through grant No. SAF2016-80033-R. J.M.-P. is supported by the Spanish AIDS network Red Temática Cooperativa de Investigación en SIDA. D.P.-Z. is supported by the Spanish Ministry of Science, Innovation and Universities and the European Regional Development Fund under agreement No. BES-2014-069931. J.C. is supported by Catalan Department of Health, PERIS fellowship (No. SLT006/17/00214). S.B. is supported by the Rio Hortega programme funded by the Spanish Health Institute Carlos III (No. CM17/00242). X.M.-T. is supported by the Spanish Ministry of Science, Innovation and Universities and the European Regional Development Fund under agreement No. BES-2017-082900. This research was sponsored in part by Grifols.

Author information

Affiliations

Authors

Contributions

D.P.-Z., L.K., J.M.-P. and N.I.-U. conceived and designed the experiments. M.G.-G., M.M. and L.K. generated and characterized the mAbs. D.G. contributed materials. D.P-Z, I.E., M.P., M.G.-G., M.M., S.B., J.C. and X.M.-T. performed the experiments. D.P.-Z., I.E., M.P., M.G.-G., M.M., S.B., J.C., M.F.F., V.U., L.K., J.M.-P. and N.I.-U. analysed and interpreted the data. D.P.-Z. and N.I.-U. wrote the paper. J.M.-P. and N.I.-U. performed critical revision.

Corresponding authors

Correspondence to Javier Martinez-Picado or Nuria Izquierdo-Useros.

Ethics declarations

Competing interests

A patent application based on this work has been filed (US 62/828,195). The authors declare no other competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–4, Supplementary Figures 1–10 and Supplementary Video Legends.

Reporting Summary

Supplementary Video 1

Confocal microscopy analysis of LPS DCs. Cells were pulsed and labeled as in Fig. 2h. Videos show 3D reconstruction of the maximum intensity fluorescence built with Volocity Software.

Supplementary Video 2

Confocal microscopy analysis of LPS DCs. Cells were pulsed and labeled as in Fig. 2h. Videos show 3D reconstruction of the maximum intensity fluorescence built with Volocity Software.

Supplementary Video 3

Super-resolution microscopy analysis of the VCC from LPS DCs. Cells were pulsed and stained as in Fig. 2j. Videos show 3D reconstruction built with Imaris Software.

Supplementary Video 4

Super-resolution microscopy analysis of the VCC from LPS DCs. Cells were pulsed and stained as in Fig. 2j. Videos show 3D reconstruction built with Imaris Software.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Perez-Zsolt, D., Erkizia, I., Pino, M. et al. Anti-Siglec-1 antibodies block Ebola viral uptake and decrease cytoplasmic viral entry. Nat Microbiol 4, 1558–1570 (2019). https://doi.org/10.1038/s41564-019-0453-2

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing