Oxidization of TGFβ-activated kinase by MPT53 is required for immunity to Mycobacterium tuberculosis

Article metrics


Mycobacterium tuberculosis (Mtb)-derived components are usually recognized by pattern recognition receptors to initiate a cascade of innate immune responses. One striking characteristic of Mtb is their utilization of different type VII secretion systems to secrete numerous proteins across their hydrophobic and highly impermeable cell walls, but whether and how these Mtb-secreted proteins are sensed by host immune system remains largely unknown. Here, we report that MPT53 (Rv2878c), a secreted disulfide-bond-forming-like protein of Mtb, directly interacts with TGF-β-activated kinase 1 (TAK1) and activates TAK1 in a TLR2- or MyD88-independent manner. MPT53 induces disulfide bond formation at C210 on TAK1 to facilitate its interaction with TRAFs and TAB1, thus activating TAK1 to induce the expression of pro-inflammatory cytokines. Furthermore, MPT53 and its disulfide oxidoreductase activity is required for Mtb to induce the host inflammatory responses via TAK1. Our findings provide an alternative pathway for host signalling proteins to sense Mtb infection and may favour the improvement of current vaccination strategies.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: MPT53 activates host inflammation responses.
Fig. 2: MPT53 interacts with TAK1.
Fig. 3: MPT53 activates TAK1.
Fig. 4: MPT53 triggers inflammation via disulfide oxidoreductase activity.
Fig. 5: MPT53 promotes the formation of TAK1 disulfide bonds at C210.
Fig. 6: MPT53 activates inflammation through the oxidation of TAK1 at C210.

Data availability

The data that support the findings of this study are available from the corresponding author on request.


  1. 1.

    Kaufmann, S. H. E. et al. Progress in tuberculosis vaccine development and host-directed therapies—a state of the art review. Lancet Respir. Med. 2, 301–320 (2014).

  2. 2.

    World Health Organization. WHO Global Tuberculosis Report 2018 (WHO, 2018).

  3. 3.

    Ottenhoff, T. H. & Kaufmann, S. H. E. Vaccines against tuberculosis: where are we and where do we need to go? PLoS Pathog. 8, e1002607 (2012).

  4. 4.

    Khan, N., Vidyarthi, A., Javed, S. & Agrewala, J. N. Innate immunity holding the flanks until reinforced by adaptive immunity against Mycobacterium tuberculosis infection. Front. Microbiol. 7, 328 (2016).

  5. 5.

    Mayer-Barber, K. D. & Sher, A. Cytokine and lipid mediator networks in tuberculosis. Immunol. Rev. 264, 264–275 (2015).

  6. 6.

    Ernst, J. D. The immunological life cycle of tuberculosis. Nat. Rev. Immunol. 12, 581–591 (2012).

  7. 7.

    O’Garra, A. et al. The immune response in tuberculosis. Annu. Rev. Immunol. 31, 475–527 (2013).

  8. 8.

    Robinson, R. T., Orme, I. M. & Cooper, A. M. The onset of adaptive immunity in the mouse model of tuberculosis and the factors that compromise its expression. Immunol. Rev. 264, 46–59 (2015).

  9. 9.

    Hmama, Z., Pena-Diaz, S., Joseph, S. & Av-Gay, Y. Immunoevasion and immunosuppression of the macrophage by Mycobacterium tuberculosis. Immunol. Rev. 264, 220–232 (2015).

  10. 10.

    Liu, C. H., Liu, H. & Ge, B. Innate immunity in tuberculosis: host defense vs pathogen evasion. Cell. Mol. Immunol. 14, 963–975 (2017).

  11. 11.

    Dorhoi, A. & Kaufmann, S. H. E. Pathology and immune reactivity: understanding multidimensionality in pulmonary tuberculosis. Semin. Immunopathol. 38, 153–166 (2016).

  12. 12.

    Huynh, K. K., Joshi, S. A. & Brown, E. J. A delicate dance: host response to mycobacteria. Curr. Opin. Immunol. 23, 464–472 (2011).

  13. 13.

    Orme, I. M., Robinson, R. T. & Cooper, A. M. The balance between protective and pathogenic immune responses in the TB-infected lung. Nat. Immunol. 16, 57–63 (2015).

  14. 14.

    Kleinnijenhuis, J., Oosting, M., Joosten, L. A., Netea, M. G. & Van, C. R. Innate immune recognition of Mycobacterium tuberculosis. Clin. Dev. Immunol. 2011, 405310 (2015).

  15. 15.

    Mortaz, E. et al. Interaction of pattern recognition receptors with Mycobacterium tuberculosis. J. Clin. Immunol. 35, 1–10 (2015).

  16. 16.

    Stamm, C. E., Collins, A. C. & Shiloh, M. U. Sensing of Mycobacterium tuberculosis and consequences to both host and bacillus. Immunol. Rev. 264, 204–219 (2015).

  17. 17.

    Brooks, M. N. et al. NOD2 controls the nature of the inflammatory response and subsequent fate of Mycobacterium tuberculosis and M. bovis BCG inhuman macrophages. Cell. Microbiol. 13, 402–418 (2011).

  18. 18.

    Coulombe, F. et al. Increased NOD2-mediated recognition of N-glycolylmuramyl dipeptide. J. Exp. Med. 206, 1709–1716 (2009).

  19. 19.

    Divangahi, M. et al. NOD2-deficient mice have impaired resistance to Mycobacterium tuberculosis infection through defective innate and adaptive immunity. J. Immunol. 181, 7157–7165 (2008).

  20. 20.

    Mishra, B. B. et al. Mycobacterium tuberculosis protein ESAT-6 is a potent activator of the NLRP3/ASC inflammasome. Cell. Microbiol. 12, 1046–1063 (2010).

  21. 21.

    Watson, R. O. et al. The cytosolic sensor cGAS detects Mycobacterium tuberculosis DNA to induce type I interferons and activate autophagy. Cell Host Microbe 17, 811–819 (2015).

  22. 22.

    Manzanillo, P. S., Shiloh, M. U., Portnoy, D. A. & Cox, J. S. Mycobacterium tuberculosis activates the DNA-dependent cytosolic surveillance pathway within macrophages. Cell Host Microbe 11, 469–480 (2012).

  23. 23.

    Pathak, S. K. et al. Direct extracellular interaction between the early secreted antigen ESAT-6 of Mycobacterium tuberculosis and TLR2 inhibits TLR signaling in macrophages. Nat. Immunol. 8, 610–618 (2007).

  24. 24.

    Wang, J. et al. Mycobacterium tuberculosis suppresses innate immunity by coopting the host ubiquitin system. Nat. Immunol. 16, 237–245 (2015).

  25. 25.

    Wang, L. et al. Mycobacterium tuberculosis lipoprotein MPT83 induces apoptosis of infected macrophages by activating the TLR2/p38/COX-2 signaling pathway. J. Immunol. 198, 4772–4780 (2017).

  26. 26.

    Ajibade, A. A., Wang, H. Y. & Wang, R. F. Cell type-specific function of TAK1 in innate immune signaling. Trends Immunol. 34, 307–316 (2013).

  27. 27.

    Ninomiya-tsuji, J. et al. The kinase TAK1 can activate the NIK-IκB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 398, 252–256 (1999).

  28. 28.

    Kanayama, A. et al. TAB2 and TAB3 activate the NF-κB pathway through binding to polyubiquitin chains. Mol. Cell 15, 535–548 (2004).

  29. 29.

    Wang, C. et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346–351 (2001).

  30. 30.

    Scholz, R. et al. Autoactivation of transforming growth factor β-activated kinase 1 is a sequential bimolecular process. J. Biol. Chem. 285, 25753–25766 (2010).

  31. 31.

    Mills, K. H. G. Tlr-dependent T cell activation in autoimmunity. Nat. Rev. Immunol. 11, 807–822 (2011).

  32. 32.

    Zheng, R. et al. Notch4 negatively regulates the inflammatory response to Mycobacterium tuberculosis infection by inhibiting TAK1 activation. J. Infect. Dis. 218, 312–323 (2018).

  33. 33.

    Wiker, H. G. et al. Cloning, expression and significance of MPT53 for identification of secreted proteins of Mycobacterium tuberculosis. Microb. Pathog. 26, 207–219 (1999).

  34. 34.

    Liu, F. et al. MicroRNA-27a controls the intracellular survival of Mycobacterium tuberculosis by regulating calcium-associated autophagy. Nat. Comm. 9, 4295 (2018).

  35. 35.

    Chen, Z. J. Ubiquitination in signaling to and activation of IKK. Immunol. Rev. 246, 95–106 (2012).

  36. 36.

    Xia, Z.-P. et al. Direct activation of protein kinases by unanchored polyubiquitin chains. Nature 461, 114–119 (2009).

  37. 37.

    Sakurai, H., Miyoshi, H., Mizukami, J. & Sugita, T. Phosphorylation-dependent activation of TAK1 mitogen-activated protein kinase kinase kinase by TAB1. FEBS Lett. 474, 141–145 (2000).

  38. 38.

    Sakurai, H. Targeting of TAK1 in inflammatory disorders and cancer. Trends Pharmacol. 33, 522–530 (2012).

  39. 39.

    Jones, C. L. Isolation, semisynthesis, covalent docking and transforming growth factor beta-activated kinase 1 (TAK1)-inhibitory activities of (5Z)-7-oxozeaenol analogues. Bioorg. Med. Chem. 23, 6993–6999 (2015).

  40. 40.

    Goulding, C. W. et al. Gram-positive DsbE proteins function differently from Gram-negative DsbE homologs. A structure tofunction analysis of DsbE from Mycobacterium tuberculosis. J. Biol. Chem. 279, 3516–3524 (2004).

  41. 41.

    Sorrentino, A. et al. The type I TGF-β receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nat. Cell Biol. 10, 1199–1207 (2008).

  42. 42.

    Sweeney, K. A. et al. A recombinant Mycobacterium smegmatis induces potent bactericidal immunity against Mycobacterium tuberculosis. Nat. Med. 17, 1261–1268 (2011).

  43. 43.

    Abdallah, A. M. et al. Type VII secretion—mycobacteria show the way. Nat. Rev. Microbiol. 5, 883–891 (2007).

  44. 44.

    North, R. J. & Jung, Y. J. Immunity to tuberculosis. Ann. Rev. Immunol. 22, 599–623 (2004).

  45. 45.

    Dorhoi, A. et al. MicroRNA-223 controls susceptibility to tuberculosis by regulating lung neutrophil recruitment. J. Clin. Invest. 123, 4836–4848 (2013).

  46. 46.

    Ladel, C. H. et al. Lethal tuberculosis in interleukin-6-deficient mutant mice. Infect. Immun. 65, 4843–4849 (1997).

  47. 47.

    Mazmanian, S. K., Liu, C. H., Tzianabos, A. O. & Kasper, D. L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122, 107–118 (2005).

  48. 48.

    Nandi, B. & Behar, S. M. Regulation of neutrophils by interferon-γ limits lung inflammation during tuberculosis infection. J. Exp. Med. 208, 2251–2262 (2011).

  49. 49.

    Dallenga, T. & Schaible, U. E. Neutrophils in tuberculosis—defence or booster of disease and targets for host directed therapy? Pathog. Dis. 74, ftw012 (2016).

  50. 50.

    Paquette, N. et al. Serine/threonine acetylation of TGFβ-activated kinase (TAK1) by Yersinia pestis YopJ inhibits innate immune signaling. Proc. Natl Acad Sci. USA 109, 12710–12715 (2012).

  51. 51.

    Chim, N. et al. An extracellular disulfide bond forming protein (DsbF) from Mycobacterium tuberculosis: structural, biochemical, and gene expression analysis. J. Mol. Biol. 396, 1211–1226 (2010).

  52. 52.

    Ahsan, M. J. Recent advances in the development of vaccines for tuberculosis. Ther. Adv. Vaccines 3, 66–75 (2015).

  53. 53.

    Yuk, J. M. & Jo, E. K. Host immune responses to mycobacterial antigens and their implications for the development of a vaccine to control tuberculosis. Clin. Exp. Vaccine Res. 3, 155–167 (2014).

  54. 54.

    Yan, D., Wang, X., Luo, L., Cao, X. & Ge, B. Inhibition of TLR signaling by a bacterial protein containing immunoreceptor tyrosine-based inhibitory motifs. Nat. Immunol. 13, 1063–1071 (2012).

  55. 55.

    Bardarov, S. et al. Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis, M. bovis BCG and M. smegmatis. Microbiology 148, 3007–3017 (2002).

  56. 56.

    Liu, H. H. et al. Essential role of TAK1 in thymocyte development and activation. Proc. Natl Acad. Sci. USA 103, 11677–11682 (2006).

Download references


We thank J. Chen (The University of Texas Southwestern Medical Center) for TAK1 condition knockout mice. We thank L.-D. Lyu (CAS Key Laboratory of Synthetic Biology) for technical discussions on MPT53 knockout strain construction. We thank K. Mi (CAS Key Laboratory of Pathogenic Microbiology and Immunology) for providing the pMV261 plasmid. We thank the members of the B. Ge laboratory for their helpful discussions and technical assistance. This project was supported by grants from Chinese National Program on Key Basic Research Project (grant no. 2017YFA0505900), National Natural Science Foundation of China (grant nos 91842303 and 31730025 to B.G. and grant no. 81800004 to L.W.) and Fundamental Research Funds for the Central Universities (grant no. 22120180024).

Author information

L.W. and B.G designed this study. L.W. and Z.L. performed most of the experiments and analysed data, assisted by H.Liu, J.Wu, T.T., H.Li, D.M., J.Chen, F.L., R.Z., P.S., Y.Z., X.W., H.Lang, S.Z. and J.Cao. J.Wang constructed the knockout H37Rv strain, assisted by H.Y., L.Q. and X.H. Z.C. constructed recombinant M. smegmatis. C.W. provided clinical samples. X.C. and G.Z. provided helpful discussions and assisted with the manuscript preparation. Y.C. and D.S. provided the structure analysis. All authors discussed the results and commented on the manuscript.

Correspondence to Baoxue Ge.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2, and Supplementary Figures 1–7.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark