Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Emergence of plasmid-mediated high-level tigecycline resistance genes in animals and humans

Abstract

Tigecycline is a last-resort antibiotic that is used to treat severe infections caused by extensively drug-resistant bacteria. tet(X) has been shown to encode a flavin-dependent monooxygenase that modifies tigecycline1,2. Here, we report two unique mobile tigecycline-resistance genes, tet(X3) and tet(X4), in numerous Enterobacteriaceae and Acinetobacter that were isolated from animals, meat for consumption and humans. Tet(X3) and Tet(X4) inactivate all tetracyclines, including tigecycline and the newly FDA-approved eravacycline and omadacycline. Both tet(X3) and tet(X4) increase (by 64–128-fold) the tigecycline minimal inhibitory concentration values for Escherichia coli, Klebsiella pneumoniae and Acinetobacter baumannii. In addition, both Tet(X3) (A. baumannii) and Tet(X4) (E. coli) significantly compromise tigecycline in in vivo infection models. Both tet(X3) and tet(X4) are adjacent to insertion sequence ISVsa3 on their respective conjugative plasmids and confer a mild fitness cost (relative fitness of >0.704). Database mining and retrospective screening analyses confirm that tet(X3) and tet(X4) are globally present in clinical bacteria—even in the same bacteria as blaNDM-1, resulting in resistance to both tigecycline and carbapenems. Our findings suggest that both the surveillance of tet(X) variants in clinical and animal sectors and the use of tetracyclines in food production require urgent global attention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: In vivo model confirming the clinical importance of tet(X3) and tet(X4).
Fig. 2: Genetic environment of tet(X3) and tet(X4) in typical plasmids and comparison of the tet(X3)- and tet(X4)-carrying regions.

Similar content being viewed by others

Data availability

The complete sequences of the tet(X3)- and tet(X4)-carrying plasmids, which support the findings of this study, have been deposited in the NCBI GenBank database under accession numbers MK134375 and MK134376, respectively. Other data that support the findings of this study are presented within this Letter and in the Supplementary Information. Additional data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Forsberg, K. J., Patel, S., Wencewicz, T. A. & Dantas, G. The tetracycline destructases: a novel family of tetracycline-inactivating enzymes. Chem. Biol. 22, 888–897 (2015).

    Article  CAS  Google Scholar 

  2. Moore, I. F., Hughes, D. W. & Wright, G. D. Tigecycline is modified by the flavin-dependent monooxygenase TetX. Biochemistry 44, 11829–11835 (2005).

    Article  CAS  Google Scholar 

  3. Laxminarayan, R., Sridhar, D., Blaser, M., Wang, M. & Woolhouse, M. Achieving global targets for antimicrobial resistance. Science 353, 874–875 (2016).

    Article  CAS  Google Scholar 

  4. Karageorgopoulos, D. E. & Falagas, M. E. Current control and treatment of multidrug-resistant Acinetobacter baumannii infections. Lancet Infect. Dis. 8, 751–762 (2008).

    Article  Google Scholar 

  5. Rodríguez-Baño, J., Gutiérrez-Gutiérrez, B., Machuca, I. & Pascual, A. Treatment of infections caused by extended-spectrum-beta-lactamase-, AmpC-, and carbapenemase-producing Enterobacteriaceae. Clin. Microbiol. Rev. 31, e00079-17 (2018).

  6. Liu, Y. Y. et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect. Dis. 16, 161–168 (2016).

    Article  Google Scholar 

  7. Partridge, S. R. et al. Proposal for assignment of allele numbers for mobile colistin resistance (mcr) genes. J. Antimicrob. Chemother. 73, 2625–2630 (2018).

    Article  CAS  Google Scholar 

  8. Tasina, E., Haidich, A. B., Kokkali, S. & Arvanitidou, M. Efficacy and safety of tigecycline for the treatment of infectious diseases: a meta-analysis. Lancet Infect. Dis. 11, 834–844 (2011).

    Article  CAS  Google Scholar 

  9. Brust, K., Evans, A. & Plemmons, R. Favourable outcome in the treatment of carbapenem-resistant Enterobacteriaceae urinary tract infection with high-dose tigecycline. J. Antimicrob. Chemother. 69, 2875–2876 (2014).

    Article  CAS  Google Scholar 

  10. Marchaim, D. et al. Major variation in MICs of tigecycline in Gram-negative bacilli as a function of testing method. J. Clin. Microbiol. 52, 1617–1621 (2014).

    Article  Google Scholar 

  11. Babinchak, T., Ellis-Grosse, E., Dartois, N., Rose, G. M. & Loh, E. The efficacy and safety of tigecycline for the treatment of complicated intra-abdominal infections: analysis of pooled clinical trial data. Clin. Infect. Dis. 41, S354–S367 (2005).

    Article  CAS  Google Scholar 

  12. Ellis-Grosse, E. J., Babinchak, T., Dartois, N., Rose, G. & Loh, E. The efficacy and safety of tigecycline in the treatment of skin and skin-structure infections: results of 2 double-blind phase 3 comparison studies with vancomycin-aztreonam. Clin. Infect. Dis. 41, S341–S353 (2005).

    Article  CAS  Google Scholar 

  13. Sun, Y. et al. The emergence of clinical resistance to tigecycline. Int J. Antimicrob. Agents 41, 110–116 (2013).

    Article  CAS  Google Scholar 

  14. Du, X. et al. The rapid emergence of tigecycline resistance in bla KPC-2 harboring Klebsiella pneumoniae, as mediated in vivo by mutation in tetA during tigecycline treatment. Front. Microbiol. 9, 648 (2018).

    Article  Google Scholar 

  15. Yao, H., Qin, S., Chen, S., Shen, J. & Du, X. D. Emergence of carbapenem-resistant hypervirulent Klebsiella pneumoniae. Lancet Infect. Dis. 18, 25 (2018).

    Article  Google Scholar 

  16. Yang, W. et al. TetX is a flavin-dependent monooxygenase conferring resistance to tetracycline antibiotics. J. Biol. Chem. 279, 52346–52352 (2004).

    Article  CAS  Google Scholar 

  17. Deng, M. et al. Molecular epidemiology and mechanisms of tigecycline resistance in clinical isolates of Acinetobacter baumannii from a Chinese university hospital. Antimicrob. Agents Chemother. 58, 297–303 (2014).

    Article  Google Scholar 

  18. Leski, T. A. et al. Multidrug-resistant tet(X)-containing hospital isolates in Sierra Leone. Int J. Antimicrob. Agents 42, 83–86 (2013).

    Article  CAS  Google Scholar 

  19. Eitel, Z., Sóki, J., Urbán, E. & Nagy, E. The prevalence of antibiotic resistance genes in Bacteroides fragilis group strains isolated in different European countries. Anaerobe 21, 43–49 (2013).

    Article  CAS  Google Scholar 

  20. Pehrsson, E. C. et al. Interconnected microbiomes and resistomes in low-income human habitats. Nature 533, 212–216 (2016).

    Article  CAS  Google Scholar 

  21. Guiney, D. G. Jr., Hasegawa, P. & Davis, C. E. Expression in Escherichia coli of cryptic tetracycline resistance genes from Bacteroides R plasmids. Plasmid 11, 248–252 (1984).

    Article  CAS  Google Scholar 

  22. Tanaka, S. K., Steenbergen, J. & Villano, S. Discovery, pharmacology, and clinical profile of omadacycline, a novel aminomethylcycline antibiotic. Bioorg. Med. Chem. 24, 6409–6419 (2016).

    Article  CAS  Google Scholar 

  23. Sutcliffe, J. A., O’Brien, W., Fyfe, C. & Grossman, T. H. Antibacterial activity of eravacycline (TP-434), a novel fluorocycline, against hospital and community pathogens. Antimicrob. Agents Chemother. 57, 5548–5558 (2013).

    Article  CAS  Google Scholar 

  24. Volkers, G., Palm, G. J., Weiss, M. S., Wright, G. D. & Hinrichs, W. Structural basis for a new tetracycline resistance mechanism relying on the TetX monooxygenase. FEBS Lett. 585, 1061–1066 (2011).

    Article  CAS  Google Scholar 

  25. Personal Care Product Market Development Analysis (China Industry Research Net, 2018); http://www.chinairn.com/report/20180208/093004908.html

  26. Volkers, G. et al. Putative dioxygen-binding sites and recognition of tigecycline and minocycline in the tetracycline-degrading monooxygenase TetX. Acta Crystallogr D 69, 1758–1767 (2013).

    Article  CAS  Google Scholar 

  27. Petkovic, S. & Hinrichs, W. Antibiotic resistance: blocking tetracycline destruction. Nat. Chem. Biol. 13, 694–695 (2017).

    Article  CAS  Google Scholar 

  28. Park, J. et al. Plasticity, dynamics, and inhibition of emerging tetracycline resistance enzymes. Nat. Chem. Biol. 13, 730–736 (2017).

    Article  CAS  Google Scholar 

  29. Van Boeckel, T. P. et al. Global trends in antimicrobial use in food animals. Proc. Natl Acad. Sci. USA 112, 5649–5654 (2015).

    Article  Google Scholar 

  30. Linkevicius, M., Sandegren, L. & Andersson, D. I. Potential of tetracycline resistance proteins to evolve tigecycline resistance. Antimicrob. Agents Chemother. 60, 789–796 (2016).

    Article  CAS  Google Scholar 

  31. Hentschke, M., Christner, M., Sobottka, I., Aepfelbacher, M. & Rohde, H. Combined ramR mutation and presence of a Tn1721-associated tet(A) variant in a clinical isolate of Salmonella enterica serovar Hadar resistant to tigecycline. Antimicrob. Agents Chemother. 54, 1319–1322 (2010).

    Article  CAS  Google Scholar 

  32. He, T. et al. Occurrence and characterization of bla NDM-5-positive Klebsiella pneumoniae isolates from dairy cows in Jiangsu, China. J. Antimicrob. Chemother. 72, 90–94 (2017).

    Article  CAS  Google Scholar 

  33. He, T. et al. Characterization of NDM-5-positive extensively resistant Escherichia coli isolates from dairy cows. Vet. Microbiol. 207, 153–158 (2017).

    Article  CAS  Google Scholar 

  34. Wang, Y. et al. Comprehensive resistome analysis reveals the prevalence of NDM and MCR-1 in Chinese poultry production. Nat. Microbiol. 2, 16260 (2017).

    Article  CAS  Google Scholar 

  35. Shen, Y. et al. Heterogeneous and flexible transmission of mcr-1 in hospital-associated Escherichia coli. mBio 9, e00943-18 (2018).

  36. Li, R. et al. Efficient generation of complete sequences of MDR-encoding plasmids by rapid assembly of MinION barcoding sequencing data. Gigascience 7, 1–9 (2018).

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the National Key Research and Development Program of China (2018YFD0500300), National Natural Science Foundation of China (81861138051, 81661138002, 31702297, 81871705), Natural Science Foundation of Jiangsu Province (BK20160577), Medical Research Council grant DETER-XDRE-CHINA (MR/P007295/1) and China Agriculture Research System (CARS-36).

Author information

Authors and Affiliations

Authors

Contributions

Y.W., T.H., D.L. and J.S. designed the study. T.H., R.Wang, D.L., Y.Lv, Y.S., L.L., Z.Liu, L.W., Y.H., Z.Lv and Q.S. collected the data. T.H., R.Wang, D.L., T.R.W., R.Z., Y.K., Q.J., R.Wei, Z.L., Y.S., G.W., Y.F., H.S., L.S., Y.Li, M.P., Z.S., S.W., G.C., C.W. and J.S. analysed and interpreted the data. Y.W., T.H., D.L. and T.R.W. wrote the manuscript. All authors reviewed, revised, and approved the final report.

Corresponding authors

Correspondence to Jianzhong Shen or Yang Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–10 and Supplementary Tables 1–4.

Reporting Summary

Supplementary Table 5

Presence of intact ISVsa3 sequences in various bacterial species.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, T., Wang, R., Liu, D. et al. Emergence of plasmid-mediated high-level tigecycline resistance genes in animals and humans. Nat Microbiol 4, 1450–1456 (2019). https://doi.org/10.1038/s41564-019-0445-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-019-0445-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing